

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 2, 720-735

ISSN: 1927-5307

CONTRIBUTION ON THE EXISTENCE OF SOLUTIONS OF COUPLED FBSDES WITH MONOTONE COEFFICIENTS AND RANDOM JUMPS

DJIBRIL NDIAYE

Département de Mathématiques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Sénégal

Abstract

In this paper, we prove existence of a solution of a class of Forward Backward Stochastic Differential Equations (FBSDE) with Poisson random jumps by weakening the usual Lipschitz conditions on the generator of the backward equation with jumps and the drift of the forward equation with jumps. These coefficients are monotonic but can be discontinuous and the diffusion term can be degenerated.

Keywords: forward backward stochastic differential equations; Poisson process; comparison theorem; increasing process.

2000 AMS Subject Classification: 60H10; 35B51; 60J75

1. Introduction

The aim of this work consists in finding a solution of a class of FBSDE with random jumps under monotonic hypotheses on the generator of the backward equation and the drift of the forward equations. More precisely, we consider the coupled system

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W s+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}, e\right) \widetilde{\mu}(d e, d s) \tag{1}\\
Y_{t}=\Gamma+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W s-\int_{t}^{T} \int_{E} U_{s}(e) \widetilde{\mu}(d e, d s)
\end{array}\right.
$$

Fully coupled FBSDE can be encountered in various problems: the probabilistic representation of viscosity solutions of quasilinear PDE's (see [5]), the stochastic optimal control among others. In 1999, fully coupled forward-backward stochastic differential equations and their connection with PDE have been studied intensively by Pardoux and Tang (see [17]). In 2006, Antonelli and Hamadène (see[1]) gave one existence result for coupled FBSDE under non-Lipschitz assumption.

Unfortunately, most existence or uniqueness results on solutions of forward-backward stochastic differential equations need regularity assumptions. The coefficients are required to be at least continuous which is somehow too strong in some applications.

In 2008, inspired by [1], Ouknine and Ndiaye (see [15]) gave the first result which proves existence of a solution of a forward-backward stochastic differential equation with discontinuous coefficients and degenerate diffusion coefficient where, moreover, the terminal condition is not necessary bounded.

However, there is few results about reflected forward-backward stochastic differential equation in which the solution of the BSDE stays above a given barrier.

In ([16]), Ouknine and Ndiaye gave an extension of ([15]) with the obstacle constraint.
Our work can be also seen as an extension of ([15]) with random jumps.

2. Preliminaries

Let $[0, T]$ be a fixed time interval. We will always take s in $[0, T]$. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, W a d-dimensional brownian motion defined on this space, and a Poisson random measure μ on $\mathbb{R}_{+} \times E$, where E is a compact set of \mathbb{R}^{q}, endowed with its Borel field \mathcal{E}. We also assume that the Poisson random measure μ is independent of W, and has the intensity measure $\lambda(d e) d t$ for some finite measure λ on (E, \mathcal{E}). We set $\widetilde{\mu}(d t, d e)=\mu(d t, d e)-\lambda(d e) d t$, the compensated measure associated to μ. We denote by $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ the augmentation of the natural filtration generated by W and μ, and by \mathcal{P} the σ-algebra of predictable subsets of $\Omega \times[0, T]$.

We will work with these following spaces of processes:
$-\mathcal{S}^{2}$, the set of adapted and continuous processes $V=\left(V_{t}\right)_{0 \leq t \leq T}$ such that

$$
\|V\|_{\mathcal{S}^{2}}^{2}=\mathbb{E}\left(\sup _{0 \leq t \leq T}\left|V_{t}\right|^{2}\right)<\infty
$$

- \mathcal{H}^{2}, the set of \mathcal{F}_{t}-progressively measurable processes Z, such that

$$
\|Z\|_{\mathcal{H}^{2}}^{2}=\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]<\infty
$$

$-\mathcal{L}^{p}(\widetilde{\mu}), p \geq 1$, the set of $\mathcal{P} \otimes E$-measurable maps $U: \Omega \times[0, T] \times E \rightarrow \mathbb{R}$ such that

$$
\|U\|_{\mathcal{L}^{p}(\widetilde{\mu})}^{p}=\mathbb{E}\left[\int_{0}^{t} \int_{E}\left|U_{t}(e)\right|^{p} \lambda(d e) d t\right]<\infty
$$

3. Main results

Theorem 3.1. Let $b:[0, T] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be a measurable and bounded function such that for all $s \in[0, T], b(s, .,$.$) is increasing and left continuous.$

Let $f:[0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, a measurable and bounded function such that for all $s \in[0, T], z \in \mathbb{R}, f(s, ., ., z)$ is increasing, left continuous and Lipschitz with respect to z uniformly in x, y and s i.e. $\exists \Lambda \in \mathbb{R}_{+}^{*}$ such that

$$
\left|f(s, x, y, z)-f\left(s, x, y, z^{\prime}\right)\right| \leq \Lambda\left(\left|z-z^{\prime}\right|\right), s \in[0, T], x, y, z, z^{\prime} \in \mathbb{R}
$$

Let $\sigma:[0, T] \times \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function satisfying the following conditions:

$$
|\sigma(s, x)| \leq \Lambda(1+|x|)
$$

and

$$
\left|\sigma(s, x)-\sigma\left(s, x^{\prime}\right)\right| \leq \Lambda\left|x-x^{\prime}\right|, s \in[0, T], x, x^{\prime} \in \mathbb{R}
$$

Let $\beta: \mathbb{R} \times E \rightarrow \mathbb{R}$ a measurable map satisfying for some positive constants C and k_{β},

$$
\sup _{e \in E}|\beta(s, x)| \leq C,
$$

and

$$
\sup _{e \in E}\left|\beta(x, e)-\beta\left(x^{\prime}, e\right)\right| \leq k_{\beta}\left|x-x^{\prime}\right| .
$$

Let Γ be a random variable $\mathcal{F}_{T^{-}}$measurable and square integrable.
Then the following fully coupled reflected forward-backward stochastic differential equations

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W s+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}, e\right) \widetilde{\mu}(d e, d s) \tag{2}\\
Y_{t}=\Gamma+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W s-\int_{t}^{T} \int_{E} U_{s}(e) \widetilde{\mu}(d e, d s)
\end{array}\right.
$$

has at least one solution $(X, Y, Z, U) \in \mathcal{S}^{2} \otimes \mathcal{S}^{2} \otimes \mathcal{H}^{2} \otimes \mathcal{L}^{2}(\widetilde{\mu})$.
Before proving the main result, we will give two lemmas: an approximating one for increasing coefficients which plays an important role in its proof (see [15] for the proof) and another on the comparison of solutions of BSDEs with jumps whose proof will be given below.

Lemma 3.2. Let $b:[0, T] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be a measurable function, bounded by M and such that for all $s \in[0, T], b(s, .,$.$) increasing an left continuous.$

Then it exists a family of measurable functions $\left(b_{n}(s, x, y), n \geq 1, s \in[0, T], x, y \in \mathbb{R}\right)$ such that:
$\left(l_{1}\right)$ for all sequence $\left(x_{n}, y_{n}\right) \uparrow(x, y),(x, y) \in \mathbb{R}^{2}$ we have

$$
\lim _{n \rightarrow \infty} b_{n}\left(s, x_{n}, y_{n}\right)=b(s, x, y)
$$

$\left(l_{2}\right)(x, y) \longmapsto b_{n}(s, x, y)$ is increasing, for all $n \geq 1, s \in[0, T]$
$\left(l_{3}\right) n \longmapsto b_{n}(s, x, y)$ is increasing, for all $x \in \mathbb{R}, y \in \mathbb{R}, s \in[0, T]$
$\left(l_{4}\right)\left|b_{n}(s, x, y)-b_{n}\left(s, x^{\prime}, y^{\prime}\right)\right| \leq 2 n M\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|\right)$ for all $n \geq 1, s \in[0, T], M \in \mathbb{R}_{+}^{*}$
$\left(l_{5}\right) \sup _{n \geq 1} \sup _{s \in[0, T]} \sup _{x, y \in \mathbb{R}}\left|b_{n}(s, x, y)\right| \leq M$ for all $n \geq 1, s \in[0, T], x, y \in \mathbb{R}$.
Lemma 3.3. Consider (Y, Z, U) and $\left(Y^{\prime}, Z^{\prime}, U^{\prime}\right)$ the respective solutions of the following BSDEs with jumps which generators are globally lipchitz:

$$
\begin{aligned}
Y_{t} & =\Gamma+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}-\int_{t}^{T} \int_{E} U_{s}(e) \widetilde{\mu}(d e, d s) \\
Y_{t} & =\Gamma^{\prime}+\int_{t}^{T} f^{\prime}\left(s, Y_{s}^{\prime}, Z_{s}^{\prime}\right) d s-\int_{t}^{T} Z_{s}^{\prime} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{\prime}(e) \widetilde{\mu}(d e, d s)
\end{aligned}
$$

Assume that \mathbb{P}-a.s. for any $t \leq T, f\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right) \leq f^{\prime}\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)$ and $\Gamma \leq \Gamma^{\prime}$.
Then \mathbb{P}-a.s., $\forall t \leq T, Y_{t} \leq Y_{t}^{\prime}$.

Proof.

Let $X=\left(X_{t}\right)_{t \leq T}$ be a rcll semi-martingale, then by using Tanaka's formula with the function $\left(x^{+}\right)^{2}=(\max \{x, 0\})^{2}$, we get:

$$
\left(X_{t}^{+}\right)^{2}=\left(X_{T}^{+}\right)^{2}-2 \int_{t}^{T} X_{s^{-}}^{+} d X_{s}-\int_{t}^{T} 1_{\left\{X_{s}>0\right\}} d\left[X^{c}, X^{c}\right]_{s}-\sum_{t \leq s \leq T}\left\{\left(X_{s}^{+}\right)^{2}-\left(X_{s^{-}}^{+}\right)^{2}-2 X_{s^{-}}^{+} \Delta X_{s}\right\}
$$

Here X^{c} denotes the continuous martingale part of X and $\Delta X_{s}=X_{s}-X_{s^{-}}$.
But the function $x \in \mathbb{R} \mapsto\left(x^{+}\right)^{2}$ is convex then

$$
\left\{\left(X_{s}^{+}\right)^{2}-\left(X_{s^{-}}^{+}\right)^{2}-2 X_{s^{-}}^{+} \Delta X_{s}\right\} \geq 0
$$

From this we deduce that

$$
\left(X_{t}^{+}\right)^{2}+\int_{t}^{T} 1_{\left\{X_{s}>0\right\}} d\left[X^{c}, X^{c}\right]_{s} \leq\left(X_{T}^{+}\right)^{2}-2 \int_{t}^{T} X_{s^{-}}^{+} d X_{s}
$$

Now using this formula with $Y-Y^{\prime}$ yields:

$$
\left.\left(\left(Y_{t}-Y_{t}^{\prime}\right)^{+}\right)^{2}+\int_{t}^{T} 1_{\left\{Y_{s}-Y_{s}^{\prime}>0\right\}} 0\right]\left|Z_{s}-Z_{s}^{\prime}\right|^{2} d s \leq\left(X_{T}^{+}\right)^{2}-2 \int_{t}^{T}\left(Y_{s^{-}}-Y_{s^{-}}^{\prime}\right)^{+} d\left(Y_{s}-Y_{s}^{\prime}\right)
$$

Since $f\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right) \leq f^{\prime}\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)$ and f is Lipschitz then there exist bounded and $\mathcal{F}_{t^{-}}$ adapted processes $\left(u_{s}\right)_{s \leq T}$ and $\left(v_{s}\right)_{s \leq T}$ such that:

$$
f\left(s, Y_{s}, Z_{s}\right)=f\left(s, Y_{s}^{\prime}, Z_{s}^{\prime}\right)+u_{s}\left(Y_{s}-Y_{s}^{\prime}\right)+v_{s}\left(Z_{s}-Z_{s}^{\prime}\right)
$$

Therefore we have:

$$
\begin{gathered}
\left.\left(\left(Y_{t}-Y_{t}^{\prime}\right)^{+}\right)^{2}+\int_{t}^{T} 1_{\left\{Y_{s}-Y_{s}^{\prime}>0\right\}} 0\right]\left|Z_{s}-Z_{s}^{\prime}\right|^{2} d s \leq 2 \int_{t}^{T}\left(Y_{s^{-}}-Y_{s^{-}}^{\prime}\right)^{+}\left\{u_{s}\left(Y_{s}-Y_{s}^{\prime}\right)+v_{s}\left(Z_{s}-Z_{s}^{\prime}\right)\right\} d s \\
-2 \int_{t}^{T}\left(Y_{s^{-}}-Y_{s^{-}}^{\prime}\right)^{+}\left(Z_{s}-Z_{s}^{\prime}\right) d W_{s}
\end{gathered}
$$

Taking now expectation, using the inequality $|a . b| \leq \epsilon|a|^{2}+\epsilon^{-1}|b|^{2}(\epsilon>0)$, and Gronwall's one we obtain $\mathbb{E}\left[\left(\left(Y_{t}-Y_{t}^{\prime}\right)^{+}\right)^{2}\right]=0$ for any $t \leq T$. The result follows since Y and Y^{\prime} are rcll.

This completes the proof of the lemma.

Let us prove now the main result.

Proof.

Consider the following BSDE with jumps:

$$
\begin{equation*}
Y_{t}^{0}=\Gamma+M \int_{t}^{T} d s-\int_{t}^{T} Z_{s}^{0} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{0}(e) \widetilde{\mu}(d s, d e) \tag{3}
\end{equation*}
$$

This equation has a unique solution satisfying $\left\|Y_{t}^{0}\right\|_{\mathcal{S}^{2}}<\infty$.
Let us also define S as the unique solution of the SDE with jumps

$$
S_{t}=x+\int_{0}^{t} M d s+\int_{0}^{t} \sigma\left(s, S_{s}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(S_{s^{-}}, e\right) \widetilde{\mu}(d s, d e)
$$

Step1: We will show the existence of two increasing processes $\left(Y^{k}\right)_{k \geq 1}$ et $\left(X^{k}\right)_{k \geq 1}$ satisfying:

$$
\left\{\begin{array}{l}
Y_{t}^{k}=\Gamma+\int_{t}^{T} f\left(s, X_{s}^{k-1}, Y_{s}^{k}, Z_{s}^{k}\right) d s-\int_{t}^{T} Z_{s}^{k} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{k}(e) \widetilde{\mu}(d e, d s) \tag{4}\\
X_{t}^{k}=x+\int_{0}^{t} b\left(s, X_{s}^{k}, Y_{s}^{k}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{k}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{k}, e\right) \widetilde{\mu}(d e, d s)
\end{array}\right.
$$

For $n \geq 1,\left(b_{n}\right)$ is the sequence defined in lemma 3.2.
Consider the following SDE with jumps:

$$
\begin{equation*}
X_{t}^{0, n}=x+\int_{0}^{t} b_{n}\left(s, X_{s}^{0, n}, Y_{s}^{0}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{0, n}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{0, n}, e\right) \widetilde{\mu}(d e, d s) \tag{5}
\end{equation*}
$$

According to properties $\left(l_{4}\right),\left(l_{5}\right)$ and assumptions on β, this equation has a unique solution.
$\left(l_{3}\right) \Longrightarrow b_{n}\left(s, x, Y_{s}^{0}\right) \leq b_{n+1}\left(s, x, Y_{s}^{0}\right)$. We deduce from the comparison theorem of SDEs with jumps (see [18] corollary 3.3.) that the sequence ($\left.X^{0, n}\right)_{n \geq 1}$ is increasing.

Since $b_{n}\left(s, x, Y_{s}^{0}\right) \leq M$, the comparison theorem of SDEs with jumps implies again $\forall t \leq T$, $X_{t}^{0, n} \leq S_{t}$ a.s. Therefore $X^{0, n} \nearrow X^{0}$.
We will show that X^{0} is a solution of the SDE with jumps (5). Since $X_{s}^{0, n} \nearrow X_{s}^{0},\left(l_{1}\right)$ implies that

$$
\lim _{n \rightarrow \infty} b_{n}\left(s, X_{s}^{0, n}, Y_{s}^{0}\right)=b\left(s, X_{s}^{0}, Y_{s}^{0}\right)
$$

The functions $b_{n}(s, .,$.$) are measurable and bounded. The dominated convergence theorem$ gives

$$
\int_{0}^{t} b_{n}\left(s, X_{s}^{0, n}, Y_{s}^{0}\right) d s \longrightarrow \int_{0}^{t} b\left(s, X_{s}^{0}, Y_{s}^{0}\right) d s
$$

On the other hand,

$$
\mathbb{E}\left[\int_{0}^{t}\left[\sigma\left(s, X_{s}^{0, n}\right)-\sigma\left(s, X_{s}^{0}\right)\right]^{2} d s\right] \leq K^{2} \mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{0, n}-X_{s}^{0}\right|^{2} d s\right] \rightarrow 0
$$

when $n \rightarrow \infty$. From Doob's inequality we deduce:

$$
\int_{0} \sigma\left(s, X_{s}^{0, n}\right) d W_{s} \longrightarrow \int_{0} \sigma\left(s, X_{s}^{0}\right) d W_{s}
$$

(the limit is taking in the sense of ucp's convergence).
Similarly,

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{t} \int_{E}\left(\beta\left(X_{s^{-}}^{0, n}, e\right)-\beta\left(X_{s^{-}}^{0}, e\right)\right) \widetilde{\mu}(d e, d s)\right]^{2} & \leq \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} \int_{E}\left(\beta\left(X_{s^{-}}^{0, n}, e\right)-\beta\left(X_{s^{-}}^{0}, e\right)\right) \widetilde{\mu}(d e, d s)\right|^{2}\right] \\
& \leq 4 \mathbb{E}\left[\int_{0}^{T} \int_{E}\left|\beta\left(X_{s^{-}}^{0, n}, e\right)-\beta\left(X_{s^{-}}^{0}, e\right)\right|^{2} \lambda(d e) d s\right] \\
& \leq 4 k_{\beta}^{2} \mathbb{E}\left[\int_{0}^{T} \int_{E}\left|X_{s^{-}}^{0, n}-X_{s^{-}}^{0}\right|^{2} \lambda(d e) d s\right] \rightarrow 0 .
\end{aligned}
$$

Therefore:

$$
X_{t}^{0}=x+\int_{0}^{t} b\left(s, X_{s}^{0}, Y_{s}^{0}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{0}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{0}, e\right) \widetilde{\mu}(d e, d s)
$$

Thus the couple of processes $\left(X_{s}^{0}, Y_{s}^{0}\right)_{s \in[0, T]}$ is well defined.
Define the random function f^{1} by:

$$
f^{1}(s, y, z):=f\left(s, X_{s}^{0}(\omega), y, z\right)
$$

By hypothesis, the function f is measurable, bounded, increasing and left continuous in the y variable. Then we can construct the following sequence of functions

$$
f_{n}^{1}(s, y, z)=n \int_{y-\frac{1}{n}}^{y} f\left(s, X_{s}^{0}(\omega), u, z\right) d u
$$

$\left(l_{1}\right),\left(l_{4}\right)$ and the Lipschitz's condition with respect to y and z uniformly in x provide the existence of a unique triple of processes $\left(Y^{1, n}, Z^{1, n}, U^{1, n}\right) \in \mathcal{S}^{2} \otimes \mathcal{H}^{2} \otimes \mathcal{L}^{2}(\widetilde{\mu})$ satisfying

$$
\begin{equation*}
Y_{t}^{1, n}=\Gamma+\int_{t}^{T} f_{n}^{1}\left(s, Y_{s}^{1, n}, Z_{s}^{1, n}\right) d s-\int_{t}^{T} Z_{s}^{1, n} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{1, n}(e) \widetilde{\mu}(d e, d s) \tag{6}
\end{equation*}
$$

Since the terminal value of the RBSDE with jumps (6) is independent on n and the function $n \longmapsto f_{n}^{1}(s, .,$.$) is increasing, lemma 3.3$ on the comparison theorem of RBSDEs with jumps gives us

$$
\forall t \leq T \quad Y_{t}^{0} \leq Y_{t}^{1, n} \leq Y_{t}^{1, n+1}
$$

Now, let us prove the convergence of the sequences $\left(Y_{t}^{1, n}\right)_{n \geq 0}$ and $\left(Z_{t}^{1, n}\right)_{n \geq 0}$. Indeed, it follows from Itô's formula that

$$
\begin{gathered}
\left|Y_{t}^{1, n}\right|^{2}+\int_{t}^{T}\left|Z_{s}^{1, n}\right|^{2} d s+\int_{t}^{T} d s \int_{E}\left(U_{s}^{1, n}(e)\right)^{2} \lambda(d e)+\sum_{t \leq s \leq T}\left(\triangle_{s} Y_{s}^{1, n}\right)^{2}= \\
\Gamma^{2}+2 \int_{t}^{T} Y_{s}^{1, n} f_{n}^{1}\left(s, Y_{s}^{1, n}, Z_{s}^{1, n}\right) d s-2 \int_{t}^{T} Y_{s-}^{1, n} Z_{s}^{1, n} d W_{s}-2 \int_{t}^{T} \int_{E} Y_{s-}^{1, n} U_{s}^{1, n}(e) \widetilde{\mu}(d e, d s) .
\end{gathered}
$$

Let us denote by N_{t} the local martingale

$$
\int_{0}^{t} Y_{s_{-}}^{1, n} Z_{s}^{1, n} d W_{s}+\int_{0}^{t} \int_{E} Y_{s_{-}}^{1, n} U_{s}^{1, n}(e) \widetilde{\mu}(d e, d s)
$$

Then we have

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left|Y_{t}^{1, n}\right|^{2} \leq \Gamma^{2}+2 \sup _{0 \leq t \leq T}\left|N_{T}-N_{t}\right|+2 \int_{t}^{T}\left|Y_{s}^{1, n}\right| \cdot\left|f_{n}^{1}\left(s, Y_{s}^{1, n}, Z_{s}^{1, n}\right)\right| d s \tag{7}
\end{equation*}
$$

By Burkholder-Davis-Gundy's inequality for local martingales, we know that there exists a constant ϱ such that

$$
\mathbb{E}\left(\sup _{0 \leq t \leq T}\left|N_{t}\right|\right) \leq \varrho \mathbb{E}\left([N, N]_{T}^{1 / 2}\right)
$$

A computation gives

$$
\begin{aligned}
\mathbb{E}\left([N, N]_{T}^{1 / 2}\right) & =\mathbb{E}\left[\left(\int_{0}^{T}\left|Y_{s}^{1, n}\right|^{2}\left|Z_{s}^{1, n}\right|^{2} d s+\int_{0}^{T} \int_{E}\left|Y_{s}^{1, n}\right|^{2}\left|U_{s}^{1, n}(e)\right|^{2} \lambda(d e) d s\right)^{1 / 2}\right] \\
& \leq \mathbb{E}\left[\sup _{0 \leq s \leq T}\left|Y_{s}^{1, n}\right|\left(\int_{0}^{T}\left|Z_{s}^{1, n}\right|^{2} d s+\int_{0}^{T} \int_{E}\left|U_{s}^{1, n}(e)\right|^{2} \lambda(d e) d s\right)^{1 / 2}\right] \\
& \leq \frac{\varepsilon}{2} \mathbb{E}\left[\sup _{0 \leq s \leq T}\left|Y_{s}^{1, n}\right|^{2}\right]+\frac{1}{2 \varepsilon} \mathbb{E}\left(\int_{0}^{T}\left|Z_{s}^{1, n}\right|^{2} d s+\int_{0}^{T} \int_{E}\left|U_{s}^{1, n}(e)\right|^{2} \lambda(d e) d s\right)
\end{aligned}
$$

for any $\varepsilon>0$.
Using boundedness property of f_{n}^{1} one gets

$$
2\left|Y_{s}^{1, n}\right| \cdot\left|f_{n}^{1}\left(s, Y_{s}^{1, n}, Z_{s}^{1, n}\right)\right| \leq 2 M\left|Y_{s}^{1, n}\right|
$$

By (8) we have

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{0 \leq s \leq T}\left|Y_{s}^{1, n}\right|^{2}\right] \leq \mathbb{E}\left[\Gamma^{2}\right]+(2 M T+\varepsilon \varrho) \mathbb{E}\left[\sup _{0 \leq s \leq T}\left|Y_{s}^{1, n}\right|^{2}\right] \\
& \quad+\frac{\varrho}{\varepsilon} \mathbb{E}\left[\int_{0}^{T}\left|Z_{s}^{1, n}\right|^{2} d s\right]+\frac{\varrho}{\varepsilon} \mathbb{E}\left[\int_{0}^{T} \int_{E}\left|U_{s}^{1, n}(e)\right|^{2} \lambda(d e) d s\right]
\end{aligned}
$$

Finally by choosing $(2 M T+\varepsilon \varrho)<1$ we obtain $\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|Y_{t}^{1, n}\right|^{2}\right]<\infty$.
Let $Y_{t}^{1}=\liminf _{n \rightarrow \infty} Y_{t}^{1, n}, t \leq T$. Since the sequence $\left(Y^{1, n}\right)_{n \geq 0}$ is non-decreasing then, using Fatou's lemma, we have that for any $t \leq T, Y_{t}^{1}<\infty$ and then \mathbb{P}-a.s., $Y_{s}^{1, n} \rightarrow Y_{s}^{1}$ as $n \rightarrow \infty$. In addition the Lebesgue's dominated convergence theorem implies that $\mathbb{E}\left[\int_{0}^{T}\left|Y_{s}^{1, n}-Y_{s}^{1}\right|^{2}\right] d s \rightarrow 0$ as $n \rightarrow \infty$.
For the sequence $\left(Z_{t}^{1, n}\right)_{n \geq 0}$, let us apply the Itô's formula to the function $x \mapsto|x|^{2}$ and the difference of processes $Y_{s}^{1, k}-Y_{s}^{1, h}$ between s and T. Then

$$
\begin{gathered}
\left|Y_{t}^{1, k}-Y_{t}^{1, h}\right|^{2}+\int_{t}^{T}\left|Z_{s}^{1, k}-Z_{s}^{1, h}\right|^{2} d s+\int_{t}^{T} \int_{E}\left|U_{s}^{1, k}(e)-U_{s}^{1, h}(e)\right|^{2} \lambda(d e) d s \\
(8)+\sum_{t \leq s \leq T} \triangle_{s}\left(Y^{1, k}-Y^{1, h}\right)^{2}=2 \int_{t}^{T}\left(Y_{s}^{1, k}-Y_{s}^{1, h}\right)\left[f_{1}^{k}\left(s, Y_{s}^{1, k}, Z_{s}^{1, k}\right)-f_{1}^{h}\left(s, Y_{s}^{1, h}, Z_{s}^{1, h}\right)\right] d s \\
-2 \int_{t}^{T}\left(Y_{s_{-}}^{1, k}-Y_{s_{-}}^{1, h}\right)\left(Z_{s}^{1, k}-Z_{s}^{1, h}\right) d W_{s}-2 \int_{t}^{T} \int_{E}\left(Y_{s_{-}}^{1, k}-Y_{s_{-}}^{1, h}\right)\left(U_{s}^{1, k}(e)-U_{s}^{1, h}(e)\right) \widetilde{\mu}(d s, d e)
\end{gathered}
$$

Taking the expectation in each member of (8) and taking into account that the stochastic integrals $\left(\int_{0}^{t}\left(Y_{s_{-}}^{1, k}-Y_{s_{-}}^{1, h}\right)\left(Z_{s}^{1, k}-Z_{s}^{1, h}\right) d W_{s}\right)_{0 \leq t \leq T}$ and $\left(\int_{0}^{t} \int_{E}\left(Y_{s-}^{1, k}-Y_{s_{-}}^{1, h}\right)\left(U_{s}^{1, k}(e)-U_{s}^{1, h}(e)\right) \widetilde{\mu}(d s, d e)\right)_{0 \leq t \leq T}$ are martingales leads to

$$
\begin{gathered}
\mathbb{E}\left[\left|Y_{t}^{1, k}-Y_{t}^{1, h}\right|^{2}+\int_{t}^{T}\left|Z_{s}^{1, k}-Z_{s}^{1, h}\right|^{2} d s+\int_{t}^{T} \int_{E}\left|U_{s}^{1, k}(e)-U_{s}^{1, h}(e)\right|^{2} \lambda(d e) d s\right] \\
\quad \leq 2 \mathbb{E}\left[\int_{t}^{T}\left(Y_{s}^{1, k}-Y_{s}^{1, h}\right)\left[f_{1}^{k}\left(s, Y_{s}^{1, k}, Z_{s}^{1, k}\right)-f_{1}^{h}\left(s, Y_{s}^{1, h}, Z_{s}^{1, h}\right)\right] d s\right]
\end{gathered}
$$

By Hölder's inequality, we have

$$
\begin{aligned}
& \mathbb{E}\left(\int_{0}^{T}\left|Z_{s}^{1, k}-Z_{s}^{1, h}\right|^{2} d s\right) \leq \mathbb{E}\left[\left|Y_{s}^{1, k}-Y_{s}^{1, h}\right|^{2}+\int_{0}^{T}\left|Z_{s}^{1, k}-Z_{s}^{1, h}\right|^{2} d s\right. \\
&\left.+\int_{t}^{T} \int_{E}\left|U_{s}^{1, k}(e)-U_{s}^{1, h}(e)\right|^{2} \lambda(d e) d s\right] \leq \\
& \leq K_{1}\left[\mathbb{E}\left(\int_{0}^{T}\left[f_{1}^{k}\left(s, Y_{s}^{1, k}, Z_{s}^{1, k}\right)-f_{1}^{h}\left(s, Y_{s}^{1, h}, Z_{s}^{1, h}\right)\right]^{2} d s\right)\right]^{\frac{1}{2}} \\
& \times\left[\mathbb{E}\left(\int_{0}^{T}\left(Y_{s}^{1, k}-Y_{s}^{1, h}\right)^{2} d s\right)\right]^{\frac{1}{2}} \longrightarrow 0
\end{aligned}
$$

because the functions f_{1}^{k} are bounded and the sequence $\left(Y_{t}^{1, k}\right)_{k \geq 1}$ is convergent.
So, the sequence $\left(Z_{t}^{1, n}\right)_{n \geq 0}$ is a Cauchy sequence in \mathcal{H}^{2}. Thus it converges to a limit $Z^{1} \in \mathcal{H}^{2}$. Here K_{1} is a constant.

Similarly, the sequence $\left(U_{t}^{1, n}\right)_{n \geq 0}$ is a Cauchy sequence in $\mathcal{L}^{2}(\widetilde{\mu})$. Thus it converges to a limit $U^{1} \in \mathcal{L}^{2}(\widetilde{\mu})$.

On the other hand $\left(Y_{s}^{1, n}, Z_{s}^{1, n}\right) \longrightarrow\left(Y_{s}^{1}, Z_{s}^{1}\right)$ and because of $\left(1_{1}\right)$ we have

$$
f_{n}^{1}\left(s, Y_{s}^{1, n}, Z_{s}^{1, n}\right) \longrightarrow f^{1}\left(s, Y_{s}^{1}, Z_{s}^{1}\right)=f\left(s, X_{s}^{0}, Y_{s}^{1}, Z_{s}^{1}\right) .
$$

Since the functions f_{n}^{1} are measurable and bounded, the dominated convergence theorem implies

$$
\lim _{n \rightarrow \infty} \int_{t}^{T} f_{n}^{1}\left(s, X_{s}^{0}, Y_{s}^{1}, Z_{s}^{1}\right) d s=\int_{t}^{T} f\left(s, X_{s}^{0}, Y_{s}^{1}, Z_{s}^{1}\right) d s
$$

We have also:

$$
\int_{t}^{T} Z_{s}^{1, n} d W_{s} \longrightarrow \int_{t}^{T} Z_{s}^{1} d W_{s}
$$

Moreover, $\int_{t}^{T} \int_{E} U_{s}^{1, n}(e) \widetilde{\mu}(d e, d s) \rightarrow \int_{t}^{T} \int_{E} U_{s}^{1}(e) \widetilde{\mu}(d e, d s)$ in the sense that

$$
\mathbb{E}\left\{\left[\int_{t}^{T} \int_{E}\left(U_{s}^{1, n}(e)-U_{s}^{1}(e)\right) \widetilde{\mu}(d e, d s)\right]^{2}\right\}=\mathbb{E}\left[\int_{t}^{T} \int_{E}\left|U_{s}^{1, n}(e)-U_{s}^{1}(e)\right|^{2} \lambda(d e) d s\right] \rightarrow 0
$$

as $n \rightarrow \infty$.
Finally we obtain a triple $\left(Y_{t}^{1}, Z_{t}^{1}, U_{t}^{1}\right)_{0 \leq t \leq T}$ satisfying the following equation:

$$
Y_{t}^{1}=\Gamma+\int_{t}^{T} f\left(s, X_{s}^{0}, Y_{s}^{1}, Z_{s}^{1}\right) d s-\int_{t}^{T} Z_{s}^{1} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{1}(e) \widetilde{\mu}(d e, d s)
$$

Taking the limit, we also have $\forall t \leq T, \quad Y_{t}^{0} \leq Y_{t}^{1}$ and $\left\|Y_{t}^{1}\right\|_{\mathcal{S}^{2}}<\infty$.
Next, Consider the forward component linked with Y^{1},

$$
\begin{equation*}
X_{t}^{1, n}=x+\int_{0}^{t} b_{n}\left(s, X_{s}^{1, n}, Y_{s}^{1, n}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{1, n}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{1, n}, e\right) \widetilde{\mu}(d e, d s) \tag{9}
\end{equation*}
$$

Since $Y^{0} \leq Y^{1}$ et $\left(b_{n}(s, ., .)\right)_{n \geq 0}$ is increasing in space and with respect to n, we have

$$
b_{n}\left(s, x, Y_{s}^{0}\right) \leq b_{n}\left(s, x, Y_{s}^{1}\right) \leq b_{n+1}\left(s, x, Y_{s}^{1}\right)
$$

we also have through the comparison theorem of SDE's with jumps that

$$
\begin{equation*}
\forall t \leq T, \quad X_{t}^{0, n} \leq X_{t}^{1, n} \leq X_{t}^{1, n+1} \tag{10}
\end{equation*}
$$

Repeating what we have done on the construction of X^{0}, we can show the existence of a process X^{1} in \mathcal{S}^{2} which is an increasing limit of the sequence $\left(X^{1, n}\right)_{n \geq 0}$ and such that,

$$
\forall t \leq T, \quad X_{t}^{1}=x+\int_{0}^{t} b\left(s, X_{s}^{1}, Y_{s}^{1}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{1}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{1}, e\right) \widetilde{\mu}(d e, d s)
$$

Taking the limit in(10), one gets $\forall t \leq T, \quad X_{t}^{0} \leq X_{t}^{1}$.
Having found a solution $\left(X^{1}, Y^{1}, Z^{1}, U^{1}\right) \in \mathcal{S}^{2} \otimes \mathcal{S}^{2} \otimes \mathcal{H}^{2} \otimes \mathcal{L}^{2}(\widetilde{\mu})$ of (1), we can proceed by induction to find the anticipated solution.

Step2: Let us suppose that we built the sequence of solutions $\left(X^{i}, Y^{i}, Z^{i}, U^{i}\right)$
for all $i \leq k-1$, i.e. for all $i=1, \cdots, k-1$ and $t \leq T$

$$
\left\{\begin{array}{l}
X_{t}^{i}=x+\int_{0}^{t} b\left(s, X_{s}^{i}, Y_{s}^{i}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{i}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{i}, e\right) \widetilde{\mu}(d e, d s) \\
Y_{t}^{i}=\Gamma+\int_{t}^{T} f\left(s, X_{s}^{i-1}, Y_{s}^{i}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{i}(e) \widetilde{\mu}(d e, d s)
\end{array}\right.
$$

For $t \leq T, \quad X_{t}^{i-1} \leq X_{t}^{i}, \quad Y_{t}^{i-1} \leq Y_{t}^{i}$ and $\left\|Y_{t}^{i}\right\|_{\mathcal{S}^{2}}<\infty$.
Define the random function

$$
f^{k}(s, y, z):=f\left(s, X_{s}^{k-1}(\omega), y, z\right)
$$

By hypothesis $f^{k}(s, y, z)$ is measurable and bounded. Then we can build the sequence of functions f_{n}^{k} satisfying $\left(l_{1}\right),\left(l_{2}\right),\left(l_{3}\right),\left(l_{4}\right)$ et $\left(l_{5}\right)$.

Now, consider the following BSDE with jumps

$$
Y_{t}^{k, n}=\Gamma+\int_{t}^{T} f_{n}^{k}\left(s, Y_{s}^{k, n}, Z_{s}^{k, n}\right) d s-\int_{t}^{T} Z_{s}^{k, n} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{k}(e) \widetilde{\mu}(d e, d s) .
$$

Since $f^{k}(s, y, z)=f\left(s, X_{s}^{k-1}(\omega), y, z\right), f^{k-1}(s, y, z)=f\left(s, X_{s}^{k-2}(\omega), y, z\right)$ and $X_{s}^{k-1} \leq X_{s}^{k-2}$, the increase of the function f in x implies that $f^{k-1}(s, y, z) \leq f^{k}(s, y, z)$. What allows us to say that $f_{n}^{k-1}(s, y, z) \leq f_{n}^{k}(s, y, z) \quad \forall n \geq 0$. Thus the comparison's lemma 3.3 for BSDEs with jumps gives us

$$
\begin{equation*}
\forall t \leq T, \quad Y_{t}^{k-1, n} \leq Y_{t}^{k, n} \tag{11}
\end{equation*}
$$

The same calculations done with $Y_{t}^{1, n}$ show that

$$
\begin{equation*}
\sup _{n, k}\left\|Y^{k, n}\right\|_{\mathcal{S}^{2}}<\infty \tag{12}
\end{equation*}
$$

We deduct that from it the sequence $\left(Y^{k, n}\right)_{n \geq 0}$ is convergent in \mathcal{S}^{2} to a process denoted Y^{k}.

The same calculation made with $Z_{t}^{1, n}$ allows to say that the sequence $\left(Z^{k, n}\right)_{n \geq 0}$ is convergent in \mathcal{S}^{2} to a process denoted Z^{k}. Then $\left(Y_{s}^{k, n}, Z_{s}^{k, n}\right) \longrightarrow\left(Y_{s}^{k}, Z_{s}^{k}\right)$ and $Y_{s}^{k, n} \nearrow Y_{s}^{k}$ By virtue of $\left(l_{1}\right)$ we have

$$
\lim _{n \rightarrow \infty} f_{n}^{k}\left(s, Y_{s}^{k, n}, Z_{s}^{k, n}\right)=f^{k}\left(s, Y_{s}^{k}, Z_{s}^{k}\right)=f\left(s, X_{s}^{k-1}, Y_{s}^{k}, Z_{s}^{k}\right)
$$

Since the functions f_{n}^{k} are measurable and bounded, the dominated convergence theorem implies

$$
\lim _{n \rightarrow \infty} \int_{t}^{T} f_{n}^{k}\left(s, Y_{s}^{k, n}, Z_{s}^{k, n}\right) d s=\int_{t}^{T} f\left(s, X_{s}^{k-1}, Y_{s}^{k}, Z_{s}^{k}\right) d s
$$

On the other hand $X_{s}^{k, n} \longrightarrow X_{s}^{k}$.
Moreover, $\int_{t}^{T} \int_{E} U_{s}^{k, n}(e) \widetilde{\mu}(d e, d s) \rightarrow \int_{t}^{T} \int_{E} U_{s}^{k}(e) \widetilde{\mu}(d e, d s)$ in the sense that

$$
\mathbb{E}\left\{\left[\int_{t}^{T} \int_{E}\left(U_{s}^{k, n}(e)-U_{s}^{k}(e)\right) \widetilde{\mu}(d e, d s)\right]^{2}\right\}=\mathbb{E}\left[\int_{t}^{T} \int_{E}\left|U_{s}^{k, n}(e)-U_{s}^{k}(e)\right|^{2} \lambda(d e) d s\right] \rightarrow 0
$$

as $n \rightarrow \infty$.
As in the previous step, we obtain a triple $\left(Y_{t}^{k}, Z_{t}^{k}, U_{t}^{k}\right)_{0 \leq t \leq T}$ satisfying the following equation:

$$
Y_{t}^{k}=\Gamma+\int_{t}^{T} f\left(s, X_{s}^{k-1}, Y_{s}^{k}, Z_{s}^{k}\right) d s-\int_{t}^{T} Z_{s}^{k} d W_{s}-\int_{t}^{T} \int_{E} U_{s}^{k}(e) \widetilde{\mu}(d e, d s)
$$

Taking the limit in (11) and (12), together with $\forall t \leq T, \quad Y_{t}^{k-1} \leq Y_{t}^{k}$ leads to $\left\|Y_{t}^{k}\right\|_{\mathcal{S}^{2}}<\infty$.

The sequence $\left(Y^{k}\right)_{k}$ is increasing and bounded, it converges on one process which we shall denote by Y_{t}. We need to show now that the sequence $\left(Z^{k}\right)_{k}$ is a Cauchy sequence.
Applying the Itô's formula to the function $x \mapsto|x|^{2}$ and to the process processus $Y_{.}^{k}-Y_{\text {. }}{ }^{h}$ between t et T, we obtain:

$$
\begin{aligned}
&\left(Y_{t}^{k}-Y_{t}^{h}\right)^{2}=2 \int_{t}^{T}\left(Y_{s}^{k}-Y_{s}^{h}\right)\left[f_{1}^{k}\left(s, X_{s}^{k-1}, Y_{s}^{k}, Z_{s}^{k}\right)-f_{1}^{h}\left(s, X_{s}^{h-1}, Y_{s}^{h}, Z_{s}^{h}\right)\right] d s \\
&+\sum_{t \leq s \leq T} \triangle_{s}\left(Y^{k}-Y^{h}\right)^{2}-\int_{t}^{T}\left|Z_{s}^{k}-Z_{s}^{h}\right|^{2} d s-\int_{t}^{T} \int_{E}\left|U_{s}^{k}(e)-U_{s}^{h}(e)\right|^{2} \lambda(d e) d s \\
&-2 \int_{t}^{T}\left(Y_{s_{-}}^{k}-Y_{s_{-}}^{h}\right)\left(Z_{s}^{k}-Z_{s}^{h}\right) d W_{s}-2 \int_{t}^{T} \int_{E}\left(Y_{s_{-}}^{k}-Y_{s_{-}}^{h}\right)\left(U_{s}^{k}(e)-U_{s}^{h}(e)\right) \widetilde{\mu}(d s, d e) .
\end{aligned}
$$

$\operatorname{But}\left(\int_{0}^{t}\left(Y_{s_{-}}^{k}-Y_{s_{-}}^{h}\right)\left(Z_{s}^{k}-Z_{s}^{h}\right) d W_{s}\right)_{0 \leq t \leq T}$ and $\left(\int_{0}^{t} \int_{E}\left(Y_{s_{-}}^{k}-Y_{s_{-}}^{h}\right)\left(U_{s}^{k}(e)-U_{s}^{h}(e)\right) \widetilde{\mu}(d s, d e)\right)_{0 \leq t \leq T}$ are martingales. As previously, by taking the expectation in each member and by using Hölder's inequality, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}^{k}-Z_{s}^{h}\right|^{2} d s\right] & \leq 2\left[\mathbb{E}\left(\int_{0}^{T}\left[f\left(s, X_{s}^{k-1}, Y_{s}^{k}, Z_{s}^{k}\right)-f\left(s, X_{s}^{h-1}, Y_{s}^{h}, Z_{s}^{h}\right)\right]^{2} d s\right)\right]^{\frac{1}{2}} \\
& \times\left[\mathbb{E}\left(\int_{0}^{T}\left(Y_{s}^{k}-Y_{s}^{h}\right)^{2} d s\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

But because $f(s, ., .,$.$) is bounded and Y^{k}-Y^{h} \longrightarrow 0$ we have: $\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}^{k}-Z_{s}^{h}\right|^{2} d s\right] \longrightarrow 0$. Then $\left(Z^{k}\right)_{k \geq 0}$ is a Cauchy sequence in \mathcal{H}^{2} with $Z=\lim _{k \rightarrow \infty} Z^{k}$.
Similarly, the sequence $\left(U^{k}\right)_{k \geq 0}$ is a Cauchy sequence in $\mathcal{L}^{2}(\widetilde{\mu})$ with $U=\lim _{k \rightarrow \infty} U^{k}$.
Let us return to the forward component and let us consider the SDE with jumps

$$
X_{t}^{k, n}=x+\int_{0}^{t} b_{n}\left(s, X_{s}^{k, n}, Y_{s}^{k}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{k, n}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{k, n}, e\right) \widetilde{\mu}(d e, d s)
$$

By repeating the same work made with X^{1} i.e. by changing 1 in k, we obtain the same conclusion for X^{k} to know

$$
\begin{gathered}
X_{t}^{k-1, n} \leq X_{t}^{k, n} \leq S_{t}, \quad X_{t}^{k, n} \longrightarrow X_{t}^{k} \\
X_{t}^{k}=x+\int_{0}^{t} b_{n}\left(s, X_{s}^{k}, Y_{s}^{k}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{k}\right) d W_{s}+\int_{0}^{t} \int_{E} \beta\left(X_{s^{-}}^{k}, e\right) \widetilde{\mu}(d e, d s) \\
X_{t}^{k-1} \leq X_{t}^{k} \leq S_{t}
\end{gathered}
$$

The sequence $\left(X^{k}\right)_{k}$ is increasing and bounded above, then it converges in \mathcal{H}^{2} to a process denoted X.

By the left continuity of b we have: $b\left(s, X_{s}^{k}, Y_{s}^{k}\right) \longrightarrow b\left(s, X_{s}, Y_{s}\right)$ when $k \longrightarrow \infty$.
Since the function $b(s, .,$.$) is measurable and bounded, the dominated convergence theo-$ rem implies

$$
\int_{0}^{t} b\left(s, X_{s}^{k}, Y_{s}^{k}\right) d s \longrightarrow \int_{0}^{t} b\left(s, X_{s}, Y_{s}\right) d s
$$

On the other hand

$$
\mathbb{E}\left[\int_{0}^{t}\left[\sigma\left(s, X_{s}^{k}\right)-\sigma\left(s, X_{s}\right)\right]^{2} d s\right] \leq K^{2} \mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{k}-X_{s}\right|^{2} d s\right] \rightarrow 0
$$

when $n \rightarrow \infty$ since $X_{s}^{k} \rightarrow X_{s}$. Then $\int_{0} \sigma\left(s, X_{s}^{k}\right) d W_{s} \longrightarrow \int_{0}^{\cdot} \sigma\left(s, X_{s}\right) d W_{s}$.
Morerover,

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{t} \int_{E}\left(\beta\left(X_{s^{-}}^{k}, e\right)-\beta\left(X_{s^{-}}, e\right)\right) \widetilde{\mu}(d e, d s)\right]^{2} & \leq \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} \int_{E}\left(\beta\left(X_{s^{-}}^{k}, e\right)-\beta\left(X_{s^{-}}, e\right)\right) \widetilde{\mu}(d e, d s)\right|^{2}\right] \\
& \leq 4 \mathbb{E}\left[\int_{0}^{T} \int_{E}\left|\beta\left(X_{s^{-}}^{k}, e\right)-\beta\left(X_{s^{-}}, e\right)\right|^{2} \lambda(d e) d s\right] \\
& \leq 4 k_{\beta}^{2} \mathbb{E}\left[\int_{0}^{T} \int_{E}\left|X_{s^{-}}^{k}-X_{s^{-}}\right|^{2} \lambda(d e) d s\right] \rightarrow 0
\end{aligned}
$$

Then $\int_{0} \int_{E}\left(\beta\left(X_{s^{-}}^{k}, e\right) \widetilde{\mu}(d e, d s) \longrightarrow \int_{0} \int_{E}\left(\beta\left(X_{s^{-}}, e\right) \widetilde{\mu}(d e, d s)\right.\right.$. So,

$$
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}+\int_{0}^{t} \int_{E}\left(\beta\left(X_{s^{-}}, e\right) \widetilde{\mu}(d e, d s)\right.
$$

Let us show now that $\forall t \leq T,\left(X_{t}, Y_{t}, Z_{t}, U_{t}\right)_{t \leq T}$ satisfies:

$$
\begin{equation*}
Y_{t}=\Gamma+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W s-\int_{t}^{T} \int_{E} U_{s}(e) \widetilde{\mu}(d e, d s) \tag{13}
\end{equation*}
$$

Since $\lim _{k \rightarrow \infty} X_{t}^{k}=X, \lim _{k \rightarrow \infty} Y_{t}^{k}=Y, \lim _{k \rightarrow \infty} Z_{t}^{k}=Z$ and f is left continuous in y and lipschitz in z

$$
f\left(X_{s}^{k}, Y_{s}^{k}, Z_{s}^{k}\right) \longrightarrow f\left(X_{s}, Y_{s}, Z_{s}\right)
$$

Moreover f is measurable and bounded, then the dominated convergence theorem implies that

$$
\int_{t}^{T} f\left(s, X_{s}^{k}, Y_{s}^{k}, Z_{s}^{k}\right) d s \longrightarrow \int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s
$$

On the other hand $Z_{s}^{k} \longrightarrow Z_{s}$. So $\mathbb{E} \int_{0}^{T}\left|Z_{s}^{k}-Z_{s}\right|^{2} d s \rightarrow 0$, leading to $\int_{0}^{T} Z_{s}^{k} d W_{s} \longrightarrow \int_{0}^{T} Z_{s} d W_{s}$. Moreover, $\int_{t}^{T} \int_{E} U_{s}^{k}(e) \widetilde{\mu}(d e, d s) \rightarrow \int_{t}^{T} \int_{E} U_{s}(e) \widetilde{\mu}(d e, d s)$ in the sense that

$$
\mathbb{E}\left\{\left[\int_{t}^{T} \int_{E}\left(U_{s}^{k}(e)-U_{s}(e)\right) \widetilde{\mu}(d e, d s)\right]^{2}\right\}=\mathbb{E}\left[\int_{t}^{T} \int_{E}\left|U_{s}^{k}(e)-U_{s}(e)\right|^{2} \lambda(d e) d s\right] \rightarrow 0
$$

as $n \rightarrow \infty$.
Finally, $\forall t \leq T,\left(X_{t}, Y_{t}, Z_{t}, U_{t}\right)_{t \leq T}$ clearly satisfies (13).
This completes the proof.

References

[1] F. Antonelli and S. Hamadène, Existence of the solutions of backward-forward sde's with continuous monotone coefficients, Statistics and probability letters 76, (2006), pp.1559-1569
[2] K. Bahlali, Existence and uniqueness of solutions for bsdes with locally lipschitz coefficient, Electronic Communications in Probability 7,(2002), pp.169-179.
[3] K. Bahlali, B. Mezerdi, Y. Ouknine, Pathwise uniqueness and approximation of solutions of stochastic differential equations, Séminaires de probabilités XXXII, pp. 166-187 Lect. Notes in Math. 1686, Springer-Verlag Berlin(1998).
[4] B. Boufoussi and Y. Ouknine, On a sde driven by a fractional brownian motion and with monotone drift, Electronic Communications in Probability 8, (2003), pp.122-134.
[5] F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stochastic processes and their applications, 99, pp. 209-286 (2002).
[6] F. Delarue, G. Guatteri, Weak solvability theorem for Forward-Backward SDEs, Prépublications du laboratoire de probabilités 959, (2005).
[7] S. Hamadène, Equations différentielles stochastiques rétrogrades: le cas localement lipschitzien, Annales de l'I.H.P, section B, 32 (5), (1996) p.645-659.
[8] S.Hamadène, Backward-forward SDE's and stochastic differential games, Stochastic Processes and their Applications 77, (1998), p.1-15.
[9] S.Hamadène, Y.Ouknine Reflected Backward Stochastic Differential Equation with jumps and Random Obstacle, Electronic Journal of Probability 8,(2003),1-20.
[10] S. Karatzas and S. Shreve, Brownian Motion and stochastic Calculus, Springer, Berlin (1987).
[11] J.Lepeltier, J.S.Martín, Backward stochastic differential equations with continuous coefficients, Statistics and Probability Letters 34,(1997),425-430.
[12] J. Lepeltier, A. Matoussi, M. Xu, Reflected BSDEs under monotonicity and general increasing growth condition, Advanced in Applied Probability 37,(2005),1-26.
[13] Y. Ouknine, Fonctions de semimartingales et applications aux équations differentielles stochastiques, Stochastics 28, (1989), 115-123.
[14] Y. Ouknine, M. Rutkowski. On the strong comparison of one dimensional solutions of stochastic differential equations, Stochastic Processes and their Applications, 36(2),(1990)217-230.
[15] Y. Ouknine, D. Ndiaye, Sur l'existence de solutions d'équations différentielles stochastiques progressives rétogrades couplées, Stochastics: An International Journal of Probability and Stochastics processes 80(4), (2008), 299-315.
[16] Y. Ouknine, D. Ndiaye, On the Existence of Solutions to Fully Coupled RFBSDEs with Monotone Coefficients, Journal of Numerical Mathematics and Stochastics, (3), (2010), 20-30.
[17] E. Pardoux, S. Tang, Forward-Backward stochastic differential equations and quasilinear parabolic PDE's, Probability Theory and Related Fields 114, (1999), 123-150.
[18] X. Zhu, On the comparison theorem for multidimensional SDEs with jumps, [J]. Scientia Sinica Mathematica, 2012, 42(4): 303-311.

