PIECEWISE DEFINED RECURSIVE SEQUENCES WITH APPLICATION IN MATRIX THEORY

SALEEM AL-ASHHAB,1 AND JAMES GUYKER2,*

1Department of Mathematics, Al-albayt University, P. O. Box 130040, Mafraq, Jordan
2Department of Mathematics, Buffalo State College, 1300 Elmwood Avenue, Buffalo, New York

Abstract. In this paper we determine periodicity and boundedness of orbits of a piecewise defined difference equation. A corollary is that the real eigenvalues of certain arbitrarily large, sparse matrices may be computed exactly.

Keywords: piecewise defined sequence; eventually periodic; strictly increasing; sparse matrix; eigenvalue.

2000 AMS Subject Classification: 39A10; 40A05

1. Introduction

The geometric sequence \(S_k = hS_{k-1} \) is a basic component of exponential growth models [2, 3, 5, 10]. In this note, we consider a limiting or harvesting condition on \(S_k \) and describe the resulting piecewise defined sequence. Precisely, we make the

Definition 1. Let \(h, v \) and \(w \) be natural numbers and let \(S_0 \) be an integer. Define for \(k > 0 \)

\[
S_k = \begin{cases}
 hS_{k-1} & \text{if } S_{k-1} \leq v \\
 hS_{k-1} - w & \text{if } S_{k-1} > v
\end{cases}
\]

*Corresponding author

E-mail addresses: ahab@aabu.edu.jo (S. Al-Ashhab), guykerj@buffalostate.edu (J. Guyker)

Received December 18, 2011

793
If $S_r \leq 0$ for some r, then S_k is geometric for $k \geq r$. Hence we restrict our attention to positive initial values.

We begin with a characterization of S_k, then discuss feasibility when hypotheses fail. A central condition in the treatment is $w = 2v + 1$. For example, suppose that $h = 2$, $v = 5$, $w = 11$ and $S_0 = 1$. Then S_k is periodic and all integers from 1 to $w - 1$ appear in the sequence:

$$1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, \ldots .$$

However, if $h = 2$, $v = 3$, $w = 7$ and $S_0 = 1$, then S_k is again periodic but not all such integers appear: 1, 2, 4, 1, 2, \ldots . On the other hand, if $h = 3$, $v = 2$, $w = 5$ and $S_0 = 2$, then S_k is strictly increasing (to infinity): 2, 6, 13, 34, 97, 286, 853, 2554, 7657, \ldots .

2. The Main Result

In general we have the following.

Theorem 2.1. Let h, v, w and S_0 be positive integers.

1. If $h = 1$, then S_k reaches a point of equilibrium, i.e., there is a nonnegative integer r such that $S_k = S_0 - rw$ for all $k \geq r$.

2. Let $h \geq 2$.

 a. If $S_0 = w > v$, then

 $$S_k = \frac{h^k(h - 2) + 1}{h - 1} S_0 \quad \text{for all} \quad k.$$

 b. If $S_0 > w \geq v$, then S_k is strictly increasing.

3. Let $h = 2$.

 a. Suppose that $w = 2v + u$ for some $u = 0$, 1 or 2, and $1 \leq S_0 \leq w - 1$.

 i. If $u = 1$, then S_k is periodic and $1 \leq S_k \leq w - 1$ for all k.

ii. If \(u = 0 \), then \(S_k \) either reaches equilibrium at \(w \) or is eventually periodic such that \(1 \leq S_k \leq w - 1 \) for all \(k \).

iii. If \(u = 2 \), then \(S_k \) either reaches equilibrium at \(0 \) or is eventually periodic such that \(1 \leq S_k \leq w - 1 \) for all \(k \).

\[S_1 = S_0 - w > v, \ldots, \quad S_r = S_0 - (r - 1)w > v, \]

b. If \(w > 2v + 2 \), then \(S_0 \geq w \) (in which case, see 2) or \(S_k \) is either eventually nonpositive or eventually periodic.

c. If \(w \leq v \), then \(S_k \) is strictly increasing.

4. If \(h \geq 3 \) and \(w \leq 2v + 1 \), then \(S_k \) is strictly increasing.

Proofs.

1. Assume \(h = 1 \). There is a nonnegative integer \(r \) such that \(S_0 \) satisfies

\[0 < v < v + w < \cdots < v + (r - 1)w < S_0 \leq v + rw. \]

If \(r = 0 \), then \(S_k = S_0 \) for all \(k \). And if \(r > 0 \), then

\[S_1 = S_0 - w > v, \ldots, \quad S_r = S_0 - (r - 1)w > v, \]

but

\[S_r = S_0 - rw \leq v \]

and it follows that \(S_k = S_r \) for \(k \geq r \).

2. Assume that \(h \geq 2 \).

a. If \(S_0 = w > v \), then

\[S_1 = hS_0 - w = (h - 1)w \geq w > v \]

\[S_2 = hS_1 - w = [h(h - 1) - 1]w \geq w > v \]

\[S_3 = hS_2 - w = \{h[h(h - 1) - 1] - 1\}w \geq w > v, \text{ etc.} \]

Therefore in general

\[S_k = (h^k - h^{k-1} - h^{k-2} - \cdots - 1)w = (h^k - \frac{h^k - 1}{h - 1})w = \frac{h^k(h - 2) + 1}{h - 1} w. \]
b. Assume $S_0 > w \geq v$. Then

$$S_1 = hS_0 - w = S_0 + [(h - 1)S_0 - w] > S_0 > w \geq v$$

and similarly by induction

$$S_k = hS_{k-1} - w = S_{k-1} + [(h - 1)S_{k-1} - w] > S_{k-1} > w \geq v$$

for every $k \geq 2$. Thus $S_{k+1} > S_k > v$ for all k.

3a. Let $h = 2$, $1 \leq S_0 \leq w - 1$, and $w = 2v + u$ for some $u = 0, 1$ or 2. If $1 \leq S_0 \leq v$, then

$$2 \leq S_1 = 2S_0 \leq 2v = w - u. \quad (1)$$

On the other hand, if $v < S_0 \leq w - 1$, then $2v + 2 \leq 2S_0 \leq 2w - 2$ and

$$2 - u \leq S_1 = 2S_0 - w \leq w - 2 < w - 1. \quad (2)$$

i. Suppose that $u = 1$. By (1) and (2), it follows that $1 \leq S_1 \leq w - 1$, and by induction, $1 \leq S_k \leq w - 1$ for all k. Since S_k is a sequence of natural numbers, we have that some term S_r must repeat. We show that S_r must repeat: Suppose that $r > 0$ is the least integer such that $S_r = S_{r+s}$ for some $s > 0$. If S_r is even, then $S_r = 2S_{r-1}$, since the other possibility $2S_{r-1} - w$ is odd; and since $S_r = S_{r+s}$, it follows that $S_{r+s} = 2S_{r+s-1}$ so that $S_{r+1} = S_{r+s-1}$ in this case. If S_r is odd, then similarly $S_{r+1} = S_{r+s+1}$. Therefore $S_{r+1} = S_{r+s-1}$ in either case, which contradicts the minimality of r. Hence S_k is periodic when $u = 1$.

ii. Assume $u = 0$. If $S_N = w$ for some N, then since $h = 2$ and $w > v$, we have that $S_k = w$ for all $k \geq N$. Thus suppose that $S_k \neq w$ for all k. Hence by (1) and (2), $1 \leq S_1 \leq w - 1$, and an induction argument shows that $1 \leq S_k \leq w - 1$ for all k. As above, some term S_r must repeat so S_k is eventually periodic.

iii. Similar to (ii).

3b. Suppose that $h = 2$, $w > 2v + 2$, and $S_N \geq w$ for some N. Assume that $N > 0$. If $S_{N-1} \leq v$, then

$$S_N = 2S_{N-1} \leq 2v < w$$
which is impossible. Hence \(S_{N-1} > v \) and \(S_N = 2S_{N-1} - w \geq w \) so \(S_{N-1} \geq w \).

Continuing by induction, we have that \(N = 0 \) is the only possibility if \(S_N \geq w \).

Therefore, if \(S_0 \leq w - 1 \), then \(S_k \leq w - 1 \) for all \(k \). Hence either \(S_N \leq 0 \) for some \(N \) or \(1 \leq S_k \leq w - 1 \) for all \(k \). It follows that either \(S_k \leq 0 \) for all \(k \geq N \) or \(S_k \) is eventually periodic as in the proof of \((3a) \).

3c. Assume \(h = 2 \) and \(w \leq v \). Let \(l \) be the least integer such that \(2^l S_0 > v \). Then \(S_l > S_{l-1} > \cdots > S_0 \), \(S_l = 2^l S_0 \), and

\[
S_{l+1} = 2^{l+1} S_0 - w \geq 2^{l+1} S_0 - v > 2^l S_0 = S_l
\]

since \(2^l (2 - 1) S_0 > v \). Hence

\[
S_{l+1} > S_l > v.
\]

By induction

\[
S_{k+1} > S_k > v \quad \text{for all} \quad k \geq l
\]

and thus \(S_k \ (k \geq 0) \) is strictly increasing.

4. Assume \(h \geq 3 \) and \(w \leq 2v + 1 \). We show \(S_{k+1} > S_k \) for all \(k \). Let \(l \) denote the least integer such that

\[
S_l = h^l S_0 > v.
\]

Then \(S_l > S_{l-1} > \cdots > S_0 \), and

\[
S_{l+1} = h S_l - w \geq 3S_l - w > S_l.
\]

The last inequality follows since

\[
S_l \geq v + 1 \quad \text{and} \quad 2S_l \geq (2v + 1) + 1 \geq w + 1 > w.
\]

Hence

\[
S_{l+1} > S_l > v
\]

and \(S_k \) is strictly increasing as in \((3c) \). \(\square \)
Corollary 2.2. Let v be a natural number, $h = 2$, $w = 2v + 1$, and let R be the relation defined on the set \{1, 2, \ldots, $n = 2v$\} by: xRy if and only if there exist terms S_0 and S_k such that $x = S_0$ and $y = S_k$ for some $k > 0$. Then R is an equivalence relation on \{1, 2, \ldots, n\}.

Proof. By (3ai) of Theorem 2.1, for any given S_0 in \{1, 2, \ldots, n\} there exists a unique integer $p = p(S_0) > 0$ such that the sequence S_k is

$$S_0, S_1, \ldots, S_{p-1}, S_p = S_0, S_{p+1} = S_1, \ldots \tag{3}$$

and $S_0, S_1, \ldots, S_{p-1}$ are distinct.

(i) Reflexive: Let $x = S_0$. By (3), $x = S_p$ so xRx.

(ii) Symmetric: Suppose xRy. Thus $x = S_0$ and $y = S_k$ where by (3) we may assume $1 \leq k < p$. Redefine $y = S'_0$ (another starting value). Then by (3), $x = S'_{p-k}$ where $p - k > 0$ so yRx.

(iii) Transitive: Assume xRy and yRz. As above, by the definition of the sequence S_k,

$$x = S_0, \ y = S_k = S'_0, \ z = S'_l = S_{k+l}$$

for some positive integers k and l. Therefore $x = S_0$ and $z = S_{k+l}$ where $k + l > 0$, thus xRz. □

The following is a fundamental result from Algebra [8, 9]:

Let R be an equivalence relation on a set S. For any s in S, the equivalence class of s under R, denoted $[s]$, is the subset of S consisting of all elements t of S such that tRs. Then every element of S is in exactly one equivalence class under R. That is, the equivalence classes partition S into a family of mutually disjoint nonempty subsets.

The equivalence classes of Corollary 2.2 are, moreover, ordered sets

$$[S_0] = \{S_0, S_1, \ldots, S_{p-1}\}$$

and we have for example
\{1, 2, \ldots, 14\} = [1] \cup [3] \cup [7],
\{1, 2, \ldots, 16\} = [1] \cup [3],
\{1, 2, \ldots, 18\} = [1],

An interesting problem in this algebraic context is to determine all even values \(n\) such that \(\{1, 2, \ldots, n\} = [1]\).

Example 1. The following table illustrates possible situations in (3a) and (3b) of Theorem 2.1 where \(h = 2\):

<table>
<thead>
<tr>
<th>(S_0)</th>
<th>(v)</th>
<th>(w)</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>1, 2, 4, 0, 0, 0, \ldots</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>20</td>
<td>3, 6, 12, 4, 8, 16, 12, 4, \ldots</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5, 10, 20, 20, 20, \ldots</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8, 9, 11, 15, 23, 39, 71, 135, \ldots</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>24</td>
<td>1, 2, 4, 8, 16, 8, 16, 8, \ldots</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>22</td>
<td>1, 2, 4, 8, 16, 10, \ldots</td>
</tr>
</tbody>
</table>

3. **Pathology**

Theorem 2.1 describes piecewise defined recursive sequences when either \(w \leq v\), \(w = 2v\) or \(w = 2v + 1\) for any \(h\) and \(S_0\). The specific cases not covered are

1. \(h = 2\) and \(v < w < 2v\)
2. \(h \geq 3\) and \(w > 2v + 1\).

In each case, \(w > v\), so by the reasoning in the proofs of (2) and (3) of Theorem 2.1, one of the following situations must hold for some \(N\):

i. \(S_N = w\) \(\text{(and } S_{N+k} = \frac{h^{k(h-2)+1}}{h-1}w \text{ for every } k)\)
ii. \(S_N > w\) \(\text{(and } S_k \text{ is strictly increasing for } k \geq N)\)
iii. \(1 \leq S_k \leq w - 1\) for all \(k \geq N\) \(\text{(and } S_k \text{ is eventually periodic)}\)
iv. \(S_N \leq 0\) \(\text{(and } S_{N+k} = h^kS_N \text{ for every } k)\)
We illustrate these possibilities as follows.

Example 2. \((h = 2 \text{ and } v < w < 2v)\) In this case, we show that \(S_k \geq 2\) for all \(k \geq 1\) so (iv) is not feasible: Let \(l\) be the least natural number such that \(S_l = h^l S_0 > v\). Then

\[
S_{l+1} = h^{l+1} S_0 - w > h^{l+1} S_0 - 2v = 2(h^l S_0 - v) \geq 2.
\]

Let \(l'\) be the least natural number such that \(S_{l+l'} = h^{l'-1}(h^{l+1} S_0 - w) > v\). Then

\[
S_{l+l'+1} = hS_{l+l'} - w > 2(S_{l+l'} - v) \geq 2.
\]

Continuing similarly by induction, the result follows.

The other situations are possible: with \(S_0 = 1\), we have

<table>
<thead>
<tr>
<th>(v)</th>
<th>(w)</th>
<th>(S_k) type</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>16</td>
<td>i</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>ii</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>iii</td>
</tr>
</tbody>
</table>

For case 2, any of (i) - (iv) are feasible:

Example 3. \((h = 3 \text{ and } w > 2v + 1)\) Choosing \(S_0 = 1\) again, we calculate the table

<table>
<thead>
<tr>
<th>(v)</th>
<th>(w)</th>
<th>(S_k) type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>27</td>
<td>i</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>ii</td>
</tr>
<tr>
<td>16</td>
<td>72</td>
<td>iii</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>iii</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>iv</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>iv</td>
</tr>
</tbody>
</table>

It is easy to generate periodic \(S_k\) with arbitrary initial values from known examples. If \(S_k\) is periodic and \(\alpha\) is a positive integer, the piecewise defined sequence \(S'_k\) with \(h' = h\), \(v' = \alpha v\) and \(w' = \alpha w\) is periodic and \(S'_0 = \alpha S_0\). For \(h = 2\), periodic sequences \(S_k\) with \(S_0 = 1\) are given by the theorem (3a) where \(w = 2v + u\) \((u = 0, 1, 2)\). If
\(\alpha > 2 \) and \(u > 0 \), then \(S' \) is periodic and satisfies (3b). We can similarly modify the following results.

Example 4. For \(h \geq 2 \), there are general choices of \(v \) and \(w \) such that \(w > 2v + 1 \), \(S_0 = 1 \), and \(S_k \) is either periodic, strictly increasing or reaches an equilibrium point:

a. For any positive integers \(r \) and \(s \), let \(t = (r + 1)s \) and define

\[
v = \frac{(h - 1)(h^{r+t} - h^r)}{h^{r+1} - 1} \quad \text{and} \quad w = hv + h - 1.
\]

We begin by showing \(h^{t-1} < v < h^t \). The right inequality is equivalent to

\[
h^r + h^t < h^{r+1} + h^{r+t}
\]

which is trivial. The left inequality is equivalent to

\[
h^{t-1}(h^{r+1} - 1) \leq h^r(h^t - 1)(h - 1)
\]

which clearly holds when \(s = 1 \) since \(t = (r + 1)s \) and \(h \geq 2 \). Thus assume that \(s \geq 2 \). Then the inequality becomes

\[
2h^{r+t} + h^{r+1} \leq h^{r+t+1} + h^r + h^{t-1}
\]

where \(2h^{r+t} \leq h \) \(h^{r+t} \) since \(h \geq 2 \), and \(h^{r+1} \leq h^r + h^{t-1} \) (or \(h \leq 1 + h^{t-(r+1)} \)) since \(t = (r + 1)s \geq 2(r + 1) \) and \(r \geq 0 \). Thus \(h^{t-1} < v < h^t \) and straightforward calculations show that

\[
w = \frac{(h - 1)(h^{r+t+1} - 1)}{h^{r+1} - 1} \quad \text{and} \quad h^{t+1} - w > v.
\]

More generally, for \(1 \leq k < r \),

\[
h^{t+k} - \frac{h^k - 1}{h - 1}w = h^{t+k} - \frac{(h - 1)(h^{r+t+1} - 1)}{h^{r+1} - 1} > v
\]

if and only if

\[
h^{r+t} + h^{r+1} + h^k > h^{k+t} + h^r + 1,
\]

which holds since \(h \geq 2 \).
It follows that since $S_0 = 1$,

$$S_{t+k} = h^{t+k} - \frac{h^k - 1}{h - 1} w \quad (k = 1, \ldots, r).$$

Since $S_{t+r} = v + 1$, we have that $S_{t+r+1} = h(v + 1) - (hv + h - 1) = 1$ and S_k is periodic of period $t + r + 1 = (r + 1)(s + 1)$.

For example, if $h = 3$, $r = 1$ and $s = 3$, then $v = 546$, $w = 1640$ and the sequence is

$$1, 3, 9, 27, 81, 243, 729, 547, 1, \ldots$$

b. Let t be a positive integer, $v = h^t$ and $w = h^{t+2} - h^{t+1} + h - 1$ (which satisfy (3ai) of Theorem 2.1 if $h = 2$). The sequence S_k is then computed as follows:

$$1, h, \ldots, h^t, h^t + h + 1, h^t + h - 2 + 1, \ldots, h^t + h^t - 1, 1, \ldots.$$

For example, if $h = 4$, $v = 64$ and $w = 771$, then the sequence is

$$1, 4, 16, 64, 256, 253, 241, 193, 1, \ldots.$$

c. Let t and v be any positive integers that satisfy

$$h^{t-1} < v \leq h^t - h^{t-1} - 1,$$

and let $w = hv + h - 1$ as above. Then $S_k = h^k \ (0 \leq k \leq t)$, $S_t > v$, and

$$S_{t+1} = hS_t - w = h^{t+1} - hv - h + 1 \geq h^t + 1 > S_t > v.$$

By induction,

$$S_{t+k+1} > S_{t+k} > v$$

for all k and thus S_{t+k}, and therefore S_k, are strictly increasing.

d. Let t and v be positive integers such that

$$h^{t-1} \leq v < h^t,$$
and let \(w = h^{t+1} - h^t \). Then \(S_k = h^k \) for \(k \leq t \) and \(S_{t+1} = h^{t+1} - w = h^t \). Thus \(S_k = h^t \) for all \(k \geq t \).

4. Application in Matrix Theory

The following sparse matrices arose in [1] while considering certain vector spaces of magic squares.

Definition 2. The C-matrix \(A = (a_{ij}) \) is the square matrix of order \(n \) such that its nonzero elements are defined as follows where either \(n = 2k \) or \(n = 2k + 1 \):

\[
a_{ij} = \begin{cases}
1 & \text{for } j = 2i \text{ when } 1 \leq i \leq k \\
1 & \text{for } j = 2i - (n + 1) \text{ when } n - k < i \leq n \\
-2 & \text{for } j = i
\end{cases}
\]

The ones appear as the moves of the knight on a chessboard. Odd ordered C-matrices are distinguished from even ones by a middle row without ones.

According to Gerschgorin’s Disk Theorem (see [7]), the eigenvalues of C-matrices lie in the unit circle with centre \((-2, 0)\) in the complex plane. We show that the real bounds \(-1\) and \(-3\) of the circle will indeed be eigenvalues in many cases. Moreover we note that \(0\) is not contained in the Gerschgorin disk so C-matrices are invertible. (This also follows since they are strictly diagonally dominant.)

For any C-matrix of odd order we note that \(-2\) is an eigenvalue of \(A \) since the matrix \(A + 2I \) has the zero row as its middle row. We conjecture that \(-2\) is the only eigenvalue when the order of \(A \) is \(n = 2^l - 1 \). This is illustrated in the following

Example 5. Let \(A \) be the C-matrix of order 15. Suppose by way of contradiction that \(\beta \neq -2 \) is a (real or complex) eigenvalue of \(A \) and let \(\alpha = \beta + 2 \). Since \(\alpha \neq 0 \), by the definition of C-matrix, if \(x = (x_1, x_2, \ldots, x_{15})^t \) is a nonzero vector in the kernel
of $A - \beta I$, then $x_8 = 0$ and $x_i = x_{i+8}$ ($1 \leq i \leq 7$). Moreover, if $x_{2i} = 0$ for some $i = 1, 2, \ldots, 7$, then $x_i = 0$. It follows in order that

$$0 = x_4 = x_2 = x_1 = x_{4+8} = x_{2+8} = x_{1+8} = x_6 = x_3 = x_5 = x_{6+8} = x_{3+8} = x_{5+8} = x_7 = x_{7+8}.$$

Thus, x is the zero vector, a contradiction. Therefore, -2 is the only eigenvalue of A.

Another possible eigenvalue of odd ordered C-matrices is -1:

Proposition 4.1. Let A be a C-matrix of order $n = 4l + 1$. Then -1 is an eigenvalue of A.

Proof. Let $n = 4l + 1$. For each row of the matrix $A + I$ except the middle row we have one entry 1, one entry -1, and the other entries 0. The ones occur in even numbered cells. Column $2l + 1$ is the middle column so it contains no ones. If we sum the columns of $A + I$ except the middle column, then we obtain the zero vector. Hence, the determinant of $A + I$ is zero. □

We now turn to the eigenvalues of C-matrices of even order. The following is similar to the above result.

Proposition 4.2. Let A be a C-matrix of order $n = 6l + 2$. Then -3 is an eigenvalue of A.

Proof. Let $n = 6l + 2$. We show in this case that rows $4l + 2$ and $2l + 1$ of $A + 3I$ are identical. By the definition of C-matrix, the main diagonal of $A + 3I$ consists of ones, and row $2l + 1$ has one in the entries $(2l + 1, 2l + 1)$ and $(2l + 1, 2(2l + 1))$ since $2l + 1 < 3l + 1$. On the other hand, row $4l + 2$ has one in the entries $(4l + 2, 4l + 2)$ and $(4l + 2, 2(4l + 2) - (n + 1)) = (4l + 2, 2l + 1)$. □
We can extend the idea behind the above proof for other C-matrices of even order. We consider matrices where the sum of several rows of \(A + 3I \) is identical to the sum of another set of rows. For example, let \(A \) be the C-matrix of order 4. We obtain

\[
A + 3I = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]

The sum of the first and fourth rows is the same as the sum of the second and third rows. Thus \(-3 \) is an eigenvalue of \(A \). In general, we have the following procedure.

Theorem 4.3. Let \(A \) be a C-matrix of even order \(n = 2k \). Then \(-1\) is an eigenvalue of \(A \).

Conversely, if \(\lambda \) is a real eigenvalue of \(A \), then \(\lambda = -1 \) or \(\lambda = -3 \).

Define the sequence \(Q_l \) of positive integers as follows: let \(Q_0 = 1 \) and for \(l \geq 0 \) let \([Q_l, Q_{l+1}]\) denote the positions in row \(Q_l \) of the ones in the matrix \(A + 3I \). Then the sequence \(Q_l \) is periodic. If the period of \(Q_l \) is even, then \(-3\) is an eigenvalue of \(A \).

Proof. Let \(A \) be a C-matrix of order \(n = 2k \). Then each column of \(A + I \) has exactly one entry 1, one entry \(-1\) and the remaining entries 0. Hence, the sum of all rows of \(A + I \) is the zero row so \(|A + I| = 0 \).

Let \(\lambda \) be a real eigenvalue of \(A \). We argue indirectly. Assume that \(|\lambda + 2| < 1 \) by Gerschgorin’s theorem. We rearrange the columns \(C_i \) of \(A - \lambda I \) in the order

\[
C_2, C_4, ..., C_n, C_1, C_3, ..., C_{n-1}.
\]

The resulting matrix is strictly diagonally dominant, and is therefore invertible with nonzero determinant, a contradiction.

Let \(Q_l \) be given as above. Note that rows with ones in positions \([Q_l, Q_{l+1}]\) and \([Q_{l+1}, Q_{l+2}]\) have a one in the same position \(Q_{l+1} \). Thus, for \(l \geq 1 \), row \(Q_l \) also
shares a one with row Q_{l-1}. By the definition of C-matrix of order $2k$, with $Q_0 = 1$, for $l \geq 1$,

$$Q_l = \begin{cases}
2Q_{l-1} & \text{if } Q_{l-1} \leq k \\
2Q_{l-1} - (2k + 1) & \text{if } Q_{l-1} > k
\end{cases}$$

By (3ai) of Theorem 2.1, Q_l is periodic. Hence if the period of Q_l is p, then $Q_p = 1$ and row 1 with ones in $[Q_0, Q_1]$ and row Q_{p-1} with ones in $[Q_{p-1}, Q_p]$ have position $Q_p = Q_0$ in common. Since $Q_0, Q_1, \ldots, Q_{p-1}$ are distinct, we have that if p is even, then the sum of the rows $Q_0, Q_2, \ldots, Q_{p-2}$ coincides with the sum of the rows $Q_1, Q_3, \ldots, Q_{p-1}$ and hence the determinant of $A + 3I$ is zero. \hfill \Box

Example 6. We can readily list the sequences Q_l. Two of the first eleven even ordered C-matrices have sequences Q_l with odd periods:

<table>
<thead>
<tr>
<th>n</th>
<th>Q_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1, 2, 1, \ldots</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 4, 3, 1, \ldots</td>
</tr>
<tr>
<td>6</td>
<td>1, 2, 4, 1, \ldots</td>
</tr>
<tr>
<td>8</td>
<td>1, 2, 4, 8, 7, 5, 1, \ldots</td>
</tr>
<tr>
<td>10</td>
<td>1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, \ldots</td>
</tr>
<tr>
<td>12</td>
<td>1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, \ldots</td>
</tr>
<tr>
<td>14</td>
<td>1, 2, 4, 8, 1, \ldots</td>
</tr>
<tr>
<td>16</td>
<td>1, 2, 4, 8, 16, 15, 13, 9, 1, \ldots</td>
</tr>
<tr>
<td>18</td>
<td>1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, \ldots</td>
</tr>
<tr>
<td>20</td>
<td>1, 2, 4, 8, 16, 11, 1, \ldots</td>
</tr>
<tr>
<td>22</td>
<td>1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, \ldots</td>
</tr>
</tbody>
</table>

For example, the period of Q_l is even for $n = 16$ and by Theorem 4.3, the sum of the rows 1, 4, 16 and 13 of $A + 3I$ is identical to the sum of the rows 2, 8, 15 and 9.
We can compute the period of \(Q_l \) in some general cases:

Corollary 4.4. Let \(l \geq 2 \) be an even integer and let \(A \) be a C-matrix of order \(n = 2^l - 2 \). Then \(-3 \) is an eigenvalue of \(A \).

Proof. We have \(Q_0 = 1, Q_1 = 2, Q_2 = 4, \ldots, Q_{l-1} = 2^{l-1} \) since \(2^{l-2} \leq \frac{n}{2} \). But \(2^{l-1} = \frac{n}{2} + 1 > \frac{n}{2} \) so \(Q_l = 2\left(\frac{n}{2} + 1\right) - (n + 1) = 1 \). \(\Box \)

Corollary 4.5. Let \(A \) be a C-matrix of order \(n = 2^l \) where \(l \geq 2 \). Then \(-3 \) is an eigenvalue of \(A \).

Proof. Assume that \(A \) is a C-matrix of order \(n = 2^l \) where \(l \geq 2 \). Then \(Q_0 = 1, Q_1 = 2, Q_2 = 4, \ldots, Q_l = 2^l \). We prove by induction that

\[
Q_{l+i} = Q_l - 2^i + 1 > 2^{l-1} = \frac{n}{2}
\]

for \(i = 0, 1, \ldots, l - 1 \). The initialization \(i = 0 \) is clear. Assume the statement holds for some \(i < l - 1 \). Then

\[
Q_{l+i+1} = 2(Q_l - 2^i + 1) - (n + 1) = Q_l - 2^{i+1} + 1 > 2^{l-1}
\]

since \(i + 1 \leq l - 1 \) and \(2^{l-1} + 1 > 2^{i+1} \).

In particular,

\[
Q_{2l-1} = Q_{l+(l-1)} = Q_l - 2^{l-1} + 1 = \frac{n}{2} + 1 > \frac{n}{2}
\]

so \(Q_{2l} = 2\left(\frac{n}{2} + 1\right) - (n + 1) = 1 \). Therefore the period of \(Q_l \) is even. \(\Box \)

If the period of \(Q_l \) is odd, then we can not deduce any information about the value \(-3\). For example, the period of \(Q_l \) is three for the C-matrix \(A \) of order six and its eigenvalues are

\[
-\frac{5}{2} \pm \frac{\sqrt{3}}{2}i, \quad -\frac{5}{2} \pm \frac{\sqrt{3}}{2}i, \quad -1, \quad -1.
\]
On the other hand, \(-3\) is an eigenvalue of the C-matrix of order 366 although \(Q_t\) has period 183.

We computed the eigenvalues of the C-matrices of even orders up to order 4780 and found the following orders for which \(-3\) is not an eigenvalue:

6, 22, 30, 46, 48, 70, 72, 78, 88, 102, 126, 150, 160, 166, 190, 198, 216, 222, 232, 238, 262, 270, 310, 328, 336, 342, 358, 430, 438, 496, 510, 552, 600, 622, 630, 712, 720, 880, 888, 910, 918, 936, 960, 1056, 1102, 1288, 1392, 1432, 1456, 1518, 1560, 1678, 1800, 1896, 2046, 2088, 2142, 2200, 2262, 2350, 2358, 2592, 2686, 2758, 2920, 3016, 3190, 3390, 3478, 3472, 3576, 3936, 4056, 4176, 4206, 4512, 4576, 4680.

References