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1. Introduction

In this paper, we consider the following pseudo-parabolic integro-differential equations

in one dimensional case
ut =

(
a(x, t)uxt + b(x, t)ux +

∫ t
0
c(x, t, τ)ux(x, τ)ds

)
x

+ f(x, t), (x, t) ∈ [0, 1]× J,

u(0, t) = u(1, t) = 0, t ∈ J,

u(x, 0) = u0(x), x ∈ [0, 1],

(1)
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where J = (0, T ] is the time interval with 0 < T < ∞. f, u0 are given functions, and we

make the following assumptions for the coefficients of equation (1): 0 < a0 ≤ a(x, t), at ≤

a1, |b(x, t)| ≤ b1, |c(x, t, τ)| ≤ c1, where a0, a1, b1, c1 are all positive constants.

Evolution integro-differential equations are a class of important evolution partial dif-

ferential equations, and have a lot of applications in many physical problems, such as the

transport of reactive and passive contaminates in aquifers. For this class of equations, the

existence of solutions has been studied, such as in [1], [2]. In recent years, the numerical

methods to solve these equations are also proposed, for example, finite element method

in [3] and adaptive least-squares mixed finite element method in [4].

Standard mixed finite element methods were developed and analyzed in [6], [7], [8]

for elliptic equations, [9] for parabolic equations, and [10], [11] for wave equations. In

general, the LBB stability condition is required for the mixed finite element method,

which restricts the choice of finite element spaces. Recently, in order to overcome this

difficulty, an H1-Galerkin mixed finite element method was proposed in [12] for parabolic

problems. The proposed method is a non-symmetric version of least square method. It

has been proved that the H1-Galerkin mixed finite element method has the same rate of

convergence as standard mixed finite element method.

In this paper, we construct a fully-discrete H1-Galerkin mixed finite element method to

the equations (1). By introducing a flux q, we split (1) into a system of two equations and

then apply the H1-Galerkin mixed finite element method. For the temporal discretization,

we consider the backward Euler method, which is first order accurate in time. Optimal

error estimates for the scalar unknown u and its flux q in L2-norm and H1-norm are

achieved.

Throughout the paper, we adopt the standard notation Wm,q(Ω) for Sobolev space on

Ω with a norm ‖ · ‖m,q and a semi-norm | · |m,q. For q = 2, we denote Hm(Ω) = Wm,2(Ω),

‖ · ‖m=‖ · ‖m,2 and for m = 0, we denote ‖ · ‖=‖ · ‖0. Moreover, the inner products in

L2(Ω) are indicated by (·, ·). Let X be a Banach space and φ(t) : [0, T ] 7−→ X, we set

‖φ‖2L2(X) =

∫ T

0

‖φ(s)‖2Xds, ‖φ‖L∞(X) = ess sup
0≤t≤T

‖φ‖X .
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In addition, C denotes a generic constant independent of the spatial mesh parameter h

and time discretization parameter4t, and ε denotes an arbitrarily small positive constant.

2. The Fully discrete H1-Galerkin Mixed Finite Element Approx-

imation Scheme

For simplicity, we set a := a(x, t), b := b(x, t), c := c(x, t, τ) and q = a(x, t)utx +

b(x, t)ux +
∫ t
0
c(x, t, τ)ux(x, τ)dτ , so equation (1) can be rewritten as

(a) ut − qx = f(x, t), (x, t) ∈ [0, 1]× (0, T ],

(b) a(x, t)utx + b(x, t)ux +
∫ t
0
c(x, t, τ)ux(x, τ)dτ = q, (x, t) ∈ [0, 1]× (0, T ]

(c) u(0, t) = u(1, t) = 0, t ∈ (0, T ],

(d) u(x, 0) = u0(x), x ∈ [0, 1].

(2)

Let w ∈ H1, multiplying (2a) by wx ∈ H1 and integrating on interval [0, 1] we obtain

(ut, wx)− (qx, wx) = (f, wx), w ∈ H1.

Let v ∈ H1
0 , multiplying (2b) by vx ∈ H1

0 and integrating on interval [0, 1] we obtain

(autx, vx) + (bux, vx) +

∫ t

0

(cux, vx)dτ = (q, vx), v ∈ H1
0 .

Note that ut(0) = ut(1) = 0 and q = a(x, t)utx+b(x, t)ux+
∫ t
0
c(x, t, τ)ux(x, τ)dτ . Then

by Green formula we have

(αq, w) + (qx, wx) = (βux, w) +

∫ t

0

(γux, w)dτ − (f, wx), w ∈ H1,

where α = 1
a
, β = b

a
, γ = c

a
.

Then the weak form of H1-Galerkin mixed finite element method for (2) can be defined

by  (autx, vx) + (bux, vx) +
∫ t
0
(cux, vx)dτ = (q, vx), v ∈ H1

0 ,

(αq, w) + (qx, wx) = (βux, w) +
∫ t
0
(γux, w)dτ − (f, wx) , w ∈ H1.

(3)

Let Vh,Wh be finite dimensional subspaces of H1
0 and H1, respectively, with the follow-

ing approximation properties:

inf
vh∈Vh

{‖v − vh‖Lp + h‖v − vh‖W 1,p} ≤ Chk+1‖v‖Wk+1,p , v ∈ H1
0 ∩W k+1,p,
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inf
wh∈Wh

{‖w − wh‖Lp + h‖w − wh‖W 1,p} ≤ Chr+1‖w|W r+1,p , w ∈ W r+1,p,

where 1 ≤ p ≤ ∞, k, r are integers.

For the temporal discretization, we consider the backward Euler method, which is first

order accurate in time. Let 0 = t0 < t1 < · · · < tN = T be a given partition of the time

interval [0, T ] with step length ∆t = T
N

, for some positive integer N. Define tn = n4t,

φn = φ(tn), ∂̄tφ
n = (φn − φn−1)/4t for a smooth function φ. Let Un and Qn be the

approximation of u and q at t = tn, then the fully discrete H1-Galerkin mixed finite

element approximation scheme of (3) is to find {Un, Qn} ∈ Vh ×Wh such that
(an∂̄tU

n
x , vhx) + (bnU

n
x , vhx) +4t

n−1∑
j=0

(cnjU
j
x, vhx) = (Qn, vhx), vh ∈ Vh,

(αnQ
n, wh) + (Qn

x, whx) = (βnU
n
x , wh) +4t

n−1∑
j=0

(γnjU
j
x, wh)− (fn, whx), wh ∈ Wh,

(4)

where an = a(tn), bn = b(tn), cnj = c(tn, tj), αn = α(tn), βn = β(tn), γnj = γ(tn, tj).

For our error estimates, we introduce the following projections.

(i) From [15], we define the Soblev-Volterra projection: to find ũh ∈ Vh such that:

(a(ut − ũht)x + b(ux − ũhx) +

∫ t

0

c(ux − ũhx)dτ, vhx) = 0, (5)

which satisfy the following estimate,

‖ u− ũh ‖ +h ‖ (u− ũh)x ‖≤Mhk+1(‖ u ‖k+1 +

∫ t

0

‖ u ‖k+1 dτ). (6)

(ii) Following [16], we define an elliptic projection q̃h ∈ Wh, such that:

((q − q̃h)x, whx) = 0, ∀wh ∈ Wh, (7)

and also we have

‖ q − q̃h ‖ +h ‖ (q − q̃h)x ‖≤Mhr+1 ‖ q ‖r+1 . (8)

3. Convergence Analysis

Let

u(tn)− Un = u(tn)− ũh(tn) + ũh(t
n)− Un = ηn + ζn
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q(tn)−Qn = q(tn)− q̃h(tn) + q̃h(t
n)−Qn = ρn + ξn

Set t = tn in (2) and combine (3), (5), (7), we can get the following error equations,

(a) (an∂̄tζ
n
x , vhx) + (bnζ

n
x , vhx) +4t

n−1∑
j=0

(cnjζ
j
x, vhx) = (ρn + ξn, vhx) + εn1 (vh)

+(anτ
n, vhx),

(b) (αnξn, wh) + (ξnx , whx) = −(βnη
n
x , whx)− (βxnη

n, wh) + (βnζ
n
x , wh)

+4t
n−1∑
j=0

[(γn,jρ
j, whx) + (γxnjρ

j, wh)]

+4t
n−1∑
j=0

(γnjξ
j
x, wh) + εn2 (wh),

(9)

where

τn = ∂̄tũhx(t
n)− ũhxt(tn),

εn1 =

∫ tn

0

(cnũhx, vhx)dτ −4t
n−1∑
j=0

(cnjũhx(tj), vhx),

εn2 =

∫ tn

0

(γnux(t
n), wh)dτ −4t

n−1∑
j=0

(γnjux(tj), wh).

Since the estimates of ηn and ρn can be found out easily from (6) and (8) at t = tn, it is

enough to estimate ζn and ξn.

Theorem 3.1. Assume that U0 = ũh(0), Q0 = q̃h(0) and 0 ≤ J ≤ N. Then there exists a

positive constant C independent of h and ∆t such that for j = 0, 1 the following estimate

holds

‖ uJ − UJ ‖j + ‖ qJ −QJ ‖j

≤ Chmin{k+1−j,r+1−j}(‖ u ‖L∞(Hk+1) + ‖ q ‖L∞(Hr+1))

+ C4t(‖ u ‖L2(H1) + ‖ ut ‖L2(H1) + ‖ utt ‖L2(H1))

. (3.1)

Proof. Choose vh = ζn in (9a) to obtain for n = 0, 1, · · · , N ,

(an∂̄tζ
n
x , ζ

n
x ) + (bnζ

n
x , ζ

n
x ) +4t

n−1∑
j=0

(cnjζ
j
x, ζ

n
x ) = (ρn + ξn, ζnx ) + εn1 + (anτ

n, ζnx ). (10)



636 FENGXIN CHEN

Note that a ≥ a0, |b| ≤ b1, |c| ≤ c1 and a0, b1, c1 are positive constants, then by Hölder

inequality and ε inequality we have

(an∂̄tζ
n
x , ζ

n
x ) + (bnζ

n
x , ζ

n
x ) +4t

n−1∑
j=0

(cnjζ
j
x, ζ

n
x )

≥ 1
2
a0 ‖ ∂̄tζnx ‖2 −b1 ‖ ζnx ‖2 −c14t

n−1∑
j=0

‖ ζnx ‖2 −c1Tε ‖ ζnx ‖2,
(11)

and

(ρn + ξn, ζnx ) + εn1 + (anτ
n, ζnx )

≤ C(‖ ρn ‖2 + ‖ ξn ‖2 + ‖ εn1 ‖2 + ‖ τn ‖2) + ε ‖ ζnx ‖2 .
(12)

Combine (10)-(12), we can get

1
2
a0 ‖ ∂̄tζnx ‖2≤ c14t

n−1∑
j=0

‖ ζnx ‖2 +C(‖ ρn ‖2 + ‖ ξn ‖2 + ‖ εn1 ‖2 + ‖ τn ‖2)

+(b1 + ε+ c1Tε) ‖ ζnx ‖2 .

By Taylor formula we can derive

‖ εn1 ‖2 = ‖
∫ tn
0

(cnũhx, vhx)dτ −4t
n−1∑
j=0

(cnjũhx(tj), vhx) ‖2

≤ C(4t)2
∫ tn
0
{‖ ũhx ‖2 + ‖ ũhxt ‖2}dτ,

and

‖ τn ‖2≤ C4t
∫ tn

tn−1

‖ ũhxtt ‖2 dτ.

Therefore, we have

1
2
a0∂̄t ‖ ζnx ‖2 ≤ c14t

n−1∑
j=0

‖ ζnx ‖2 +C(‖ ρn ‖2 + ‖ ξn ‖2)

+ C(4t)2
∫ tn
0
{‖ ũhx ‖2 + ‖ ũhxt ‖2}dτ + C4t

∫ tn
tn−1 ‖ ũhxtt ‖2 dτ

+ (b1 + ε+ c1Tε) ‖ ζnx ‖2,

i.e.,

1
2
a0
‖ζnx ‖2−‖ζ

n−1
x ‖2

4t ≤ c14t
n−1∑
j=0

‖ ζnx ‖2 +C(‖ ρn ‖2 + ‖ ξn ‖2)

+ C(4t)2
∫ tn
0
{‖ ũhx ‖2 + ‖ ũhxt ‖2}dτ + C4t

∫ tn
tn−1 ‖ ũhxtt ‖2 dτ

+ (b1 + ε+ c1Tε) ‖ ζnx ‖2 .
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Then, multiplying by 4t and summing from n = 1, 2, · · · , J , we conclude that

1
2
a0 ‖ ζnx ‖2 ≤ c1(4t)2

J∑
n=1

n−1∑
j=0

‖ ζnx ‖2 +C
J∑
n=1

(‖ ρn ‖2 + ‖ ξn ‖2)

+ CJ(4t)3
∫ T
0
{‖ ũhx ‖2 + ‖ ũhxt ‖2}dτ + C(4t)2

∫ T
0
‖ ũhxtt ‖2 dτ

+ (b1 + ε+ c1Tε)4t
J∑
n=1

‖ ζnx ‖2 .

Further, we have

1
2
a0 ‖ ζnx ‖2 ≤ C(‖ ρ ‖2L∞(L2) +4t

J∑
n=1

‖ ξn ‖2) + C(4t)2
∫ T
0
{‖ ũhx ‖2 + ‖ ũhxt ‖2}dτ

+ C(4t)2
∫ T
0
‖ ũhxtt ‖2 dτ + (b1 + ε+ c1Tε)4t ‖ ζnx ‖2

+ (b1 + ε+ c1Tε+ c14tT )
J−1∑
n=1

‖ ζnx ‖2,

i.e.,

[1
2
a0 − (b1 + ε+ c1Tε)4t] ‖ ζnx ‖2

≤ C(‖ ρ ‖2L∞(L2) +4t
J∑
n=1

‖ ξn ‖2) + C(4t)2
∫ T
0
{‖ ũhx ‖2

+ ‖ ũhxt ‖2}dτ + C(4t)2
∫ T
0
‖ ũhxtt ‖2 dτ

+ (b1 + ε+ c1Tε+ c14tT )
J−1∑
n=1

‖ ζnx ‖2 .

Choosing 4t such that 1
2
a0− (b1 + ε+ c1Tε)4t > 0 and using discrete Gronwall’s lemma

we can derive that

‖ ζnx ‖2 ≤ C(‖ ρ ‖2L∞(L2) +4t
J∑
n=1

‖ ξn ‖2) + C(4t)2
∫ T
0
{‖ ũhx ‖2

+ ‖ ũhxt ‖2}dτ + C(4t)2
∫ T
0
‖ ũhxtt ‖2 dτ.

(13)

Choose wh = ξn in (9b) to obtain

(αnξn, ξ
n) + (ξnx , ξ

n
x ) = −(βnη

n
x , ξ

n
x )− (βxnη

n, ξn) + (βnζ
n
x , ξ

n)

+4t
n−1∑
j=0

[(γn,jρ
j, ξnx ) + (γxnjρ

j, ξn)] +4t
n−1∑
j=0

(γnjξ
j
x, ξ

n) + εn2 (ξn),
(14)

For the left side of (14), we can get

(αnξn, ξ
n) + (ξnx , ξ

n
x ) ≥ α0 ‖ ξn ‖2 + ‖ ξnx ‖2 . (15)
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Combine (15) and the right side of (14), we can derive the following estimates

α0 ‖ ξn ‖2 + ‖ ξnx ‖2 ≤ C(‖ ηn ‖2 + ‖ ζnx ‖2 +ε(‖ ξnx ‖2 + ‖ ξn ‖2)

+ C4t
J∑
n=1

‖ ρj ‖2 +c14t(‖ ξnx ‖2 + ‖ ξn ‖2)

+ c14t
n−1∑
j=0

‖ ξjx ‖2 + ‖ εn2 ‖2,

where

‖ εn2 ‖2 = ‖
∫ tn
0

(γnux(t
n), wh)dτ −4t

n−1∑
j=0

(γnjux(tj), wh) ‖2

≤ C(4t)2
∫ tn
0

(‖ ux ‖2 + ‖ uxt ‖2)ds

Therefore

α0 ‖ ξn ‖2 + ‖ ξnx ‖2 ≤ C(‖ ηn ‖2 + ‖ ρ ‖2L∞(L2)) + C4t
J∑
n=1

‖ ξn ‖2

+ C(4t)2
∫ tn
0

(‖ ux ‖2 + ‖ uxt ‖2 + ‖ ũhx ‖2 + ‖ ũhxt ‖2 + ‖ ũhxtt ‖2)ds

+ c14t
n−1∑
j=1

‖ ξjx ‖2 .

Let ᾱ0 = min{α0, 1} such that

ᾱ0 ‖ ξn ‖21 ≤ C(‖ ηn ‖2 + ‖ ρ ‖2L∞(L2)) + C4t
J∑
n=1

‖ ξn ‖2

+ C(4t)2
∫ tn
0

(‖ ux ‖2 + ‖ uxt ‖2 + ‖ ũhx ‖2 + ‖ ũhxt ‖2 + ‖ ũhxtt ‖2)ds

+ C4t
n−1∑
j=1

‖ ξj ‖21 .

For sufficiently small 4t and by discrete Gronwall’s lemma, we obtain that

‖ ξn ‖21 ≤ C(‖ ηn ‖2 + ‖ ρ ‖2L∞(L2))

+ C(4t)2
∫ tn
0

(‖ ux ‖2 + ‖ uxt ‖2 + ‖ ũhx ‖2 + ‖ ũhxt ‖2 + ‖ ũhxtt ‖2)ds.

Therefore, we can get

‖ ξn ‖1 ≤ Chmin{k+1,r+1}(‖ u ‖L∞(Hk+1) + ‖ q ‖L∞(Hr+1))

+ C4t(‖ u ‖L2(H1) + ‖ ut ‖L2(H1) + ‖ utt ‖L2(H1))
(16)

and

‖ ζnx ‖ ≤ Chmin{k+1,r+1}(‖ u ‖L∞(Hk+1) + ‖ q ‖L∞(Hr+1))

+ C4t(‖ u ‖L2(H1) + ‖ ut ‖L2(H1) + ‖ utt ‖L2(H1)).
(17)

Combining (16), (17), and the estimates of ηn and ρn, by the triangle inequality we can

complete the proof.
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