MAPS AND FUZZY CONNECTIONS

YONG CHAN KIM

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea

Abstract. In this paper, we investigate the relations between maps and residuated (dual residuated, residuated, Galois, dual Galois) connections in complete residuated lattices.

Keywords: complete residuated lattices; isotone (antitone) maps; residuated (dual residuated, residuated, Galois, dual Galois) connections

2000 AMS Subject Classification: 03E72; 03G10; 06A15; 06F07

1. Introduction

In this paper, we investigate the relations between maps and residuated (dual residuated, residuated, Galois, dual Galois) connections in complete residuated lattices. We give their examples.

Definition 1.1. [1,7] An algebra \((L, \land, \lor, \odot, \to, 0, 1)\) is called a complete residuated lattice if it satisfies the following conditions:

1. \((L, \leq, \lor, \land, 1, 0)\) is a complete lattice with the greatest element 1 and the least element 0;
2. \((L, \odot, 1)\) is a commutative monoid;
3. \(x \odot y \leq z\) iff \(x \leq y \to z\) for \(x, y, z \in L\).

In this paper, we assume \((L, \land, \lor, \odot, \to, *, 0, 1)\) is a complete residuated lattice with the law of double negation; i.e. \(x^{**} = x\).

Lemma 1.2. [1,7] For each \(x, y, z, x_i, y_i \in L\), we have the following properties.

1. If \(y \leq z\), \((x \odot y) \leq (x \odot z)\), \(x \to y \leq x \to z\) and \(z \to x \leq y \to z\).
2. \((x \to (\land_{i \in \Gamma} y_i)) = \land_{i \in \Gamma} (x \to y_i)\).
3. \((\lor_{i \in \Gamma} x_i) \to y = \lor_{i \in \Gamma} (x_i \to y)\).
4. \(\land_{i \in \Gamma} y_i^* = (\lor_{i \in \Gamma} y_i)^*\) and \(\lor_{i \in \Gamma} y_i^* = (\land_{i \in \Gamma} y_i)^*\).
5. \((x \odot y) \to z = x \to (y \to z) = y \to (x \to z)\).
6. \(x \odot y = (x \to y^*)^*\) and \(x \to y = y^* \to x^*\).
7. \(x \odot (x \to y) \leq y\).
8. \((x \to y) \odot (y \to z) \leq x \to z\).
9. \(x \leq y \to z\) iff \(y \leq x \to z\).

Definition 1.3. [1-3] Let \(X\) be a set. A function \(e_X : X \times X \to L\) is called:

1. **reflexive** if \(e_X(x, x) = 1\) for all \(x \in X\),
2. **transitive** if \(e_X(x, y) \odot e_X(y, z) \leq e_X(x, z)\), for all \(x, y, z \in X\),
3. **if** \(e_X(x, y) = e_X(y, x) = 1\), then \(x = y\).

If \(e\) satisfies (E1) and (E2), \((X, e_X)\) is a fuzzy preorder set. If \(e\) satisfies (E1), (E2) and (E3), \((X, e_X)\) is a fuzzy partially order set (simply, fuzzy poset).

Remark 1.4. (1) We define a function \(e_{L^X} : L^X \times L^X \to L\) as \(e_{L^X}(A, B) = \land_{x \in X} (A(x) \to B(x))\). Then \((L^X, e_{L^X})\) is a fuzzy poset from Lemma 1.2 (8).
(2) We denote $e_X^{-1}(x,y) = e_X(y,x)$, $(e_X)_x(y) = e_X(x,y)$ and $(e_X)_y^{-1} = e_X(x,y)$. Moreover, 1_x is a characteristic function such that $1_x(x) = 0$, $1_x(y)$, for otherwise.

Definition 1.5.[1-3] Let (X, e_X) and (Y, e_Y) be a fuzzy poset and $f : X \to Y$ and $g : Y \to X$ maps.

1. (e_X, f, g, e_Y) is called a Galois connection if for all $x \in X, y \in Y$,
 $$e_Y(y, f(x)) = e_X(x, g(y)).$$

2. (e_X, f, g, e_Y) is called a dual Galois connection if for all $x \in X, y \in Y$,
 $$e_Y(f(x), y) = e_X(g(y), x).$$

3. (e_X, f, g, e_Y) is called a residuated connection if for all $x \in X, y \in Y$,
 $$e_Y(f(x), y) = e_X(x, g(y)).$$

4. (e_X, f, g, e_Y) is called a dual residuated connection if for all $x \in X, y \in Y$,
 $$e_Y(y, f(x)) = e_X(g(y), x).$$

5. A map $f : (X, e_X) \to (Y, e_Y)$ is called an isotone map if for all $x, z \in X$, $e_X(x, z) \leq e_Y(f(x), f(z))$.

6. A map $f : (X, e_X) \to (Y, e_Y)$ is called an antitone map if for all $x, z \in X$, $e_X(x, z) \leq e_Y(f(z), f(x))$.

2. Maps and fuzzy connections

Theorem 2.1. Let (X, e_X) and (Y, e_Y) be a fuzzy poset and $f : X \to Y$ and $g : Y \to X$ maps. For each $A \in L^X$ and $B \in L^Y$, we define operations as follows:

$$F_1(A)(y) = \bigwedge_{x \in X} (A(x) \to e_Y(y, f(x))), \quad F_2(A)(y) = \bigwedge_{x \in X} (A(x) \to e_Y(f(x), y)),$$

$$G_1(B)(x) = \bigwedge_{y \in Y} (B(y) \to e_X(x, g(y))), \quad G_2(B)(x) = \bigwedge_{y \in Y} (B(y) \to e_X(g(y), x)),$$

$$H_1(B)(x) = \bigvee_{y \in Y} (e_X(x, g(y)) \odot B(y)), \quad H_2(B)(x) = \bigvee_{y \in Y} (e_X(g(y), x) \odot B(y)).$$
\[I_1(A)(y) = \bigvee_{x \in X} (A(x) \circ e_Y(y, f(x))), \quad I_2(A)(y) = \bigvee_{x \in X} (A(x) \circ e_Y(f(x), y)), \]

\[J_1(B)(x) = \bigwedge_{y \in Y} (e_X(x, g(y)) \rightarrow B(y)), \quad J_2(B)(x) = \bigwedge_{y \in Y} (e_X(g(y), x) \rightarrow B(y)), \]

\[K_1(A)(y) = \bigwedge_{x \in X} (e_Y(y, f(x)) \rightarrow A(x)), \quad K_2(A)(y) = \bigwedge_{x \in X} (e_Y(f(x), y) \rightarrow A(x)). \]

\[L_1(B)(x) = \bigvee_{y \in Y} (B^*(y) \circ e_X(x, g(y))), \quad L_2(B)(x) = \bigvee_{y \in Y} (B^*(y) \circ e_X(g(y), x)), \]

\[M_1(A)(y) = \bigvee_{x \in X} (A^*(x) \circ e_Y(y, f(x))), \quad M_2(A)(y) = \bigvee_{x \in X} (A^*(x) \circ e_Y(f(x), y)). \]

Then the following statements hold:

1. If \(F_1(1_x) = (e_Y)^{1}_{f(x)}, \quad F_2(1_x) = (e_Y)_{f(x)}, \quad K_1(1_x^*) = ((e_Y)^{1}_{f(x)})^*, \quad K_2(1_x^*) = (e_Y)_{f(x)}, \)

 \(M_1(1_x^*) = (e_Y)^{1}_{f(x)}, \quad M_2(1_x^*) = (e_Y)_{f(x)}, \quad I_1(1_x) = (e_Y)^{1}_{f(x)} \) and \(I_2(1_x) = (e_Y)_{f(x)}. \)

2. If \(G_1(1_y) = (e_X)^{1}_{g(y)}, \quad G_2(1_y) = (e_X)_{g(y)}, \quad H_1(1_w) = (e_X)^{1}_{g(y)}, \quad H_2(1_w) = (e_X)_{g(y)}, \)

 \(J_1(1_y^*) = ((e_X)^{-1}_{g(y)})^*, \quad J_2(1_y^*) = (e_X)_{g(y)}, \quad L_1(1_y^*) = (e_X)_{g(y)} \) and \(L_2(1_y^*) = (e_X)_{g(y)}. \)

3. If \((e_X, f, g, e_Y)\) is a Galois connection iff \((e_{LX}, F_1, G_1, e_{LY})\) is a Galois connection with antitone maps \(f \) and \(g \) iff \((e_{LX}, K_1, H_1, e_{LY})\) is a dual residuated connection with antitone maps \(f \) and \(g \) iff \((e_{LX}, M_1, L_1, e_{LY})\) is a dual Galois connection with antitone maps \(f \) and \(g \) iff \((e_{LX}, I_1, J_1, e_{LY})\) is a residuated connection with antitone maps \(f \) and \(g \).

4. If \((e_X, f, g, e_Y)\) is a residuated connection iff \((e_{LX}, F_2, G_1, e_{LY})\) is a Galois connection with isotone maps \(f \) and \(g \) iff \((e_{LX}, K_2, H_1, e_{LY})\) is a dual residuated connection with isotone maps \(f \) and \(g \) iff \((e_{LX}, M_2, L_1, e_{LY})\) is a dual Galois connection with isotone maps \(f \) and \(g \) iff \((e_{LX}, I_2, J_1, e_{LY})\) is a residuated connection with isotone maps \(f \) and \(g \).

5. If \((e_X, f, g, e_Y)\) is a dual Galois connection iff \((e_{LX}, F_2, G_2, e_{LY})\) is a Galois connection with antitone maps \(f \) and \(g \) iff \((e_{LX}, K_2, H_2, e_{LY})\) is a dual residuated connection with antitone maps \(f \) and \(g \) iff \((e_{LX}, M_2, L_2, e_{LY})\) is a dual Galois connection with antitone maps \(f \) and \(g \) iff \((e_{LX}, I_2, J_2, e_{LY})\) is a residuated connection with antitone maps \(f \) and \(g \).

6. If \((e_X, f, g, e_Y)\) is a dual residuated connection iff \((e_{LX}, F_1, G_2, e_{LY})\) is a Galois connection with isotone maps \(f \) and \(g \) iff \((e_{LX}, K_1, H_2, e_{LY})\) is a dual residuated connection with isotone maps \(f \) and \(g \) iff \((e_{LX}, M_1, L_2, e_{LY})\) is a dual Galois connection with isotone maps \(f \) and \(g \) iff \((e_{LX}, I_1, J_2, e_{LY})\) is a residuated connection with isotone maps \(f \) and \(g \).
(7) If \(e_X(x, y) \leq e_Y(f(x), f(y)) \), then

\[
F_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \quad F_2((e_X)_z) = (e_Y)_{f(z)}, \quad K_1((e_X)_z^{-1}) = ((e_Y)_{f(z)}^{-1})^*, \quad K_2((e_X)_z) = (e_Y)_{f(z)}^*, \\
I_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \quad I_2((e_X)_z) = (e_Y)_{f(z)}, \quad M_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \quad M_2((e_X)_z) = (e_Y)_{f(z)}.
\]

(8) If \(e_X(x, y) \leq e_Y(f(y), f(x)) \), then

\[
F_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \quad F_2((e_X)_z) = (e_Y)_{f(z)}, \quad K_1((e_X)_z) = ((e_Y)_{f(z)}^{-1})^*, \quad K_2((e_X)_z) = (e_Y)_{f(z)}^*, \\
I_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \quad I_2((e_X)_z) = (e_Y)_{f(z)}, \quad M_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \quad M_2((e_X)_z) = (e_Y)_{f(z)}.
\]

(9) If \(e_Y(x, y) \leq e_X(g(x), g(y)) \), then

\[
G_1((e_Y)_y) = (e_X)_{g(y)}^{-1}, \quad G_2((e_Y)_y) = (e_X)_{g(y)}, \quad H_1((e_Y)_y) = (e_X)_{g(y)}^{-1}, \quad H_2((e_Y)_y) = (e_X)_{g(y)}, \\
J_1((e_Y)_y^*) = ((e_X)_{g(y)}^{-1})^*, \quad J_2((e_Y)_y^*) = (e_X)_{g(y)}^*, \quad L_1((e_Y)_y^*) = (e_X)_{g(y)}^{-1}, \quad L_2((e_Y)_y^*) = (e_X)_{g(y)}.
\]

(10) If \(e_Y(x, y) \leq e_X(g(y), g(x)) \), then

\[
G_1((e_Y)_y) = (e_X)_{g(y)}^{-1}, \quad G_2((e_Y)_y) = (e_X)_{g(y)}, \quad H_1((e_Y)_y) = (e_X)_{g(y)}^{-1}, \quad H_2((e_Y)_y) = (e_X)_{g(y)}, \\
J_1((e_Y)_y^*) = ((e_X)_{g(y)}^{-1})^*, \quad J_2((e_Y)_y^*) = (e_X)_{g(y)}^*, \quad L_1((e_Y)_y^*) = (e_X)_{g(y)}^{-1}, \quad L_2((e_Y)_y^*) = (e_X)_{g(y)}.
\]

Proof. (1) and (2) follow from their definitions.

(3) Let \(e_X(x, g(y)) = e_Y(y, f(x)) \) be given. Since \(e_X(g(y), g(y)) = e_Y(y, f(g(y)) = 1 \), then \(g \) is an antitone map from:

\[
e_Y(y_1, y_2) = e_Y(y_1, y_2) \circ e_Y(y_2, f(g(y_2))) \\
\leq e_Y(y_1, f(g(y_2))) = e_X(g(y_2), g(y_1)).
\]

Similarly, \(f \) is an antitone map.

First, we will show that \(e_X(x, g(y)) = e_Y(y, f(x)) \) iff \(e_{LX}(A, G_1(B)) = e_{LY}(B, F_1(A)) \).
Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. By Lemma 1.2 (2,5), we have

$$e_{LY}(B, F_1(A)) = \bigwedge_{y \in Y} (B(y) \rightarrow F_1(A)(y))$$

$$= \bigwedge_{y \in Y} \left(B(y) \rightarrow \bigwedge_{x \in X} (A(x) \rightarrow e_Y(y, f(x))) \right)$$

$$= \bigwedge_{y \in Y} \bigwedge_{x \in X} \left(A(x) \rightarrow (B(y) \rightarrow e_X(x, g(y))) \right)$$

$$= \bigwedge_{x \in X} \left(A(x) \rightarrow G_1(B)(x) \right)$$

$$= e_{LX}(A, G_1(B)).$$

Conversely, put $A = 1_x$ and $B = 1_y$. By (1) and (2), we have

$$e_Y(y, f(x)) = F_1(1_x)(y) = e_{LY}(1_y, F_1(1_x))$$

$$= e_{LX}(1_x, G_1(1_y)) = G_1(1_y)(x) = e_X(x, g(y)).$$

Second, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{LX}(H_1(B), A) = e_{LY}(B, K_1(A))$.

Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. By Lemma 1.2 (3,5), we have

$$e_{LX}(H_1(B), A) = \bigwedge_{x \in X} (H_1(B)(x) \rightarrow A(x))$$

$$= \bigwedge_{x \in X} \left(\bigvee_{y \in Y} (e_X(x, g(y)) \circ B(y)) \rightarrow A(x) \right)$$

$$= \bigwedge_{x \in X} \bigwedge_{y \in Y} \left(B(y) \rightarrow (e_X(x, g(y)) \rightarrow A(x)) \right)$$

$$= \bigwedge_{y \in Y} \left(B(y) \rightarrow \bigwedge_{x \in X} (e_Y(y, f(x)) \rightarrow A(x)) \right)$$

$$= \bigwedge_{y \in Y} \left(B(y) \rightarrow K_1(A)(y) \right)$$

$$= e_{LY}(B, K_1(A))$$

Conversely, put $A = 1^*_x$ and $B = 1_y$. By (1) and (2), we have

$$e_X^*(x, g(y)) = H_1(1_y)^*(x) = e_{LX}(H_1(1_y), 1^*_x)$$

$$= e_{LY}(1_y, K_1(1^*_x)) = K_1(1^*_x)(y) = e_Y^*(y, f(x)).$$

Third, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{LX}(L_1(B), A) = e_{LY}(M_1(A), B)$.

Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. By Lemma 1.2 (3,5,6), we have

$$e_{LY}(M_1(A), B) = \bigwedge_{y \in Y} (M_1(A)(y) \rightarrow B(y))$$

Conversely, put $A = 1^*_x$ and $B = 1^*_y$. Since $M_1(1^*_x)(y) = e_Y(y, f(x))$ and $L_1(1^*_y)(x) = e_X(x, g(y))$ from (1) and (2). Hence we have

$$e_{LY}(M_1(1^*_x), 1^*_y) = e_{LY}(1^*_x, 1^*_y) = e_{LY}(L_1(1^*_x), L_1(1^*_y)) = e_{LY}(1^*_x, 1^*_y).$$

Finally, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{LY}(A, J_1(B)) = e_{LY}(I_1(A), B)$.

Let $e_X(x, g(y)) = e_Y(y, f(x))$. Then

$$e_{LY}(I_1(A), B) = \bigwedge_{y \in Y} (I_1(A)(y) \rightarrow B(y))$$

Conversely, put $A = 1_x$ and $B = 1_y$. Since $I_1((e_X)_x)(y) = e_Y(y, f(x))$ and $J_1((e_Y)_y)(x) = e_X(x, g(y))$ from (1) and (2),

$$e_{LY}(1_x, 1_y) = e_{LY}(I_1(A), I_1(B)) = e_{LY}(1_x, 1_y).$$

(4) Let $e_X(x, g(y)) = e_Y(f(x), y)$ be given. Since $e_X(g(y), g(y)) = e_Y(f(g(y), y) = 1$, then g is an isotone map from:

$$e_Y(y_1, y_2) = e_Y(y_1, y_2) \circ e_Y(f(g(y_1)), y_1)$$

$$\leq e_Y(f(g(y_1)), y_2) = e_X(g(y_1), g(y_2)).$$
Similarly, f is an isotone map.

First, we will show that $e_X(x, g(y)) = e_Y(f(x), y)$ iff $e_{LX}(A, G_1(B)) = e_{LY}(B, F_2(A))$.

Let $e_X(x, g(y)) = e_Y(f(x), y)$ be given. By Lemma 1.2(2,5), we have

$$e_{LY}(B, F_2(A)) = \wedge_{y \in Y} (B(y) \to F_2(A)(y))$$

$$= \wedge_{y \in Y} \left(B(y) \to \wedge_{x \in X} (A(x) \to e_Y(f(x), y)) \right)$$

$$= \wedge_{y \in Y} \wedge_{x \in X} \left(A(x) \to (B(y) \to e_X(x, g(y))) \right)$$

$$= \wedge_{x \in X} \left(A(x) \to \wedge_{y \in Y} (B(y) \to e_X(x, g(y))) \right)$$

$$= \wedge_{x \in X} \left(A(x) \to G_1(B)(x) \right)$$

$$= e_{LX}(A, G_1(B)).$$

Conversely, put $A = 1_x$ and $B = 1_y$. By (1) and (2), $F_2(1_x) = (e_Y)_{f(x)}$ and $G_1(1_y) = (e_X)^{-1}_{g(y)}$.

$$e_Y(f(x), y) = F_2(1_x)(y) = e_{LY}(1_y, F_2(1_x))$$

$$= e_{LX}(1_x, G_1(1_y)) = G_1(1_y)(x) = e_X(x, g(y)).$$

Second, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{LX}(H_1(B), A) = e_{LY}(B, K_2(A))$.

If $e_X(x, g(y)) = e_Y(f(x), y)$, then

$$e_{LX}(H_1(B), A) = \wedge_{x \in X} (H_1(B)(x) \to A(x))$$

$$= \wedge_{x \in X} \left((\forall y \in Y (e_X(x, g(y)) \circ B(y))) \to A(x) \right)$$

$$= \wedge_{x \in X} \wedge_{y \in Y} \left(B(y) \to (e_X(x, g(y)) \to A(x)) \right)$$

$$= \wedge_{y \in Y} \left(B(y) \to \wedge_{x \in X} (e_Y(f(x), y) \to A(x)) \right)$$

$$= \wedge_{y \in Y} \left(B(y) \to K_2(A)(y) \right)$$

$$= e_{LY}(B, K_2(A)).$$

Put $A = 1_x^*$ and $B = 1_y$. By (1) and (2), $K_2(1_x^*) = (e_Y)^{*}_{f(x)}$ and $H_1(1_w) = (e_X)^{-1}_{g(w)}$.

Hence

$$e_X^*(x, g(y)) = K_2(1_x^*)(y) = e_{LX}(H_1(1_y, 1_x^*)$$

$$= e_{LY}(1_y, K_2(1_x^*) = H_1(1_y)^*(x) = e_X^*(x, g(y)).$$

Other cases, (5) and (6) are similarly proved in (3).

(7) We have $F_2((e_X)^{-1}_{z}) = (e_Y)_{f(z)}$ from:
\[F_2((e_X)^{-1}_z)(y) = \bigwedge_{x \in X} ((e_X)^{-1}_z(x) \to e_Y(f(x), y)) \]
\[\leq (e_X)^{-1}_z(z) \to e_Y(f(z), y) = e_Y(f(z), y). \]

Since \(f \) is an isotone map,
\[e_Y(f(z), y) \odot e_X(x, z) \leq e_Y((f(z), y) \odot e_Y(f(x), f(z)) \leq e_Y(f(x), y), \]
\[e_Y(f(z), y) \leq \bigwedge_{z \in X} ((e_X)^{-1}_z(x) \to e_Y(f(x), y)) = F_2((e_X)^{-1}_z)(y). \]
\[K_2((e_X)^*_y)(y) = \bigwedge_{z \in X} (e_Y(f(z), y) \to (e_X)^*_y(z)) \]
\[\leq (e_Y(f(x), y) \to \bot) = e_Y(f(x), y)^*. \]

Thus, \(K_2((e_X)^*_y) \leq (e_Y)^*_y(x) \). Furthermore, \(K_2((e_X)^*_y) \geq (e_Y)^*_y(x) \) from:
\[e_Y(f(z), y) \odot e_X(x, z) \leq e_Y(f(z), y) \odot e_Y(f(x), f(z)) \leq e_Y(f(x), y) \]
\[\text{iff } (e_Y(f(x), y))^* \leq e_Y(f(z), y) \to (e_X(x, z))^*. \]

(9) We have \(G_1((e_Y)_y) \leq (e_X)^{-1}_y \) from:
\[G_1((e_Y)_y)(x) = \bigwedge_{w \in Y} ((e_Y)_y(w) \to e_X(x, g(w))) \leq e_X(x, g(y)). \]

Moreover, \(G_1((e_Y)_y) \geq (e_X)^{-1}_y \) from:
\[e_X(x, g(y)) \odot e_Y(y, w) \leq e_X(x, g(y)) \odot e_X(g(y), g(w)) \leq e_X(x, g(w)) \]
\[e_X(x, g(y)) \leq e_Y(y, w) \to e_X(x, g(w)). \]

We have \(H_1((e_Y)^{-1}_w) = (e_X)^{-1}_w \) from:
\[H_1((e_Y)^{-1}_w)(x) = \bigwedge_{y \in Y} ((e_Y)^{-1}_w(y) \odot e_X(x, g(y))) \geq (e_X)_w(g(w))(x). \]
\[e_X(x, g(y)) \odot e_Y(y, w) \leq e_X(x, g(y)) \odot e_X(g(y), g(w)) \leq e_X(x, g(w)). \]

Since \(J_1(((e_Y)_y)^{-1})(x) = \bigwedge_{w \in Y} (e_X(x, g(w)) \to ((e_Y)_y)^{-1}(w) \leq (e_X(x, g(y)))^*, \) then
\[J_1(((e_Y)_y)^{-1}) \leq ((e_X)^{-1}_y)^*. \]

Since \(e_X(x, g(w)) \odot e_Y(y, w) \leq e_X(x, g(w)) \odot e_X(g(w), g(y)) \leq e_X(x, g(y)), \) then
\[e_X(x, g(w)) \to e_Y(w, y)^* \geq (e_X(x, g(y)))^*. \]

Thus, \(J_1(((e_Y)_y)^{-1}) \geq ((e_X)^{-1}_y)^*. \) Hence \(J_1(((e_Y)_y)^{-1}) = ((e_X)^{-1}_y)^*. \)
Example 2.2. Define a binary operation \odot (called Lukasiewicz conjunction) on $L = [0,1]$ by

$$x \odot y = \max\{0, x + y - 1\}, \quad x \to y = \min\{1 - x + y, 1\}.$$

Let $(X \times Y, e)$ satisfy Theorem 2.1(7). For example, (1) we define f:

$$f(X) = (1) \cdot \min\{x, y\}, \quad f(Y) = (1) \cdot \min\{x, y\}.$$

Then e is a Galois connection, (e, e^0) is a dual Galois connection with antitone maps f and g.

(2) We define $h : X \to Y$ with $h(a) = x, h(b) = f(c) = y$. Then f is an isotone map. It satisfies Theorem 2.1(7). For examples,

$$F_2((e_X)^{-1}_a) = F_2(1,0.3,0.5) = (1,0.8,0.6) = (e_Y)_{f(a)} = (e_Y)_x,$$

$$F_2((e_X)^{-1}_b) = F_2(0.7,1,0.5) = (0.6,1,0.5) = (e_Y)_{f(b)} = (e_Y)_y,$$

$$F_2((e_X)^{-1}_c) = F_2(0.4,0.3,1) = (0.6,1,0.5) = (e_Y)_{f(c)} = (e_Y)_y.$$

(2) We define $h : X \to Y$ with $h(a) = x, h(b) = h(c) = z$. Then f is an antitone map. It satisfies Theorem 2.1(8). For examples,

$$K_2((e_X)_a) = K_2(0,0.7,0.5) = (0,0.2,0.4) = (e_Y)_{h(a)}^*,$$

$$K_2((e_X)_b) = K_2(0.3,0,0.5) = (0.3,0.4,0) = (e_Y)_{h(b)}^*,$$

$$K_2((e_X)_c) = K_2(0.6,0.4,0) = (0.3,0.4,0) = (e_Y)_{h(c)}^*.$$

(3) We define f and g as $f(a) = x, f(b) = y, f(c) = z$ and $g(x) = c, g(y) = a, g(z) = b$. Then $e_Y^0(x, f(a)) = e_X(a, g(x))$ for all $a \in X, x \in Y$. By Theorem 2.1, (e_X, f, g, e_Y^0) is a Galois connection, $(e_{LX}, F_1, G_1, e_{LY})$ is a Galois connection with antitone maps f and g, (e_{LX}, H_1, e_{LY}) is a dual residuated connection with antitone maps f and g, $(e_{LX}, M_1, L_1, e_{LY})$ is a dual Galois connection with antitone maps f and g and (e_{LX}, J_1, e_{LY}) is a dual residuated connection with antitone maps f and g.
is a residuated connection with antitone maps \(f \) and \(g \). It satisfies Theorem 2.1(8) and (10). For examples,

\[
F_1((e_X)^{-1}(z)) = F_1(1, 0.3, 0.5)(z) = 0.7 = e_Y^0(z, x) \\
F_2((e_X)^{-1}) = F_2(0.7, 1, 0.5) = (0.7, 0.6, 1) = (e_Y)^{f(b)} \\
F_2((e_X)^{-1}) = F_2(0.4, 0.3, 1) = (0.7, 0.6, 1) = (e_Y)^{f(c)}
\]

Example 2.3. Let \(X = \{a, b, c\} \) be a set and \(f : X \rightarrow X \) a function as \(f(a) = b, f(b) = a, f(c) = c \). Define a binary operation \(\odot \) (called Lukasiewicz conjunction) on \(L = [0, 1] \) as Example 2.2.

(1) Let \((X = \{a, b, c\}, e_1 = (e_X(a, b))) \) be a fuzzy poset as follows:

\[
e_1 = \begin{pmatrix}
1.0 & 0.6 & 0.5 \\
0.6 & 1.0 & 0.5 \\
0.7 & 0.7 & 1.0
\end{pmatrix}
\]

Since \(e_1(f(x), y) = e_1(x, f(y)) \), then \((e_1, f, f, e_1) \) are both residuated and dual residuated connections. It satisfies Theorem 2.1 (4) and (6). Since \(f \) is an isotone map, it satisfies Theorem 2.1 (7) and (9). For examples,

\[
e_1(f(a), c) = 0.5 = F_2((e_1)^{-1}(c))(1 \rightarrow 0.5) \land (0.6 \rightarrow 0.5) \land (0.7 \rightarrow 1) \\
e_L((e_1)c, F_1((e_1)^{-1})) = (0.7 \rightarrow 0.6) \land (0.7 \rightarrow 1) \land (1 \rightarrow 0.5) \\
e_L((e_1)^{-1}, G_1((e_1)c)) = (1 \rightarrow 0.5) \land (0.6 \rightarrow 0.5) \land (0.7 \rightarrow 0.8) \\
e_1((e_1)\gamma(a) = (0.7 \rightarrow 0.6) \land (0.7 \rightarrow 1) \land (1 \rightarrow 0.5) \\
e_1(a, f(c)) = (e_1)^{-1}(f(c))(a)
\]

\[
e_1^*(f(c), a) = 0.3 = K_2((e_1)^*)(a) = (0.6 \rightarrow 0.3) \land (1 \rightarrow 0.3) \land (0.7 \rightarrow 0) \\
e_L((e_1)^{-1}, K_2((e_1)^*)) = (1 \rightarrow 0.3) \land (0.6 \rightarrow 0.3) \land (0.7 \rightarrow 0) \\
e_L((H_1((e_1)^{-1}), (e_1)^* = (0.6 \rightarrow 0.3) \land (1 \rightarrow 0.3) \land (0.7 \rightarrow 0) \\
e_1((e_1)^{-1}^*)(c) = e_1(c, f(a)))
\]
(2) Let \((X = \{a, b, c\}, e_2 = (e_2(a, b))) \) be a fuzzy poset as follows:

\[
e_2 = \begin{pmatrix}
1.0 & 0.6 & 0.5 \\
0.6 & 1.0 & 0.7 \\
0.7 & 0.5 & 1.0
\end{pmatrix}
\]

Since \(e_1(y, f(x)) = e_1(x, f(y)) \), then \((e_1, f, f, e_1)\) are both both Galois and dual Galois connections. It satisfies Theorem 2.1 (3) and (5). Since \(f \) is an antitone map, it satisfies Theorem 2.1 (8) and (10). For examples,

\[
e_2(b, f(c)) = 0.7 = F_1((e_2)_c^{-1})(b) = (0.5 \to 1) \land (0.7 \to 0.6) \land (1 \to 0.7)
\]

\[
e_2(b, f(c)) = e_{LY}(e_Y y^{-1}, F_1(e_X x^{-1})) = (0.6 \to 0.5) \land (1 \to 0.7) \land (0.5 \to 1)
\]

\[
e_2(b, f(c)) = e_{LX}(e_X x^{-1}, G_1((e_Y y^{-1})) = (0.5 \to 1) \land (0.7 \to 0.6) \land (1 \to 0.7)
\]

\[
e_2(c, f(b)) = G_1((e_2)_b^{-1})(c) = e_2(c, f(b)).
\]

References