

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 2, 708-719

ISSN: 1927-5307

MAPS AND FUZZY CONNECTIONS

YONG CHAN KIM
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea

Abstract

In this paper, we investigate the relations between maps and residuated (dual residuated, residuated, Galois, dual Galois) connections in complete residuated lattices.

Keywords: complete residuated lattices; isotone (antitone) maps; residuated (dual residuated, residuated, Galois, dual Galois) connections

2000 AMS Subject Classification: 03E72; 03G10; 06A15; 06F07

1. Introduction

Hájek [7] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Bělohlávek [1-3] developed the notion of fuzzy contexts using Galois connections with $R \in L^{X \times Y}$ on a complete residuated lattice. Georgescue and Popescu [5,6] introduced the non-commutative fuzzy connection on generalized residuated lattice without commutative conditions. Garcia [4] investigated fuzzy connections categorically. It is an important mathematical tool for algebraic structure of fuzzy contexts [1-3,8-10].

In this paper, we investigate the relations between maps and residuated (dual residuated, residuated, Galois, dual Galois) connections in complete residuated lattices. We give their examples.
Definition 1.1. [1,7] An algebra $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a complete residuated lattice if it satisfies the following conditions:
(C1) $L=(L, \leq, \vee, \wedge, 1,0)$ is a complete lattice with the greatest element 1 and the least element 0 ;
(C2) $(L, \odot, 1)$ is a commutative monoid;
(C3) $x \odot y \leq z$ iff $x \leq y \rightarrow z$ for $x, y, z \in L$.
In this paper, we assume $\left(L, \wedge, \vee, \odot, \rightarrow,{ }^{*} 0,1\right)$ is a complete residuated lattice with the law of double negation;i.e. $x^{* *}=x$.
Lemma 1.2. [1,7] For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z,(x \odot y) \leq(x \odot z), x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(2) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$.
(3) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(4) $\bigwedge_{i \in \Gamma} y_{i}^{*}=\left(\bigvee_{i \in \Gamma} y_{i}\right)^{*}$ and $\bigvee_{i \in \Gamma} y_{i}^{*}=\left(\bigwedge_{i \in \Gamma} y_{i}\right)^{*}$.
(5) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$.
(6) $x \odot y=\left(x \rightarrow y^{*}\right)^{*}$ and $x \rightarrow y=y^{*} \rightarrow x^{*}$.
(7) $x \odot(x \rightarrow y) \leq y$.
(8) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$.
(9) $x \leq y \rightarrow z$ iff $y \leq x \rightarrow z$.

Definition 1.3.[1-3] Let X be a set. A function $e_{X}: X \times X \rightarrow L$ is called:
(E1) reflexive if $e_{X}(x, x)=1$ for all $x \in X$,
(E2) transitive if $e_{X}(x, y) \odot e_{X}(y, z) \leq e_{X}(x, z)$, for all $x, y, z \in X$,
(E3) if $e_{X}(x, y)=e_{X}(y, x)=1$, then $x=y$.
If e satisfies (E1) and (E2), $\left(X, e_{X}\right)$ is a fuzzy preorder set. If e satisfies (E1), (E2) and (E3), $\left(X, e_{X}\right)$ is a fuzzy partially order set (simply, fuzzy poset).

Remark 1.4.(1) We define a function $e_{L^{X}}: L^{X} \times L^{X} \rightarrow L$ as $e_{L^{X}}(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow$ $B(x))$. Then $\left(L^{X}, e_{L^{X}}\right)$ is a fuzzy poset from Lemma 1.2 (8).
(2) We denote $e_{X}^{-1}(x, y)=e_{X}(y, x),\left(e_{X}\right)_{x}(y)=e_{X}(x, y)$ and $\left(e_{X}\right)_{y}^{-1}=e_{X}(x, y)$. Moreover, 1_{x} is a characteristic function such that $1_{x}(x)=0,1_{x}(y)$, for otherwise.

Definition 1.5.[1-3] Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be a fuzzy poset and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ maps.
(1) $\left(e_{X}, f, g, e_{Y}\right)$ is called a Galois connection if for all $x \in X, y \in Y$,

$$
e_{Y}(y, f(x))=e_{X}(x, g(y)) .
$$

(2) $\left(e_{X}, f, g, e_{Y}\right)$ is called a dual Galois connection if for all $x \in X, y \in Y$,

$$
e_{Y}(f(x), y)=e_{X}(g(y), x)
$$

(3) $\left(e_{X}, f, g, e_{Y}\right)$ is called a residuated connection if for all $x \in X, y \in Y$,

$$
e_{Y}(f(x), y)=e_{X}(x, g(y))
$$

(4) $\left(e_{X}, f, g, e_{Y}\right)$ is called a dual residuated connection if for all $x \in X, y \in Y$,

$$
e_{Y}(y, f(x))=e_{X}(g(y), x)
$$

(5) A map $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ is called an isotone map if for all $x, z \in X, e_{X}(x, z) \leq$ $e_{Y}(f(x), f(z))$.
(6) A map $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ is called an antitone map if for all $x, z \in X, e_{X}(x, z) \leq$ $e_{Y}(f(z), f(x))$.

2. Maps and fuzzy connections

Theorem 2.1. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be a fuzzy poset and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ maps. For each $A \in L^{X}$ and $B \in L^{Y}$, we define operations as follows:

$$
\begin{array}{ll}
F_{1}(A)(y)=\bigwedge_{x \in X}\left(A(x) \rightarrow e_{Y}(y, f(x))\right), & F_{2}(A)(y)=\bigwedge_{x \in X}\left(A(x) \rightarrow e_{Y}(f(x), y)\right) \\
G_{1}(B)(x)=\bigwedge_{y \in Y}\left(B(y) \rightarrow e_{X}(x, g(y))\right), & G_{2}(B)(x)=\bigwedge_{y \in Y}\left(B(y) \rightarrow e_{X}(g(y), x)\right) \\
H_{1}(B)(x)=\bigvee_{y \in Y}\left(e_{X}(x, g(y)) \odot B(y)\right), & H_{2}(B)(x)=\bigvee_{y \in Y}\left(e_{X}(g(y), x) \odot B(y)\right),
\end{array}
$$

$$
\begin{aligned}
I_{1}(A)(y) & =\bigvee_{x \in X}\left(A(x) \odot e_{Y}(y, f(x))\right), \quad I_{2}(A)(y)=\bigvee_{x \in X}\left(A(x) \odot e_{Y}(f(x), y)\right), \\
J_{1}(B)(x) & =\bigwedge_{y \in Y}\left(e_{X}(x, g(y)) \rightarrow B(y)\right), \quad J_{2}(B)(x)=\bigwedge_{y \in Y}\left(e_{X}(g(y), x) \rightarrow B(y)\right), \\
K_{1}(A)(y) & =\bigwedge_{x \in X}\left(e_{Y}(y, f(x)) \rightarrow A(x)\right), \quad K_{2}(A)(y)=\bigwedge_{x \in X}\left(e_{Y}(f(x), y) \rightarrow A(x)\right) . \\
L_{1}(B)(x) & =\bigvee_{y \in Y}\left(B^{*}(y) \odot e_{X}(x, g(y))\right), \quad L_{2}(B)(x)=\bigvee_{y \in Y}\left(B^{*}(y) \odot e_{X}(g(y), x)\right), \\
M_{1}(A)(y) & =\bigvee_{x \in X}\left(A^{*}(x) \odot e_{Y}(y, f(x))\right), M_{2}(A)(y)=\bigvee_{x \in X}\left(A^{*}(x) \odot e_{Y}(f(x), y)\right) .
\end{aligned}
$$

Then the following statements hold:
(1) $F_{1}\left(1_{x}\right)=\left(e_{Y}\right)_{f(x)}^{-1}, \quad F_{2}\left(1_{x}\right)=\left(e_{Y}\right)_{f(x)}, K_{1}\left(1_{x}^{*}\right)=\left(\left(e_{Y}\right)_{f(x)}^{-1}\right)^{*}, K_{2}\left(1_{x}^{*}\right)=\left(e_{Y}\right)_{f(x)}^{*}$, $M_{1}\left(1_{x}^{*}\right)=\left(e_{Y}\right)_{f(x)}^{-1}, M_{2}\left(1_{x}^{*}\right)=\left(e_{Y}\right)_{f(x)}, I_{1}\left(1_{x}\right)=\left(e_{Y}\right)_{f(x)}^{-1}$ and $I_{2}\left(1_{x}\right)=\left(e_{Y}\right)_{f(x)}$.
(2) $G_{1}\left(1_{y}\right)=\left(e_{X}\right)_{g(y)}^{-1}, G_{2}\left(1_{y}\right)=\left(e_{X}\right)_{g(y)}, H_{1}\left(1_{w}\right)=\left(e_{X}\right)_{g(w)}^{-1}, H_{2}\left(1_{w}\right)=\left(e_{X}\right)_{g(w)}$, $J_{1}\left(1_{y}^{*}\right)=\left(\left(e_{X}\right)_{g(y)}^{-1}\right)^{*}, J_{2}\left(1_{y}^{*}\right)=\left(e_{X}\right)_{g(y)}^{*}, L_{1}\left(1_{y}^{*}\right)=\left(e_{X}\right)_{g(y)}^{-1}$ and $L_{2}\left(1_{y}^{*}\right)=\left(e_{X}\right)_{g(y)}$.
(3) $\left(e_{X}, f, g, e_{Y}\right)$ is a Galois connection iff $\left(e_{L^{X}}, F_{1}, G_{1}, e_{L^{Y}}\right)$ is a Galois connection with antitone maps f and g iff $\left(e_{L^{X}}, K_{1}, H_{1}, e_{L^{Y}}\right)$ is a dual residuated connection with antitone maps f and g iff $\left(e_{L^{X}}, M_{1}, L_{1}, e_{L^{Y}}\right)$ is a dual Galois connection with antitone maps f and g iff $\left(e_{L^{X}}, I_{1}, J_{1}, e_{L^{Y}}\right)$ is a residuated connection with antitone maps f and g.
(4) $\left(e_{X}, f, g, e_{Y}\right)$ is a residuated connection iff $\left(e_{L^{X}}, F_{2}, G_{1}, e_{L^{Y}}\right)$ is a Galois connection with isotone maps f and g iff $\left(e_{L^{X}}, K_{2}, H_{1}, e_{L^{Y}}\right)$ is a dual residuated connection with isotone maps f and g iff $\left(e_{L^{X}}, M_{2}, L_{1}, e_{L^{Y}}\right)$ is a dual Galois connection with isotone maps f and g iff $\left(e_{L^{X}}, I_{2}, J_{1}, e_{L^{Y}}\right)$ is a residuated connection with isotone maps f and g.
(5) $\left(e_{X}, f, g, e_{Y}\right)$ is a dual Galois connection iff $\left(e_{L^{X}}, F_{2}, G_{2}, e_{L^{Y}}\right)$ is a Galois connection with antitone maps f and g iff $\left(e_{L^{X}}, K_{2}, H_{2}, e_{L^{Y}}\right)$ is a dual residuated connection with antitone maps f and g iff $\left(e_{L^{X}}, M_{2}, L_{2}, e_{L^{Y}}\right)$ is a dual Galois connection with antitone maps f and g iff $\left(e_{L^{X}}, I_{2}, J_{2}, e_{L^{Y}}\right)$ is a residuated connection with antitone maps f and g.
(6) $\left(e_{X}, f, g, e_{Y}\right)$ is a dual residuated connection iff $\left(e_{L^{X}}, F_{1}, G_{2}, e_{L^{Y}}\right)$ is a Galois connection with isotone maps f and g iff $\left(e_{L^{X}}, K_{1}, H_{2}, e_{L^{Y}}\right)$ is a dual residuated connection with isotone maps f and g iff $\left(e_{L^{X}}, M_{1}, L_{2}, e_{L^{Y}}\right)$ is a dual Galois connection with isotone maps f and g iff $\left(e_{L^{X}}, I_{1}, J_{2}, e_{L^{Y}}\right)$ is a residuated connection with isotone maps f and g.
(7) If $e_{X}(x, y) \leq e_{Y}(f(x), f(y))$, then

$$
\begin{array}{cl}
F_{1}\left(\left(e_{X}\right)_{z}\right)=\left(e_{Y}\right)_{f(z)}^{-1}, & F_{2}\left(\left(e_{X}\right)_{z}^{-1}\right)=\left(e_{Y}\right)_{f(z)}, \\
K_{1}\left(\left(\left(e_{X}\right)_{z}^{-1}\right)^{*}\right)=\left(\left(e_{Y}\right)_{f(z)}^{-1}\right)^{*}, & K_{2}\left(\left(e_{X}\right)_{z}^{*}\right)=\left(e_{Y}\right)_{f(z)}^{*} \\
I_{1}\left(\left(e_{X}^{-1}\right)_{z}\right)=\left(e_{Y}\right)_{f(z)}^{-1}, & I_{2}\left(\left(e_{X}\right)_{z}\right)=\left(e_{Y}\right)_{f(z)}, \\
M_{1}\left(\left(e_{X}^{-1}\right)_{z}^{*}\right)=\left(e_{Y}\right)_{f(z)}^{-1}, & M_{2}\left(\left(e_{X}\right)_{z}^{*}\right)=\left(e_{Y}\right)_{f(z)} .
\end{array}
$$

(8) If $e_{X}(x, y) \leq e_{Y}(f(y), f(x))$, then

$$
\begin{array}{cll}
F_{1}\left(\left(e_{X}\right)_{z}^{-1}\right)=\left(e_{Y}\right)_{f(z)}^{-1}, & F_{2}\left(\left(e_{X}\right)_{z}\right)=\left(e_{Y}\right)_{f(z)}, \\
K_{1}\left(\left(\left(e_{X}\right)_{z}\right)^{*}\right)=\left(\left(e_{Y}\right)_{f(z)}^{-1}\right)^{*}, & K_{2}\left(\left(e_{X}^{-1}\right)_{z}^{*}\right)=\left(e_{Y}\right)_{f(z)}^{*}, \\
I_{1}\left(\left(e_{X}\right)_{z}\right)=\left(e_{Y}\right)_{f(z)}^{-1}, & I_{2}\left(\left(e_{X}\right)_{z}^{-1}\right)=\left(e_{Y}\right)_{f(z)}, \\
M_{1}\left(\left(e_{X}\right)_{z}^{*}\right)=\left(e_{Y}\right)_{f(z)}^{-1}, & M_{2}\left(\left(e_{X}^{-1}\right)_{z}^{*}\right)=\left(e_{Y}\right)_{f(z)} .
\end{array}
$$

(9) If $e_{Y}(x, y) \leq e_{X}(g(x), g(y))$, then

$$
\begin{array}{cl}
G_{1}\left(\left(e_{Y}\right)_{y}\right)=\left(e_{X}\right)_{g(y)}^{-1}, & G_{2}\left(\left(e_{Y}\right)_{y}^{-1}\right)=\left(e_{X}\right)_{g(y)}, \\
H_{1}\left(\left(e_{Y}\right)_{y}^{-1}\right)=\left(e_{X}\right)_{g(y)}^{-1} & H_{2}\left(\left(e_{Y}\right)_{y}\right)=\left(e_{X}\right)_{g(y)}, \\
J_{1}\left(\left(\left(e_{Y}\right)_{y}^{-1}\right)^{*}\right)=\left(\left(e_{X}\right)_{g(y)}^{-1}\right)^{*}, & J_{2}\left(\left(e_{Y}\right)_{y}^{*}\right)=\left(e_{X}\right)_{g(y)}^{*}, \\
L_{1}\left(\left(e_{Y}^{-1}\right)_{y}^{*}\right)=\left(e_{X}\right)_{g(y)}^{-1}, & L_{2}\left(\left(e_{Y}\right)_{y}^{*}\right)=\left(e_{X}\right)_{g(y)} .
\end{array}
$$

(10) If $e_{Y}(x, y) \leq e_{X}(g(y), g(x))$, then

$$
\begin{aligned}
G_{1}\left(\left(e_{Y}\right)_{y}^{-1}\right) & =\left(e_{X}\right)_{g(y)}^{-1}, & G_{2}\left(\left(e_{Y}\right)_{y}\right)=\left(e_{X}\right)_{g(y)}, \\
H_{1}\left(\left(e_{Y}\right)_{y}\right) & =\left(e_{X}\right)_{g(y)}^{-1}, & H_{2}\left(\left(e_{Y}\right)_{y}^{-1}\right)=\left(e_{X}\right)_{g(y)} \\
J_{1}\left(\left(\left(e_{Y}\right)_{y}\right)^{*}\right) & =\left(\left(e_{X}\right)_{g(y)}^{-1}\right)^{*}, & J_{2}\left(\left(e_{Y}^{-1}\right)_{y}^{*}\right)=\left(e_{X}\right)_{g(y)}^{*}, \\
L_{1}\left(\left(e_{Y}\right)_{y}^{*}\right) & =\left(e_{X}\right)_{g(y)}^{-1}, & L_{2}\left(\left(e_{Y}^{-1}\right)_{y}^{*}\right)=\left(e_{X}\right)_{g(y)} .
\end{aligned}
$$

Proof. (1) and (2) follow from their definitions.
(3) Let $e_{X}(x, g(y))=e_{Y}(y, f(x))$ be given. Since $e_{X}(g(y), g(y))=e_{Y}(y, f(g(y))=1$, then g is an antitone map from:

$$
\begin{aligned}
e_{Y}\left(y_{1}, y_{2}\right) & =e_{Y}\left(y_{1}, y_{2}\right) \odot e_{Y}\left(y_{2}, f\left(g\left(y_{2}\right)\right)\right) \\
& \leq e_{Y}\left(y_{1}, f\left(g\left(y_{2}\right)\right)\right)=e_{X}\left(g\left(y_{2}\right), g\left(y_{1}\right)\right)
\end{aligned}
$$

Similarly, f is an antitone map.
First, we will show that $e_{X}(x, g(y))=e_{Y}(y, f(x))$ iff $e_{L^{x}}\left(A, G_{1}(B)\right)=e_{L^{Y}}\left(B, F_{1}(A)\right)$.

Let $e_{X}(x, g(y))=e_{Y}(y, f(x))$ be given. By Lemma $1.2(2,5)$, we have

$$
\begin{aligned}
e_{L^{Y}}\left(B, F_{1}(A)\right) & =\bigwedge_{y \in Y}\left(B(y) \rightarrow F_{1}(A)(y)\right) \\
& =\bigwedge_{y \in Y}\left(B(y) \rightarrow \bigwedge_{x \in X}\left(A(x) \rightarrow e_{Y}(y, f(x))\right)\right) \\
& =\bigwedge_{y \in Y} \bigwedge_{x \in X}\left(A(x) \rightarrow\left(B(y) \rightarrow e_{X}(x, g(y))\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow G_{1}(B)(x)\right) \\
& =e_{L^{X}}\left(A, G_{1}(B)\right) .
\end{aligned}
$$

Conversely, put $A=1_{x}$ and $B=1_{y}$. By (1) and (2), we have

$$
\begin{aligned}
e_{Y}(y, f(x)) & =F_{1}\left(1_{x}\right)(y)=e_{L^{Y}}\left(1_{y}, F_{1}\left(1_{x}\right)\right) \\
& =e_{L^{x}}\left(1_{x}, G_{1}\left(1_{y}\right)\right)=G_{1}\left(1_{y}\right)(x)=e_{X}(x, g(y)) .
\end{aligned}
$$

Second, we will show that $e_{X}(x, g(y))=e_{Y}(y, f(x))$ iff $e_{L^{X}}\left(H_{1}(B), A\right)=e_{L^{Y}}\left(B, K_{1}(A)\right)$. Let $e_{X}(x, g(y))=e_{Y}(y, f(x))$ be given. By Lemma $1.2(3,5)$, we have

$$
\begin{aligned}
e_{L^{X}}\left(H_{1}(B), A\right) & =\bigwedge_{x \in X}\left(H_{1}(B)(x) \rightarrow A(x)\right) \\
& =\bigwedge_{x \in X}\left(\bigvee_{y \in Y}\left(e_{X}(x, g(y)) \odot B(y)\right) \rightarrow A(x)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left(B(y) \rightarrow\left(e_{X}(x, g(y)) \rightarrow A(x)\right)\right) \\
& =\bigwedge_{y \in Y}\left(B(y) \rightarrow \bigwedge_{x \in X}\left(e_{Y}(y, f(x)) \rightarrow A(x)\right)\right) \\
& =\bigwedge_{y \in Y}\left(B(y) \rightarrow K_{1}(A)(y)\right) \\
& =e_{L^{Y}}\left(B, K_{1}(A)\right)
\end{aligned}
$$

Conversely, put $A=1_{x}^{*}$ and $B=1_{y}$. By (1) and (2), we have

$$
\begin{aligned}
e_{X}^{*}(x, g(y)) & =H_{1}\left(1_{y}\right)^{*}(x)=e_{L^{x}}\left(H_{1}\left(1_{y}\right), 1_{x}^{*}\right) \\
& =e_{L^{Y}}\left(1_{y}, K_{1}\left(1_{x}^{*}\right)\right)=K_{1}\left(1_{x}^{*}\right)(y)=e_{Y}^{*}(y, f(x))
\end{aligned}
$$

Third, we will show that $e_{X}(x, g(y))=e_{Y}(y, f(x))$ iff $e_{L^{X}}\left(L_{1}(B), A\right)=e_{L^{Y}}\left(M_{1}(A), B\right)$.

Let $e_{X}(x, g(y))=e_{Y}(y, f(x))$ be given. By Lemma $1.2(3,5,6)$, we have

$$
\begin{aligned}
e_{L^{Y}}\left(M_{1}(A), B\right) & =\bigwedge_{y \in Y}\left(M_{1}(A)(y) \rightarrow B(y)\right) \\
& =\bigwedge_{y \in Y}\left(\left(\bigvee_{z \in X}\left(A^{*}(z) \odot e_{Y}(y, f(z))\right) \rightarrow B(y)\right)\right. \\
& =\bigwedge_{y \in Y} \bigwedge_{z \in X}\left(A^{*}(z) \rightarrow\left(e_{Y}(y, f(z)) \rightarrow B(y)\right)\right) \\
& =\bigwedge_{z \in X}\left(A^{*}(z) \rightarrow \bigwedge_{y \in Y}\left(e_{Y}(y, f(z)) \rightarrow B(y)\right)\right. \\
& =\bigwedge_{z \in X}\left(A^{*}(z) \rightarrow\left(\bigvee_{y \in Y}\left(e_{Y}(y, f(z)) \odot B^{*}(y)\right)\right)^{*}\right) \\
& \left.=\bigwedge_{z \in X}\left(\bigvee_{y \in Y}\left(e_{Y}(y, f(z)) \odot B^{*}(y)\right)\right) \rightarrow A(z)\right) \\
& =e_{L^{X}}\left(L_{1}(B), A\right) .
\end{aligned}
$$

Conversely, put $A=1_{x}^{*}$ and $B=1_{y}^{*}$. Since $M_{1}\left(1_{x}^{*}\right)(y)=e_{Y}(y, f(x))$ and $L_{1}\left(1_{y}^{*}\right)(x)=$ $e_{X}(x, g(y))$ from (1) and (2). Hence we have

$$
\begin{aligned}
& e_{Y}^{*}(y, f(x))=M_{1}\left(1_{x}^{*}\right)^{*}(y)=e_{L^{Y}}\left(M_{1}\left(1_{x}^{*}\right), 1_{y}^{*}\right) \\
& =e_{L^{X}}\left(L_{1}\left(1_{y}^{*}\right), 1_{x}^{*}\right)=L_{1}\left(1_{y}^{*}\right)^{*}(x)=e_{X}^{*}(x, g(y)) .
\end{aligned}
$$

Finally, we will show that $e_{X}(x, g(y))=e_{Y}(y, f(x))$ iff $e_{L^{X}}\left(A, J_{1}(B)\right)=e_{L^{Y}}\left(I_{1}(A), B\right)$. Let $e_{X}(x, g(y))=e_{Y}(y, f(x))$. Then

$$
\begin{aligned}
e_{L^{Y}}\left(I_{1}(A), B\right) & =\bigwedge_{y \in Y}\left(I_{1}(A)(y) \rightarrow B(y)\right) \\
& =\bigwedge_{y \in Y}\left(\left(\bigvee_{x \in X}\left(A(x) \odot e_{Y}(y, f(x))\right) \rightarrow B(y)\right)\right. \\
& =\bigwedge_{y \in Y} \bigwedge_{x \in X}\left(A(x) \rightarrow\left(e_{Y}(y, f(x)) \rightarrow B(y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow \bigwedge_{y \in Y}\left(e_{Y}(y, f(x)) \rightarrow B(y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow J_{1}(B)(x)\right) \\
& =e_{L^{X}}\left(A, J_{1}(B)\right) .
\end{aligned}
$$

Conversely, put $A=1_{x}$ and $B=1_{y}^{*}$. Since $I_{1}\left(\left(e_{X}\right)_{x}\right)(y)=e_{Y}(y, f(x))$ and $J_{1}\left(\left(e_{Y}\right)_{y}^{*}\right)(x)=$ $e_{X}(x, g(y))^{*}$ from (1) and (2),

$$
\begin{aligned}
& e_{Y}^{*}(y, f(x))=I_{1}\left(1_{x}\right)^{*}(y)=e_{L^{Y}}\left(I_{1}\left(1_{x}\right), 1_{y}^{*}\right) \\
& =e_{L^{X}}\left(1_{x}, J_{1}\left(1_{y}^{*}\right)\right)=J_{1}\left(1_{y}^{*}\right)(x)=e_{Y}^{*}(x, g(y)) .
\end{aligned}
$$

(4) Let $e_{X}(x, g(y))=e_{Y}(f(x), y)$ be given. Since $e_{X}(g(y), g(y))=e_{Y}(f(g(y), y)=1$, then g is an isotone map from:

$$
\begin{aligned}
e_{Y}\left(y_{1}, y_{2}\right) & =e_{Y}\left(y_{1}, y_{2}\right) \odot e_{Y}\left(f\left(g\left(y_{1}\right)\right), y_{1}\right) \\
& \leq e_{Y}\left(f\left(g\left(y_{1}\right)\right), y_{2}\right)=e_{X}\left(g\left(y_{1}\right), g\left(y_{2}\right)\right)
\end{aligned}
$$

Similarly, f is an isotone map.
First, we will show that $e_{X}(x, g(y))=e_{Y}(f(x), y)$ iff $e_{L^{X}}\left(A, G_{1}(B)\right)=e_{L^{Y}}\left(B, F_{2}(A)\right)$.
Let $e_{X}(x, g(y))=e_{Y}(f(x), y)$ be given. By Lemma 1.2(2,5), we have

$$
\begin{aligned}
e_{L^{Y}}\left(B, F_{2}(A)\right) & =\bigwedge_{y \in Y}\left(B(y) \rightarrow F_{2}(A)(y)\right) \\
& =\bigwedge_{y \in Y}\left(B(y) \rightarrow \bigwedge_{x \in X}\left(A(x) \rightarrow e_{Y}(f(x), y)\right)\right) \\
& =\bigwedge_{y \in Y} \bigwedge_{x \in X}\left(A(x) \rightarrow\left(B(y) \rightarrow e_{X}(x, g(y))\right)\right. \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow \bigwedge_{y \in Y}\left(B(y) \rightarrow e_{X}(x, g(y))\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow G_{1}(B)(x)\right) \\
& =e_{L^{X}}\left(A, G_{1}(B)\right) .
\end{aligned}
$$

Conversely, put $A=1_{x}$ and $B=1_{y}$. By (1) and (2), $F_{2}\left(1_{x}\right)=\left(e_{Y}\right)_{f(x)}$ and $G_{1}\left(1_{y}\right)=$ $\left(e_{X}\right)_{g(y)}^{-1}$.

$$
\begin{aligned}
& e_{Y}(f(x), y)=F_{2}\left(1_{x}\right)(y)=e_{L^{Y}}\left(1_{y}, F_{2}\left(1_{x}\right)\right) \\
& =e_{L^{x}}\left(1_{x}, G_{1}\left(1_{y}\right)\right)=G_{1}\left(1_{y}\right)(x)=e_{X}(x, g(y)) .
\end{aligned}
$$

Second, we will show that $e_{X}(x, g(y))=e_{Y}(y, f(x))$ iff $e_{L^{X}}\left(H_{1}(B), A\right)=e_{L^{Y}}\left(B, K_{2}(A)\right)$.
If $e_{X}(x, g(y))=e_{Y}(f(x), y)$, then

$$
\begin{aligned}
e_{L^{X}}\left(H_{1}(B), A\right) & =\bigwedge_{x \in X}\left(H_{1}(B)(x) \rightarrow A(x)\right) \\
& =\bigwedge_{x \in X}\left(\left(\bigvee_{y \in Y}\left(e_{X}(x, g(y)) \odot B(y)\right)\right) \rightarrow A(x)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left(B(y) \rightarrow\left(e_{X}(x, g(y)) \rightarrow A(x)\right)\right) \\
& =\bigwedge_{y \in Y}\left(B(y) \rightarrow \bigwedge_{x \in X}\left(e_{Y}(f(x), y) \rightarrow A(x)\right)\right) \\
& =\bigwedge_{y \in Y}\left(B(y) \rightarrow K_{2}(A)(y)\right) \\
& =e_{L^{Y}}\left(B, K_{2}(A)\right) .
\end{aligned}
$$

Put $A=1_{x}^{*}$ and $B=1_{y}$. By (1) and (2), $K_{2}\left(1_{x}^{*}\right)=\left(e_{Y}\right)_{f(x)}^{*}$ and $H_{1}\left(1_{w}\right)=\left(e_{X}\right)_{g(w)}^{-1}$. Hence

$$
\begin{aligned}
& e_{X}^{*}(x, g(y))=K_{2}\left(1_{x}^{*}\right)(y)=e_{L^{X}}\left(H_{1}\left(1_{y}, 1_{x}^{*}\right)\right. \\
& =e_{L^{Y}}\left(1_{y}, K_{2}\left(1_{x}^{*}\right)=H_{1}\left(1_{y}\right)^{*}(x)=e_{X}^{*}(x, g(y)) .\right.
\end{aligned}
$$

Other cases, (5) and (6) are similarly proved in (3).
(7) We have $F_{2}\left(\left(e_{X}\right)_{z}^{-1}\right)=\left(e_{Y}\right)_{f(z)}$ from:

$$
\begin{aligned}
F_{2}\left(\left(e_{X}\right)_{z}^{-1}\right)(y) & =\bigwedge_{x \in X}\left(\left(e_{X}\right)_{z}^{-1}(x) \rightarrow e_{Y}(f(x), y)\right) \\
& \leq\left(e_{X}\right)_{z}^{-1}(z) \rightarrow e_{Y}(f(z), y)=e_{Y}(f(z), y)
\end{aligned}
$$

Since f is an isotone map,

$$
\begin{aligned}
& e_{Y}(f(z), y) \odot e_{X}(x, z) \leq e_{Y}\left((f(z), y) \odot e_{Y}(f(x), f(z)) \leq e_{Y}(f(x), y)\right. \\
& e_{Y}(f(z), y) \leq \bigwedge_{z \in X}\left(\left(e_{X}\right)_{z}^{-1}(x) \rightarrow e_{Y}(f(x), y)\right)=F_{2}\left(\left(e_{X}\right)_{z}^{-1}\right)(y) \\
& K_{2}\left(\left(e_{X}\right)_{x}^{*}\right)(y)=\bigwedge_{z \in X}\left(e_{Y}(f(z), y) \rightarrow\left(e_{X}\right)_{x}^{*}(z)\right) \\
& \leq\left(e_{Y}(f(x), y) \rightarrow \perp\right)=e_{Y}(f(x), y)^{*}
\end{aligned}
$$

Thus, $K_{2}\left(\left(e_{X}\right)_{x}^{*}\right) \leq\left(e_{Y}\right)_{f(x)}^{*}$. Furthermore, $K_{2}\left(\left(e_{X}\right)_{x}^{*}\right) \geq\left(e_{Y}\right)_{f(x)}^{*}$ from:

$$
\begin{aligned}
& e_{Y}(f(z), y) \odot e_{X}(x, z) \leq e_{Y}(f(z), y) \odot e_{Y}(f(x), f(z)) \leq e_{Y}(f(x), y) \\
& \text { iff }\left(e_{Y}(f(x), y)\right)^{*} \leq e_{Y}(f(z), y) \rightarrow\left(e_{X}(x, z)\right)^{*}
\end{aligned}
$$

(9) We have $G_{1}\left(\left(e_{Y}\right)_{y}\right) \leq\left(e_{X}\right)_{g(y)}^{-1}$ from:

$$
G_{1}\left(\left(e_{Y}\right)_{y}\right)(x)=\bigwedge_{w \in Y}\left(\left(e_{Y}\right)_{y}(w) \rightarrow e_{X}(x, g(w))\right) \leq e_{X}(x, g(y))
$$

Moreover, $G_{1}\left(\left(e_{Y}\right)_{y}\right) \geq\left(e_{X}\right)_{g(y)}^{-1}$ from:

$$
\begin{gathered}
e_{X}(x, g(y)) \odot e_{Y}(y, w) \leq e_{X}(x, g(y)) \odot e_{X}(g(y), g(w)) \leq e_{X}(x, g(w)) \\
e_{X}(x, g(y)) \leq e_{Y}(y, w) \rightarrow e_{X}(x, g(w))
\end{gathered}
$$

We have $H_{1}\left(\left(e_{Y}\right)_{w}^{-1}\right)=\left(e_{X}\right)_{g(w)}^{-1}$ from:

$$
\begin{gathered}
H_{1}\left(\left(e_{Y}\right)_{w}^{-1}\right)(x)=\bigwedge_{y \in Y}\left(\left(e_{Y}\right)_{w}^{-1}(y) \odot e_{X}(x, g(y))\right) \geq\left(e_{X}\right)_{g(w)}(x) . \\
e_{X}(x, g(y)) \odot e_{Y}(y, w) \leq e_{X}(x, g(y)) \odot e_{X}(g(y), g(w)) \leq e_{X}(x, g(w) .
\end{gathered}
$$

Since $J_{1}\left(\left(\left(e_{Y}\right)_{y}^{-1}\right)^{*}\right)(x)=\bigwedge_{w \in Y}\left(e_{X}(x, g(w)) \rightarrow\left(\left(e_{Y}\right)_{y}^{-1}\right)^{*}(w) \leq\left(e_{X}(x, g(y))\right)^{*}\right.$, then $J_{1}\left(\left(\left(e_{Y}\right)_{y}^{-1}\right)^{*}\right) \leq\left(\left(e_{X}\right)_{g(y)}^{-1}\right)^{*}$.

Since $e_{X}(x, g(w)) \odot e_{Y}(w, y) \leq e_{X}(x, g(w)) \odot e_{X}(g(w), g(y)) \leq e_{X}(x, g(y))$, then

$$
e_{X}(x, g(w)) \rightarrow e_{Y}(w, y)^{*} \geq\left(e_{X}(x, g(y))\right)^{*}
$$

Thus, $J_{1}\left(\left(\left(e_{Y}\right)_{y}^{-1}\right)^{*}\right) \geq\left(\left(e_{X}\right)_{g(y)}^{-1}\right)^{*}$. Hence $J_{1}\left(\left(\left(e_{Y}\right)_{y}^{-1}\right)^{*}\right)=\left(\left(e_{X}\right)_{g(y)}^{-1}\right)^{*}$.

Other cases in (7) and (9), (8) and (10) are similarly proved.
Example 2.2.Define a binary operation $\odot($ called Lukasiewicz conjection $)$ on $L=[0,1]$ by

$$
x \odot y=\max \{0, x+y-1\}, x \rightarrow y=\min \{1-x+y, 1\} .
$$

Let $\left(X=\{a, b, c\}, e_{X}\right)$ and $\left(Y=\{x, y, z\}, e_{Y}\right)$ be a fuzzy poset with $e_{X}=\left(e_{X}(a, b)\right)$, $e_{Y}=\left(e_{Y}(x, y)\right)$ and $e_{Y}^{0}=\left(e_{Y}^{0}(x, y)\right)$ as follows:

$$
\begin{gathered}
e_{X}=\left(\begin{array}{lll}
1.0 & 0.7 & 0.4 \\
0.3 & 1.0 & 0.6 \\
0.5 & 0.5 & 1.0
\end{array}\right) \quad e_{Y}=\left(\begin{array}{lll}
1.0 & 0.8 & 0.6 \\
0.6 & 1.0 & 0.5 \\
0.7 & 0.6 & 1.0
\end{array}\right) \\
e_{Y}^{0}=\left(\begin{array}{lll}
0.4 & 0.6 & 1.0 \\
1.0 & 0.3 & 0.5 \\
0.7 & 1.0 & 0.5
\end{array}\right)
\end{gathered}
$$

(1) We define $f: X \rightarrow Y$ with $f(a)=x, f(b)=f(c)=y$. Then f is an isotone map. It satisfies Theorem 2.1(7). For examples,

$$
\begin{aligned}
& F_{2}\left(\left(e_{X}\right)_{a}^{-1}\right)=F_{2}(1,0.3,0.5)=(1,0.8,0.6)=\left(e_{Y}\right)_{f(a)}=\left(e_{Y}\right)_{x}, \\
& F_{2}\left(\left(e_{X}\right)_{b}^{-1}\right)=F_{2}(0.7,1,0.5)=(0.6,1,0.5)=\left(e_{Y}\right)_{f(b)}=\left(e_{Y}\right)_{y}, \\
& F_{2}\left(\left(e_{X}\right)_{c}^{-1}\right)=F_{2}(0.4,0.3,1)=(0.6,1,0.5)=\left(e_{Y}\right)_{f(c)}=\left(e_{Y}\right)_{y} .
\end{aligned}
$$

(2) We define $h: X \rightarrow Y$ with $h(a)=x, h(b)=h(c)=z$. Then f is an antitone map. It satisfies Theorem 2.1(8). For examples,

$$
\begin{aligned}
& K_{2}\left(\left(e_{X}^{-1}\right)_{a}^{*}\right)=K_{2}(0,0.7,0.5)=(0,0.2,0.4)=\left(e_{Y}\right)_{h(a)}^{*}, \\
& K_{2}\left(\left(e_{X}^{-1}\right)_{b}^{*}\right)=K_{2}(0.3,0,0.5)=(0.3,0.4,0)=\left(e_{Y}\right)_{h(b)}^{*}, \\
& K_{2}\left(\left(e_{X}^{-1}\right)_{c}^{*}\right)=K_{2}(0.6,0.4,0)=(0.3,0.4,0)=\left(e_{Y}\right)_{h(c)}^{*} .
\end{aligned}
$$

(3) We define f and g as $f(a)=x, f(b)=y, f(c)=z$ and $g(x)=c, g(y)=a, f(z)=b$. Then $e_{Y}^{0}(x, f(a))=e_{X}(a, g(x))$ for all $a \in X, x \in Y$. By Theorem 2.1, $\left(e_{X}, f, g, e_{Y}^{0}\right)$ is a Galois connection, $\left(e_{L^{X}}, F_{1}, G_{1}, e_{L^{Y}}\right)$ is a Galois connection with antitone maps f and $g,\left(e_{L^{X}}, K_{1}, H_{1}, e_{L^{Y}}\right)$ is a dual residuated connection with antitone maps f and g, $\left(e_{L^{X}}, M_{1}, L_{1}, e_{L^{Y}}\right)$ is a dual Galois connection with antitone maps f and g and $\left(e_{L^{X}}, I_{1}, J_{1}, e_{L^{Y}}\right)$
is a residuated connection with antitone maps f and g. It satisfies Theorem 2.1(8)and (10). For examples,

$$
\begin{aligned}
F_{1}\left(\left(e_{X}\right)_{a}^{-1}\right)(z) & =F_{1}(1,0.3,0.5)(z)=0.7=e_{Y}^{0}(z, x) \\
F_{2}\left(\left(e_{X}\right)_{b}^{-1}\right) & =F_{2}(0.7,1,0.5)=(0.7,0.6,1)=\left(e_{Y}\right)_{f(b)} \\
F_{2}\left(\left(e_{X}\right)_{c}^{-1}\right) & =F_{2}(0.4,0.3,1)=(0.7,0.6,1)=\left(e_{Y}\right)_{f(c)}
\end{aligned}
$$

Example 2.3.Let $X=\{a, b, c\}$ be a set and $f: X \rightarrow X$ a function as $f(a)=b, f(b)=$ $a, f(c)=c$. Define a binary operation $\odot($ called Lukasiewicz conjection $)$ on $L=[0,1]$ as Example 2.2.
(1) Let $\left(X=\{a, b, c\}, e_{1}=\left(e_{X}(a, b)\right)\right)$ be a fuzzy poset as follows:

$$
e_{1}=\left(\begin{array}{lll}
1.0 & 0.6 & 0.5 \\
0.6 & 1.0 & 0.5 \\
0.7 & 0.7 & 1.0
\end{array}\right)
$$

Since $e_{1}(f(x), y)=e_{1}(x, f(y))$, then $\left(e_{1}, f, f, e_{1}\right)$ are both residuated and dual residuated connections. It satisfies Theorem 2.1 (4) and (6). Since f is an isotone map, it satisfies Theorem 2.1 (7) and (9). For examples,

$$
\begin{aligned}
& e_{1}(f(a), c)=0.5=F_{2}\left(\left(e_{1}\right)_{a}^{-1}\right)(c)=(1 \rightarrow 0.5) \wedge(0.6 \rightarrow 0.5) \wedge(0.7 \rightarrow 1) \\
& =e_{L^{x}}\left(\left(e_{1}\right)_{c}, F_{2}\left(\left(e_{1}\right)_{a}^{-1}\right)\right)=(0.7 \rightarrow 0.6) \wedge(0.7 \rightarrow 1) \wedge(1 \rightarrow 0.5) \\
& =e_{L^{x}}\left(\left(e_{1}\right)_{a}^{-1}, G_{1}\left(\left(e_{1}\right)_{c}\right)\right)=(1 \rightarrow 0.5) \wedge(0.6 \rightarrow 0.5) \wedge(0.7 \rightarrow 0.8) \\
& =G_{1}\left(\left(e_{1}\right)_{c}\right)(a)=(0.7 \rightarrow 0.6) \wedge(0.7 \rightarrow 1) \wedge(1 \rightarrow 0.5) \\
& =e_{1}(a, f(c))=\left(e_{1}\right)_{f(c)}^{-1}(a) . \\
& = \\
& e_{1}^{*}(f(c), a)=0.3=K_{2}\left(\left(e_{1}\right)_{c}^{*}\right)(a)=(0.6 \rightarrow 0.3) \wedge(1 \rightarrow 0.3) \wedge(0.7 \rightarrow 0) \\
& =e_{L^{Y}}\left(\left(e_{1}\right)_{a}^{-1}, K_{2}\left(\left(e_{1}\right)_{c}^{*}\right)=(1 \rightarrow 0.3) \wedge(0.6 \rightarrow 0.3) \wedge(0.7 \rightarrow 0)\right. \\
& =e_{L^{X}}\left(H_{1}\left(\left(e_{1}\right)_{a}^{-1}\right),\left(e_{1}\right)_{c}^{*}\right)=(0.6 \rightarrow 0.3) \wedge(1 \rightarrow 0.3) \wedge(0.7 \rightarrow 0) \\
& =H_{1}\left(\left(e_{1}\right)_{a}^{-1}\right)^{*}(c)=e_{1}^{*}(c, f(a)) .
\end{aligned}
$$

(2) Let $\left(X=\{a, b, c\}, e_{2}=\left(e_{2}(a, b)\right)\right)$ be a fuzzy poset as follows:

$$
e_{2}=\left(\begin{array}{ccc}
1.0 & 0.6 & 0.5 \\
0.6 & 1.0 & 0.7 \\
0.7 & 0.5 & 1.0
\end{array}\right)
$$

Since $e_{1}(y, f(x))=e_{1}(x, f(y))$, then $\left(e_{1}, f, f, e_{1}\right)$ are both both Galois and dual Galois connections. It satisfies Theorem 2.1 (3) and (5). Since f is an antitone map, it satisfies Theorem 2.1 (8) and (10). For examples,

$$
\begin{aligned}
e_{2}(b, f(c))= & 0.7=F_{1}\left(\left(e_{2}\right)_{c}^{-1}\right)(b)=(0.5 \rightarrow 1) \wedge(0.7 \rightarrow 0.6) \wedge(1 \rightarrow 0.7) \\
= & e_{L^{Y}}\left(\left(e_{Y}\right)_{y}^{-1}, F_{1}\left(\left(e_{X}\right)_{x}^{-1}\right)\right)=(0.6 \rightarrow 0.5) \wedge(1 \rightarrow 0.7) \wedge(0.5 \rightarrow 1) \\
= & e_{L^{X}}\left(\left(e_{X}\right)_{x}^{-1}, G_{1}\left(\left(e_{Y}\right)_{y}^{-1}\right)\right)=(0.5 \rightarrow 1) \wedge(0.7 \rightarrow 0.6) \wedge(1 \rightarrow 0.7) \\
= & G_{1}\left(\left(e_{2}\right)_{b}^{-1}\right)(c)=e_{2}(c, f(b)) . \\
e_{2}^{*}(a, f(a)) & =0.4=H_{1}\left(\left(e_{2}\right)_{a}^{*}(a)=((0.6 \odot 1) \vee(1 \odot 0.6) \vee(0.5 \odot 0.5))^{*}\right. \\
& =e_{L^{X}}\left(H_{1}\left(\left(e_{2}\right)_{a},\left(e_{2}\right)_{a}^{*}\right)=(0.6 \rightarrow 0) \wedge(1 \rightarrow 0.4) \wedge(0.5 \rightarrow 0.5)\right. \\
& =e_{L^{Y}}\left(\left(e_{2}\right)_{2}, K_{1}\left(\left(e_{2}\right)_{a}^{*}\right)\right)=(1 \rightarrow 0.4) \wedge(0.6 \rightarrow 0) \wedge(0.5 \rightarrow 0.5) \\
& =K_{1}\left(\left(e_{2}\right)_{a}^{*}\right)(a)=e_{2}(a, f(a)) .
\end{aligned}
$$

References

[1] R. Bělohlávek, Fuzzy Galois connections, Math. Log. Quart., 45 (1999), 497-504.
[2] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128(2004),277-298.
[3] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart., 47 (2001), 111-116.
[4] J.G. Garcia, I.M. Perez, M.A. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log. Quart., 56(2) (2010), 131-147.
[5] G. Georgescu, A. Popescue, Non-commutative Galois connections, Soft Computing, 7 (2003), 458467.
[6] G. Georgescu, A. Popescue, Non-dual fuzzy connections, Arch. Math. Log. 43(2004), 1009-1039.
[7] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht (1998).
[8] H. Lai, D. Zhang, Complete and directed complete Ω-categories, Theoretical Computer Science, 388(2007), 1-25.
[9] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning, 50(2009), 695-707.
[10] W. Yao, L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Quart., 55(1)(2009), 105-112.

