Available online at http://scik.org

 J. Math. Comput. Sci. 3 (2013), No. 5, 1180-1186

 ISSN: 1927-5307

ORE EXTENSIONS OVER NOETHERIAN δ -RINGS

SMARTI GOSANI, V. K. BHAT*

School of Mathematics, SMVD University, Katra, J and K, India-182320

Abstract. Let R be a ring. Let σ be an automorphism of R such that $a\sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ and δ a σ -derivation of R such that $a\delta(a) \in P(R)$ implies $a \in P(R)$, where P(R) denotes the prime radical of R. In this paper we show that if R is Noetherian ring such that $\sigma(P) = P$ for all minimal prime ideal P of R, then $R[x; \sigma, \delta]$ is 2-primal.

Keywords: Minimal prime, automorphism, derivation, Ore extension.

2000 AMS Subject Classification: 16S36, 16N40, 16P40, 16W20

1. Introduction

Throughout this paper R will denote an associative ring with identity $1 \neq 0$. The field of complex numbers is denoted by \mathbb{C} , the set of real numbers is denoted by \mathbb{R} and the field of rational numbers is denoted by \mathbb{Q} , the ring of integers is denoted by \mathbb{Z} , and the set of positive integers is denoted by \mathbb{N} . The set of prime ideals of R is denoted by Spec(R). The set of minimal prime ideals of R is denoted by MinSpec(R). The prime radical and the set of nilpotent elements of R are denoted by P(R) and N(R) respectively. Let I and J be any two ideals of a ring R. Then $I \subset J$ means that I is strictly contained in J.

^{*}Corresponding author

Received March 5, 2013

Let R be a ring and σ an endomorphism of R. Recall that a σ -derivation of R is an additive map $\delta : R \to R$ such that $\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$, for all $a, b \in R$. In case σ is the identity map, δ is called just a derivation of R. For example for any endomorphism τ of a ring R and for any $a \in R$, $\varrho : R \to R$ defined as $\varrho(r) = ra - a\tau(r)$ is a τ -derivation of R.

Let σ be an automorphism of a ring R and $\delta : R \to R$ any map. Let $\phi : R \to M_2(R)$ be a map defined by $\phi(r) = \begin{pmatrix} \sigma(r) & 0 \\ \delta(r) & r \end{pmatrix}$, for all $r \in R$. Then δ is a σ -derivation of Rif and only if ϕ is a ring homomorphism. Also let R = K[x], K a field. Then the formal derivative d/dx is a derivation of R.

Recall that $R[x; \sigma, \delta]$ is the usual polynomial ring with coefficients in R in which multiplication is subject to the relation $ax = x\sigma(a) + \delta(a)$ for all $a \in R$. We take any $f(x) \in R[x; \sigma, \delta]$ to be of the form $f(x) = \sum_{i=0}^{n} x^{i}a_{i}$. We denote the Ore extension $R[x; \sigma, \delta]$ by O(R). An ideal I of a ring R is called σ -invariant if $\sigma(I) = I$ and is called δ -invariant if $\delta(I) \subseteq I$. If an ideal I of R is σ -invariant and δ -invariant, then $I[x; \sigma, \delta]$ is an ideal of O(R) and as usual we denote it by O(I). In the case δ is the zero map, we denote the skew polynomial ring $R[x; \sigma]$ by S(R). In the case σ is the identity map, we denote the differential operator ring $R[x; \delta]$ by D(R).

2-primal rings

2-primal rings have been studied in recent years and are being treated by authors for different structures. In [10], Greg Marks discusses the 2-primal property of O(R), where R is a local ring, σ an automorphism of R and δ a σ -derivation of R. In Greg Marks [10], it has been shown that for a local ring R with a nilpotent maximal ideal, the Ore extension O(R) will or will not be 2-primal depending on the δ -stability of the maximal ideal of R. In the case where O(R) is 2-primal, it will satisfy an even stronger condition; in the case where O(R) is not 2-primal, it will fail to satisfy an even weaker condition. Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak in [8]. 2-primal near rings have been discussed by Argac and Groenewald in [1]. Recall that a ring R is 2-primal if and only if N(R) = P(R), i.e., if the prime radical is a completely semiprime ideal. An ideal I of a ring R is called completely semiprime if $a^2 \in I$ implies $a \in I$ for $a \in R$. We also note that a reduced ring is 2-primal and a commutative ring is also 2-primal. For further details on 2-primal rings, we refer the reader to [[1]- [3], [8], [10]].

Example 1.1

- (1) Let R = F[x] be the polynomial ring over the field F. Then R is 2-primal with $P(R) = \{0\}.$
- (2) Let $R = M_2(\mathbb{Q})$, the set of 2×2 matrices over \mathbb{Q} . Then R[x] is a prime ring with non-zero nilpotent elements and, so cannot be 2-primal.

Now let R be a Noetherian ring, which is also an algebra over \mathbb{Q} , σ be an automorphism of R such that $a\sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ and δ be a σ -derivation of R such that $a\delta(a) \in P(R)$ implies $a \in P(R)$. Let $P \in MinSpecR$. Then P(O(R) = O(P(R))) if and only if O(R) is 2-primal. This is proved in Theorem (3.3).

2. Ore extensions

Definition 2.1 $\sigma(*)$ -**Ring:** In Kwak [9], a ring R is said to be $\sigma(*)$ -ring if $a\sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$.

Example 2.2

(1) Let $R = \mathbb{C}$ and $\sigma : \mathbb{C} \to \mathbb{C}$ be the map defined by

 $\sigma(a+ib) = a - ib; a, b \in \mathbb{R}$. Then R is $\sigma(*)$ -ring.

(2) Let R = F[x] be the polynomial ring over the field F. Let $\sigma : R \to R$ be an endomorphism defined by $\sigma(f(x)) = f(0)$. Then R is not a $\sigma(*)$ -ring.

Definition 2.3 δ -**Ring:** Let R be a ring. Let σ be an automorphism of R and δ be a σ -derivation of R. Then R is a δ -ring if $a\delta(a) \in P(R)$ implies $a \in P(R)$.

1182

Proposition 2.4 Let R be a ring and σ an automorphism of R. Then R is a $\sigma(*)$ -ring implies R is 2-primal.

Proof.

Let $a \in R$ be such that $a^2 \in P(R)$. Then

$$a\sigma(a)\sigma(a\sigma(a)) = a\sigma(a)\sigma(a)\sigma^2(a)$$

 $\in \sigma(P(R)) = P(R).$

Therefore $a\sigma(a) \in P(R)$ and hence $a \in P(R)$.

i.e., every $\sigma(*)$ -ring is a 2-primal ring but converse need not be true.

Example 2.5 Let R = F[x] be the polynomial ring over the field F. Then R is 2-primal with $P(R) = \{0\}$.

Let $\sigma : R \to R$ be an endomorphism defined by $\sigma(f(x)) = f(0)$.

Then R is not a $\sigma(*)$ -ring.

Proposition 2.6 Let R be a 2-primal ring. Let σ be an automorphism of R and δ a σ derivation of R such that $\delta(P(R)) \subseteq P(R)$. If $P \in MinSpec(R)$ is such that $\sigma(P) = P$,
then $\delta(P) \subseteq P$.

Proof.

Let $P \in MinSpec(R)$. Now P is a completely prime ideal, therefore, for any $a \in P$, there exists $b \notin P$ such that $ab \in P(R)$ by Corollary (1.10) of Shin [11]. Now $\delta(P(R)) \subseteq P(R)$, and therefore $\delta(ab) \subseteq P(R)$; i.e., $\delta(a)\sigma(b) + a\delta(b) \in P(R) \subseteq P$. Now $a\delta(b) \in P$ implies that $\delta(a)\sigma(b) \in P$. Now $\sigma(P) = P$ implies that $\sigma(b) \notin P$ and since P is completely prime in R, we have $\delta(a) \in P$. Hence $\delta(P) \subseteq P$.

Theorem 2.7 Let R be a ring. Let σ be an automorphism of R and δ a σ -derivation of R such that R is a δ -ring and $\delta(P(R)) \subseteq P(R)$. Then R is 2-primal.

Proof.

Define a map $\rho : R/P(R) \to R/P(R)$ by $\rho(a + P(R)) = \delta(a) + P(R)$ for $a \in R$ and $\tau : R/P(R) \to R/P(R)$ a map by $\tau(a + P(R)) = \sigma(a) + P(R)$ for $a \in R$, then it can be seen that τ is an automorphism of R/P(R) and ρ is a τ -derivation of R/P(R). Now $a\delta(a) \in P(R)$ if and only if $(a + P(R))\rho(a + P(R)) = P(R)$ in R/P(R). Thus as in Proposition (5) of Hong, Kim and Kwak [7], R is a reduced ring and, therefore as mentioned in introduction, R is 2-primal.

Proposition 2.8 Let R be a ring. Let σ be an automorphism of R and δ be a σ -derivation of R. Then:

- (1) For any completely prime ideal P of R with $\sigma(P) = P$ and $\delta(P) \subseteq P$, O(P) is a completely prime ideal of O(R).
- (2) For any completely prime ideal U of O(R), $U \cap R$ is completely prime ideal of R.

Proof.

See Proposition (4) of [4].

Corollary 2.9 Let R be a ring, σ an automorphism of R and δ a σ -derivation of R such that R is moreover a δ -ring and $\delta(P(R)) \subseteq P(R)$. Let $P \in MinSpec(R)$ be such that $\sigma(P) = P$. Then O(P) is a completely prime ideal of O(R).

Proof.

R is 2-primal by Theorem (2.7), and so by Proposition (2.6) $\delta(P) \subseteq P$. Further more as mentioned in Proposition (2.6) above, P is a completely prime ideal of R. Now use Proposition (2.8), and the proof is complete.

3. Main results

Proposition 3.1 Let R be a Noetherian ring, which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R and δ be a σ -derivation of R such that R is a δ -ring. If $P \in MinSpec(R)$ is such that $\sigma(P) = P$ then $\delta(P) \subseteq P$.

Proof.

Let $P \in MinSpec(R)$. Then by Proposition (1.1) of [3] $\delta(P(R)) \subseteq P(R)$ and by Theorem (2.7) R is 2-primal. Since $\sigma(P) = P$ by Proposition (2.6) $\delta(P) \subseteq P$.

Corollary 3.2 Let R be a Noetherian ring, which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring and δ be a σ -derivation of R such that R is a δ -ring. Let $P \in MinSpec(R)$. Then O(P) is completely prime ideal of O(R).

Proof.

1184

Let $P \in MinSpec(R)$. Then $\sigma(P) = P$ by Theorem (2) of [6] and $\delta(P) \subseteq P$ by Proposition (3.1). Also P is completely prime ideal of R by Theorem (2) of [6]. Now use Proposition (2.8), and the proof is complete.

We now prove the following Theorem, which is crucial in proving Theorem (3.5).

Theorem 3.3 Let R be a Noetherian ring, which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring and δ a σ -derivation of R such that R is a δ -ring. Let $P \in MinSpec(R)$. Then P(O(R)) = O(P(R)) if and only if O(R) is 2-primal.

Proof.

Suppose P(O(R)) = O(P(R)). We will show that O(R) is 2-primal. Let $g(x) = \sum_{i=0}^{n} x^{i}b_{i} \in O(R), b_{n} \neq 0$, be such that $(g(x))^{2} \in P(O(R)) = O(P(R))$. We will show that $g(x) \in P(O(R))$. Now leading coefficient $\sigma^{2n-1}(b_{n})b_{n} \in P(R) \subseteq P$, for all $P \in MinSpec(R)$. Now $\sigma(P) = P$ and P is completely prime by Theorem (2) of [6]. Also, R is 2-primal by Proposition (2.4). Therefore we have $b_{n} \in P$, for all $P \in MinSpec(R)$; i.e., $b_{n} \in P(R)$. Now since $\delta(P) \subseteq P$ for all $P \in MinSpec(R)$ by Proposition (3.1), we get $(\sum_{i=\sigma}^{n-1} x^{i}b_{i})^{2} \in P(O(R)) = O(P(R))$ and as above we get $b_{n-1} \in P(R)$. With the same process in a finite number of steps we get $b_{i} \in P(R)$ for all $i, 0 \leq i \leq n$. Thus we have $g(x) \in O(P(R))$, i.e., $g(x) \in P(O(R))$. Therefore P(O(R)) is a completely semiprime ideal of O(R). Hence O(R) is 2-primal.

Conversely, let O(R) be 2-primal. Now by Corollary (3.2) $P(O(R)) \subseteq O(P(R))$. Let $f(x) = \sum_{j=0}^{n} x^{j} a_{j} \in O(P(R))$. Now R is a 2-primal subring of O(R) by Proposition (2.4) which implies that a_{j} is nilpotent and thus $a_{j} \in N(O(R)) = P(O(R))$, and so we have $x^{j}a_{j} \in P(O(R))$ for each $j, 0 \leq j \leq n$, which implies that $f(x) \in P(O(R))$. Hence P(O(R)) = O(P(R)).

Theorem 3.4 Let R be a Noetherian \mathbb{Q} -algebra. Let σ be an automorphism of R and δ a σ -derivation of R. Then:

- (1) $P_1 \in MinSpec(R)$ such that $\sigma(P_1) = P_1$ implies $O(P_1) \in MinSpec(O(R))$.
- (2) $P \in MinSpec(O(R))$ such that $\sigma(P \cap R) = P \cap R$ implies $P \cap R \in MinSpec(R)$.

Proof.

See Theorem (2.3) of [5].

Theorem 3.5 Let R be a Noetherian ring, which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring and δ a σ -derivation of R such that R is a δ -ring. If $\sigma(P) = P$ for all $P \in MinSpec(R)$. Then O(R) is 2-primal.

Proof.

Let $P_1 \in MinSpec(R)$. Since R is 2-primal, $\sigma(P_1) = P_1$, and therefore Theorem (3.4) implies $O(P_1) \in MinSpec(O(R))$. Similarly for any $P \in MinSpec(O(R))$ such that $\sigma(P \cap R) = P \cap R$ Theorem (3.4) implies that $P \cap R \in MinSpec(R)$. Therefore, O(P(R)) = P(O(R)), and now the result is obvious by using Theorem (3.3).

References

- Argac N.; Groenewald, N. J. A generalization of 2-primal near rings, Quaest. Math., Vol. 27(4), (2004), 397-413.
- [2] Bhat, V. K. On 2-primal Ore extension, Ukr. Math. Bull., Vol.4(2), (2007), 173-179.
- [3] Bhat, V. K. Differential operator rings over 2-primal rings, Ukr. Math. Bull., Vol. 5(2) (2008), 153-158.
- Bhat, V. K. Ore extensions over 2-primal Noetharian rings, Bul. Acad. Stiinte Repub. Mold. Mat., Vol. 3(58), (2008), 34 - 43.
- [5] Bhat, V. K. Skew polynomial rings over 2-primal Noetherian ring, East-West J. Math., Vol. 10(2), (2008), 141-147.
- [6] Bhat, V. K. Ore extensions over Weak σ-rigid Rings and σ(*)-rings, Eur. J. Pure Appl. Math., Vol. 3(4), (2010), 695-703.
- [7] Hong C. Y.; Kim N. K.; Kwak T. K. Ore-extensions of baer and p.p.-rings, J. Pure Applied Algebra, Vol. 151(3), (2000), 215-226.
- [8] Kim, N. K.; Kwak, T. K. Minimal prime ideals in 2-primal rings, Math. Japon., Vol. 50(3), (1999), 415-420.
- [9] Kwak, T. K. Prime radicals of skew-polynomial rings, Int. J. Math. Sci., Vol. 2(2), (2003) 219-227.
- [10] Marks, G. On 2-primal ore extensions, Comm. Algebra, Vol. 29(5),(2001), 2113-2123.
- [11] Shin, G. Y. Prime ideals and sheaf representations of a pseudo symmetric ring; Trans. Amer. Math. Soc., Vol. 184, (1973), 43-60.

1186