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Abstract. Let R be a ring. Let σ be an automorphism of R such that aσ(a) ∈ P (R) implies a ∈ P (R)

for a ∈ R and δ a σ-derivation of R such that aδ(a) ∈ P (R) implies a ∈ P (R), where P (R) denotes the

prime radical of R. In this paper we show that if R is Noetherian ring such that σ(P ) = P for all minimal

prime ideal P of R, then R[x;σ, δ] is 2-primal.
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1. Introduction

Throughout this paper R will denote an associative ring with identity 1 6= 0. The field

of complex numbers is denoted by C, the set of real numbers is denoted by R and the

field of rational numbers is denoted by Q, the ring of integers is denoted by Z, and the set

of positive integers is denoted by N. The set of prime ideals of R is denoted by Spec(R).

The set of minimal prime ideals of R is denoted by MinSpec(R). The prime radical

and the set of nilpotent elements of R are denoted by P (R) and N(R) respectively. Let

I and J be any two ideals of a ring R. Then I ⊂ J means that I is strictly contained in J .
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Let R be a ring and σ an endomorphism of R. Recall that a σ-derivation of R is an

additive map δ : R→ R such that δ(ab) = δ(a)σ(b) + aδ(b), for all a, b ∈ R. In case σ is

the identity map, δ is called just a derivation of R. For example for any endomorphism τ

of a ring R and for any a ∈ R, % : R→ R defined as %(r) = ra−aτ(r) is a τ -derivation of R.

Let σ be an automorphism of a ring R and δ : R → R any map. Let φ : R → M2(R)

be a map defined by φ(r) =

 σ(r) 0

δ(r) r

, for all r ∈ R. Then δ is a σ-derivation of R

if and only if φ is a ring homomorphism. Also let R = K[x], K a field. Then the formal

derivative d/dx is a derivation of R.

Recall that R[x;σ, δ] is the usual polynomial ring with coefficients in R in which mul-

tiplication is subject to the relation ax = xσ(a) + δ(a) for all a ∈ R. We take any

f(x) ∈ R[x;σ, δ] to be of the form f(x) = Σn
i=0x

iai. We denote the Ore extension

R[x;σ, δ] by O(R). An ideal I of a ring R is called σ-invariant if σ(I) = I and is called

δ-invariant if δ(I) ⊆ I. If an ideal I of R is σ-invariant and δ-invariant, then I[x;σ, δ] is

an ideal of O(R) and as usual we denote it by O(I). In the case δ is the zero map, we

denote the skew polynomial ring R[x;σ] by S(R). In the case σ is the identity map, we

denote the differential operator ring R[x; δ] by D(R).

2-primal rings

2-primal rings have been studied in recent years and are being treated by authors for

different structures. In [10], Greg Marks discusses the 2-primal property of O(R), where

R is a local ring, σ an automorphism of R and δ a σ-derivation of R. In Greg Marks

[10], it has been shown that for a local ring R with a nilpotent maximal ideal, the Ore

extension O(R) will or will not be 2-primal depending on the δ-stability of the maximal

ideal of R. In the case where O(R) is 2-primal, it will satisfy an even stronger condition;

in the case where O(R) is not 2-primal, it will fail to satisfy an even weaker condition.
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Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak in [8].

2-primal near rings have been discussed by Argac and Groenewald in [1]. Recall that a

ring R is 2-primal if and only if N(R) = P (R), i.e., if the prime radical is a completely

semiprime ideal. An ideal I of a ring R is called completely semiprime if a2 ∈ I implies

a ∈ I for a ∈ R. We also note that a reduced ring is 2-primal and a commutative ring

is also 2-primal. For further details on 2-primal rings, we refer the reader to [[1]- [3], [8],

[10]].

Example 1.1

(1) Let R = F [x] be the polynomial ring over the field F . Then R is 2-primal with

P (R) = {0}.

(2) Let R = M2(Q), the set of 2× 2 matrices over Q. Then R[x] is a prime ring with

non-zero nilpotent elements and, so cannot be 2-primal.

Now let R be a Noetherian ring, which is also an algebra over Q, σ be an automorphism

of R such that aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R and δ be a σ-derivation of R such

that aδ(a) ∈ P (R) implies a ∈ P (R). Let P ∈ MinSpecR. Then P (O(R) = O(P (R)) if

and only if O(R) is 2-primal. This is proved in Theorem (3.3).

2. Ore extensions

Definition 2.1 σ(∗)-Ring: In Kwak [9], a ring R is said to be σ(∗)-ring if aσ(a) ∈ P (R)

implies a ∈ P (R) for a ∈ R.

Example 2.2

(1) Let R = C and σ : C→ C be the map defined by

σ(a+ ib) = a− ib; a, b ∈ R. Then R is σ(∗)-ring.

(2) Let R = F [x] be the polynomial ring over the field F . Let σ : R → R be an

endomorphism defined by σ(f(x)) = f(0).

Then R is not a σ(∗)-ring.

Definition 2.3 δ-Ring: Let R be a ring. Let σ be an automorphism of R and δ be a

σ-derivation of R. Then R is a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R).
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Proposition 2.4 Let R be a ring and σ an automorphism of R. Then R is a σ(∗)-ring

implies R is 2-primal.

Proof.

Let a ∈ R be such that a2 ∈ P (R). Then

aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a)

∈ σ(P (R)) = P (R).

Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).

i.e., every σ(∗)-ring is a 2-primal ring but converse need not be true.

Example 2.5 Let R = F [x] be the polynomial ring over the field F . Then R is 2-primal

with P (R) = {0}.

Let σ : R→ R be an endomorphism defined by σ(f(x)) = f(0).

Then R is not a σ(∗)-ring.

Proposition 2.6 Let R be a 2-primal ring. Let σ be an automorphism of R and δ a σ-

derivation of R such that δ(P (R)) ⊆ P (R). If P ∈ MinSpec(R) is such that σ(P ) = P ,

then δ(P ) ⊆ P .

Proof.

Let P ∈ MinSpec(R). Now P is a completely prime ideal, therefore, for any a ∈ P ,

there exists b /∈ P such that ab ∈ P (R) by Corollary (1.10) of Shin [11]. Now δ(P (R)) ⊆

P (R), and therefore δ(ab) ⊆ P (R); i.e., δ(a)σ(b) + aδ(b) ∈ P (R) ⊆ P . Now aδ(b) ∈ P

implies that δ(a)σ(b) ∈ P . Now σ(P ) = P implies that σ(b) /∈ P and since P is completely

prime in R, we have δ(a) ∈ P . Hence δ(P ) ⊆ P .

Theorem 2.7 Let R be a ring. Let σ be an automorphism of R and δ a σ-derivation of

R such that R is a δ-ring and δ(P (R)) ⊆ P (R). Then R is 2-primal.

Proof.

Define a map ρ : R/P (R) → R/P (R) by ρ(a + P (R)) = δ(a) + P (R) for a ∈ R

and τ : R/P (R) → R/P (R) a map by τ(a + P (R)) = σ(a) + P (R) for a ∈ R, then it

can be seen that τ is an automorphism of R/P (R) and ρ is a τ -derivation of R/P (R).

Now aδ(a) ∈ P (R) if and only if (a + P (R))ρ(a + P (R)) = P (R) in R/P (R). Thus as
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in Proposition (5) of Hong, Kim and Kwak [7], R is a reduced ring and, therefore as

mentioned in introduction, R is 2-primal.

Proposition 2.8 Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation

of R. Then:

(1) For any completely prime ideal P of R with σ(P ) = P and δ(P ) ⊆ P , O(P ) is a

completely prime ideal of O(R).

(2) For any completely prime ideal U of O(R), U ∩R is completely prime ideal of R.

Proof.

See Proposition (4) of [4].

Corollary 2.9 Let R be a ring, σ an automorphism of R and δ a σ-derivation of R such

that R is moreover a δ-ring and δ(P (R)) ⊆ P (R). Let P ∈ MinSpec(R) be such that

σ(P ) = P . Then O(P ) is a completely prime ideal of O(R).

Proof.

R is 2-primal by Theorem (2.7), and so by Proposition (2.6) δ(P ) ⊆ P . Further more

as mentioned in Proposition (2.6) above, P is a completely prime ideal of R. Now use

Proposition (2.8), and the proof is complete.

3. Main results

Proposition 3.1 Let R be a Noetherian ring, which is also an algebra over Q. Let

σ be an automorphism of R and δ be a σ-derivation of R such that R is a δ-ring. If

P ∈MinSpec(R) is such that σ(P ) = P then δ(P ) ⊆ P .

Proof.

Let P ∈ MinSpec(R). Then by Proposition (1.1) of [3] δ(P (R)) ⊆ P (R) and by

Theorem (2.7) R is 2-primal. Since σ(P ) = P by Proposition (2.6) δ(P ) ⊆ P .

Corollary 3.2 Let R be a Noetherian ring, which is also an algebra over Q. Let σ be an

automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation of R such that R

is a δ-ring. Let P ∈MinSpec(R). Then O(P ) is completely prime ideal of O(R).

Proof.
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Let P ∈ MinSpec(R). Then σ(P ) = P by Theorem (2) of [6] and δ(P ) ⊆ P by

Proposition (3.1). Also P is completely prime ideal of R by Theorem (2) of [6]. Now use

Proposition (2.8), and the proof is complete.

We now prove the following Theorem, which is crucial in proving Theorem (3.5).

Theorem 3.3 Let R be a Noetherian ring, which is also an algebra over Q. Let σ be

an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such that

R is a δ-ring. Let P ∈ MinSpec(R). Then P (O(R)) = O(P (R)) if and only if O(R) is

2-primal.

Proof.

Suppose P (O(R)) = O(P (R)). We will show that O(R) is 2-primal. Let g(x) =

Σn
i=0x

ibi ∈ O(R), bn 6= 0, be such that (g(x))2 ∈ P (O(R)) = O(P (R)). We will show

that g(x) ∈ P (O(R)). Now leading coefficient σ2n−1(bn)bn ∈ P (R) ⊆ P , for all P ∈

MinSpec(R). Now σ(P ) = P and P is completely prime by Theorem (2) of [6]. Also,

R is 2-primal by Proposition (2.4). Therefore we have bn ∈ P , for all P ∈ MinSpec(R);

i.e., bn ∈ P (R). Now since δ(P ) ⊆ P for all P ∈ MinSpec(R) by Proposition (3.1), we

get (Σn−1
i=o x

ibi)
2 ∈ P (O(R)) = O(P (R)) and as above we get bn−1 ∈ P (R). With the same

process in a finite number of steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have

g(x) ∈ O(P (R)), i.e., g(x) ∈ P (O(R)). Therefore P (O(R)) is a completely semiprime

ideal of O(R). Hence O(R) is 2-primal.

Conversely, let O(R) be 2-primal. Now by Corollary (3.2) P (O(R)) ⊆ O(P (R)). Let

f(x) = Σn
j=0x

jaj ∈ O(P (R)). Now R is a 2-primal subring of O(R) by Proposition (2.4)

which implies that aj is nilpotent and thus aj ∈ N(O(R)) = P (O(R)), and so we have

xjaj ∈ P (O(R)) for each j, 0 ≤ j ≤ n, which implies that f(x) ∈ P (O(R)). Hence

P (O(R)) = O(P (R)).

Theorem 3.4 Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and δ

a σ-derivation of R. Then:

(1) P1 ∈MinSpec(R) such that σ(P1) = P1 implies O(P1) ∈MinSpec(O(R)).

(2) P ∈MinSpec(O(R)) such that σ(P ∩R) = P ∩R implies P ∩R ∈MinSpec(R).
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Proof.

See Theorem (2.3) of [5].

Theorem 3.5 Let R be a Noetherian ring, which is also an algebra over Q. Let σ be an

automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such that R is

a δ-ring. If σ(P ) = P for all P ∈MinSpec(R). Then O(R) is 2-primal.

Proof.

Let P1 ∈ MinSpec(R). Since R is 2-primal, σ(P1) = P1, and therefore Theorem

(3.4) implies O(P1) ∈ MinSpec(O(R)). Similarly for any P ∈ MinSpec(O(R)) such

that σ(P ∩ R) = P ∩ R Theorem (3.4) implies that P ∩ R ∈ MinSpec(R). Therefore,

O(P (R)) = P (O(R)), and now the result is obvious by using Theorem (3.3).
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