Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 4, 972-984 ISSN: 1927-5307

A FIXED POINT APPROACH TO STABILITY OF THE QUARTIC EQUATION IN 2-BANACH SPACES

MUAADH ALMAHALEBI* AND SAMIR KABBAJ

Laboratory LAMA, Harmonic Analysis and functional equations Team, Department of Mathematics - Faculty of Sciences - University of Ibn Tofail , Kenitra, Morocco

Abstract. In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the quartic functional equation

$$f(2x + y) + f(2x - y) = 4f(x + y) + 4f(x - y) + 24f(x) - 6f(y)$$

by using the direct method and the fixed point method in 2-Banach spaces.

Keywords: Hyers-Ulam stability; 2-Banach space; Quartic functional equation.

2000 Mathematics Subject Classification: 39B82, 46B99

1. Introduction and preliminaries

In 1940, S. M. Ulam [19] asked the first question on the stability problem for mappings. In 1941, D. H. Hyers [12] solved the problem of Ulam. This result was generalized by Aoki [4] for additive mappings and by Th. M. Rassias [18] for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. In 1994, a further generalization was obtained by P. Găvruta

^{*}Corresponding author

Received March 20, 2013

[11]. During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings.

In the middle of 1960s, S. Gähler [9,10] introduced the concept of linear 2-normed spaces.

We recall some basic facts concerning 2-normed spaces and some preliminary results. **Definition 1.1.** *let* X *be a real linear space with* dimX > 1 *and* $\|.,.\| : X \times X \longrightarrow \mathbb{R}$ *be a function satisfying the following properties:*

- (1) ||x, y|| = 0 if and only if x and y are linearly dependent,
- (2) ||x,y|| = ||y,x||,
- (3) $\|\lambda x, y\| = |\lambda| \|x, y\|,$
- (4) $||x, y + z|| \le ||x, y|| + ||x, z||$

for all $x, y, z \in X$ and $\lambda \in \mathbb{R}$. Then the function $\|.,.\|$ is called a 2-norm on X and the pair $(X, \|.,.\|)$ is called a linear 2-normed space. Sometimes the condition (4) called the triangle inequality.

Example 1.2. For $x = (x_1, x_2)$, $y = (y_1, y_2) \in E = \mathbb{R}^2$, the Euclidean 2-norm $||x, y||_E$ is defined by

$$||x, y||_E = |x_1y_2 - x_2y_1|.$$

Definition 1.3. A sequence $\{x_k\}$ in a 2-normed space X is called a convergent sequence if there is an $x \in X$ such that

$$\lim_{k \to \infty} \|x_k - x, y\| = 0$$

for all $y \in X$. If $\{x_k\}$ converges to x, write $x_k \longrightarrow x$ as $k \longrightarrow \infty$ and call x the limit of $\{x_k\}$. In this case, we also write $\lim_{k\to\infty} x_k = x$.

Definition 1.4. A sequence $\{x_k\}$ in a 2-normed space X is said to be a Cauchy sequence with respect to the 2-norm if

$$\lim_{k,l\to\infty} \|x_k - x_l, y\| = 0,$$

for all $y \in X$. If every Cauchy sequence in X converges to some $x \in X$, then X is said to be complete with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach space.

Now, we state the following results as lemma (See [16] for the details).

Lemma 1.5. Let X be a 2-normed space. Then,

- $(1) \ |||x,z|| ||y,z||| \le ||x-y,z|| \ for \ all \ x,y,z \in X,$
- (2) if ||x, z|| = 0 for all $z \in X$, then x = 0,
- (3) for a convergent sequence x_n in X,

$$\lim_{n \to \infty} \|x_n, z\| = \left\|\lim_{n \to \infty} x_n, z\right\|$$

for all $z \in X$.

In [16], Won-Gil Park has investigated approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in 2-Banach spaces. In [3], A. Alotaibi and S.A. Mohiuddine have investigated stability of the cubic functional equation in random 2-normed spaces.

In [15], S.H. Lee, S.M. Im and I.S. Hwang considered the following functional equation

(1)
$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y)$$

and they established the general solution and the stability problem for the functional equation (1) (see also [17]). It is easy to show that the function $f(x) = x^4$ satisfies the functional equation (1), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping.

In this paper, we prove the Hyers-Ulam-Rassias stability of the quartic functional equation (1) in 2-Banach spaces by using the direct method and fixed point method.

2. Stability of the functional equation (1): Direct method

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the quartic functional equation (1) in 2-Banach spaces. Let X be a linear space and Y be a 2-Banach space with dimY>1. For convenience, we use the following abbreviation for a given mapping $f:X\to Y$

(2)
$$Df(x,y) := f(2x+y) + f(2x-y) - 4f(x+y) - 4f(x-y) - 24f(x) + 6f(y)$$

for all $x, y \in X$.

Theorem 2.1. Let $\varphi: X \times X \longrightarrow [0, +\infty)$ be a function such that

(3)
$$\widetilde{\varphi}(x,y) := \sum_{k=0}^{\infty} \frac{1}{2^{4k}} \varphi(2^k x, 2^k y) < \infty$$

(4)
$$\lim_{n \to \infty} \frac{1}{2^{4n}} \varphi(2^n x, 2^n y) = 0$$

for all $x, y \in X$. Suppose that $f: X \longrightarrow Y$ be a mapping with

(5)
$$\|Df(x,y),z\| \le \varphi(x,y)$$

for all $x, y \in X$ and all $z \in Y$. Then, there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(6)
$$||f(x) - Q(x), z|| \le \frac{1}{32}\widetilde{\varphi}(x, 0)$$

for all $x \in X$ and all $z \in Y$.

Proof. Putting x = y = 0 in (5), we obtain f(0) = 0. Putting y = 0 in (5), we get

(7)
$$\left\|\frac{1}{16}f(2x) - f(x), z\right\| \le \frac{1}{32}\varphi(x, 0)$$

for all $x \in X$ and all $z \in Y$. If we replace x by $2^n x$ in (7) and divide both sides of (7) by 2^{4n} , we infer that

$$\left\|\frac{1}{2^{4(n+1)}}f(2^{n+1}x) - \frac{1}{2^{4n}}f(2^nx), z\right\| \le \frac{1}{2^{4n+5}}\varphi(2^nx, 0)$$

for all $x \in X$, all $z \in Y$ and integers $n \ge 1$. Hence, we have

$$\left\|\frac{1}{2^{4(n+1)}}f(2^{(n+1)}x) - \frac{1}{2^{4m}}f(2^mx), z\right\| \le \sum_{i=m}^n \left\|\frac{1}{2^{4(i+1)}}f(2^{(i+1)}x) - \frac{1}{2^{4i}}f(2^ix), z\right\|$$

$$(8) \qquad \qquad \le \frac{1}{32}\sum_{i=m}^n \frac{1}{2^{4i}}\varphi(2^ix, 0)$$

for all $x \in X$, all $z \in Y$ and all non-negative integers m and n with $n \ge m$. Therefore, we conclude from (3), (4) and (8) that the sequence $\left\{\frac{1}{2^{4n}}f(2^nx)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{4n}}f(2^nx)\right\}$ converges in Y for all $x \in X$. So, we can define the mapping $Q: X \longrightarrow Y$ by

(9)
$$Q(x) := \lim_{n \to \infty} \frac{1}{2^{4n}} f(2^n x)$$

for all $x \in X$. That is

$$\lim_{n \to \infty} \left\| \frac{1}{2^{4n}} f(2^n x) - Q(x), z \right\| = 0$$

for all $x \in X$ and all $z \in Y$. Letting m = 0 and passing the limit $n \longrightarrow \infty$ in (8), we get the inequality (6). Now, we show that $Q: X \longrightarrow Y$ is a quartic mapping. It follows from (3), (5), (9) and Lemma 1.5 that

$$\|DQ(x,y),z\| = \lim_{n \to \infty} \frac{1}{2^{4n}} \|Df(2^n x, 2^n y), z\| \le \lim_{n \to \infty} \frac{1}{2^{4n}} \varphi(2^n x, 2^n y) = 0$$

for all $x, y \in X$ and all $z \in Y$. By Lemma 1.6, we obtain that DQ(x, y) = 0 for all $x, y \in X$. So, the mapping $Q : X \longrightarrow Y$ is quartic. To prove the uniqueness of Q, let $A : X \longrightarrow Y$ be another quartic mapping satisfying (6). Since the mapping $A : X \longrightarrow Y$ satisfies (1), then by letting y = 0 in (1) we get $A(2x) = 2^4 f(x)$ for all $x \in X$. Therefore, we have

$$\|Q(x) - A(x), z\| = \lim_{n \to \infty} \frac{1}{2^{4n}} \|Q(2^n x) - A(2^n x), z\| \le \frac{1}{32} \lim_{n \to \infty} \widetilde{\varphi}(2^n x, 0) = 0$$

for all $x \in X$ and all $z \in Y$. By Lemma 1.6, ||Q(x) - A(x)|| = 0 for all $x \in X$. So Q = A. This proves the uniqueness of Q.

Corollary 2.2. Let $(X, \|.\|_X)$ be a normed space and $(Y, \|., .\|_Y)$ be a 2-Banach space. Let ϵ and p be nonnegative real numbers with p < 4 and let $f : X \longrightarrow Y$ be a mapping fulfilling

(10)
$$\|Df(x,y), z\|_{Y} \le \epsilon(\|x\|_{X}^{p} + \|y\|_{X}^{p})$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(11)
$$||f(x) - Q(x), z||_Y \le \frac{\epsilon}{32 - 2^{p+1}} ||x||_X^p$$

for all $x \in X$ and all $z \in Y$.

Proof. In Theorem 2.1, let $\varphi(x, y) = \epsilon (||x||_X^p + ||y||_X^p)$ for all $x, y \in X$. Then (10) implies that f(0) = 0. So we obtain (11) from (6).

Theorem 2.3. Let $\varphi: X \times X \longrightarrow [0, +\infty)$ be a function such that

(12)
$$\widetilde{\varphi}(x,y) := \sum_{k=0}^{\infty} \frac{1}{3^{4k}} \varphi(3^k x, 3^k y) < \infty$$

(13)
$$\lim_{n \to \infty} \frac{1}{3^{4n}} \varphi(3^n x, 3^n y) = 0$$

for all $x, y \in X$. Suppose that $f : X \longrightarrow Y$ be a mapping with

(14)
$$\|Df(x,y),z\| \le \varphi(x,y)$$

for all $x, y \in X$ and all $z \in Y$. Then, there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(15)
$$||f(x) - Q(x), z|| \le \frac{1}{81} \left(\widetilde{\varphi}(x, x) + 2\widetilde{\varphi}(x, 0) \right)$$

for all $x \in X$ and all $z \in Y$.

Proof. Putting x = y = 0 in (14), we get f(0) = 0. Replacing y by x in (14), we get

(16)
$$||f(3x) - 4f(2x) - 17f(x), z|| \le \varphi(x, x)$$

for all $x, y \in X$ and all $z \in Y$. Letting y = 0 in (14), we obtain

(17)
$$||2f(2x) - 32f(x), z|| \le \varphi(x, 0)$$

for all $x, y \in X$ and all $z \in Y$. From (16) and (17), we get

(18)
$$\left\|\frac{1}{81}f(3x) - f(x), z\right\| \le \frac{1}{81}\left(\varphi(x, x) + 2\varphi(x, 0)\right)$$

for all $x, y \in X$ and all $z \in Y$. We replace x by $3^n x$ in (18) and divide both sides of (18) by 3^{4n} , we infer that

$$\left\|\frac{1}{3^{4(n+1)}}f(3^{n+1}x) - \frac{1}{3^{4n}}f(3^nx), z\right\| \le \frac{1}{3^{4n+4}}\left(\varphi(x,x) + 2\varphi(x,0)\right)$$

for all $x \in X$, all $z \in Y$ and integers $n \ge 1$. Hence, we have

$$\left\|\frac{1}{3^{4(n+1)}}f(3^{(n+1)}x) - \frac{1}{3^{4m}}f(3^mx), z\right\| \le \sum_{i=m}^n \left\|\frac{1}{3^{4(i+1)}}f(3^{(i+1)}x) - \frac{1}{3^{4i}}f(3^ix), z\right\|$$

(19)
$$\leq \frac{1}{81} \sum_{i=m}^{n} \frac{1}{3^{4i}} \varphi(3^{i}x, 3^{i}x) + \frac{1}{81} \sum_{i=m}^{n} \frac{1}{3^{4i}} \varphi(3^{i}x, 0)$$

for all $x \in X$, all $z \in Y$ and all non-negative integers m and n with $n \ge m$. Therefore, we conclude from (12), (13) and (19) that the sequence $\left\{\frac{1}{3^{4n}}f(3^nx)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, there exists a mapping $Q: X \longrightarrow Y$ defined by

(20)
$$Q(x) := \lim_{n \to \infty} \frac{1}{3^{4n}} f(3^n x)$$

for all $x \in X$. Letting m = 0 and passing the limit $n \longrightarrow \infty$ in (19), we get the inequality (15). The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let $(X, \|.\|_X)$ be a normed space and $(Y, \|., .\|_Y)$ be a 2-Banach space. Let ϵ and p be nonnegative real numbers with p < 4 and lat $f : X \longrightarrow Y$ be a mapping fulfilling

(21)
$$\|Df(x,y),z\|_{Y} \le \epsilon \left(\|x\|_{X}^{p} + \|y\|_{X}^{p}\right)$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(22)
$$||f(x) - Q(x), z||_Y \le \frac{4\epsilon}{81 - 3^p} ||x||_X^p$$

for all $x \in X$ and all $z \in Y$.

Proof. In Theorem 2.3, let $\varphi(x, y) = \epsilon (||x||_X^p + ||y||_X^p)$ for all $x, y \in X$. Then (21) implies that f(0) = 0. So we obtain (22) from (15).

Corollary 2.5. Let $(X, \|.\|_X)$ be a normed space and $(Y, \|., .\|_Y)$ be a 2-Banach space. Let ϵ, p and q be nonnegative real numbers with p + q < 4 and let $f : X \longrightarrow Y$ be a mapping fulfilling

(23)
$$\|Df(x,y),z\|_{Y} \le \epsilon \left(\|x\|_{X}^{p},\|y\|_{X}^{q}\right)$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(24)
$$||f(x) - Q(x), z||_Y \le \frac{\epsilon}{81 - 3^{p+q}} ||x||_X^{p+q}$$

for all $x \in X$ and all $z \in Y$.

Proof. In Theorem 2.3, let $\varphi(x, y) = \epsilon (||x||_X^p + ||y||_X^q)$ for all $x, y \in X$. Then (23) implies that f(0) = 0. So we obtain (24) from (15).

3. Stability of the functional equation (1): Fixed point method

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the quartic functional equation (1) by using fixed point method in 2-Banach spaces. We recall a fundamental result in fixed point theory.

Let X be a set. A function $d: X \times X \to [0, \infty)$ is called a *generalized metric* on X if d satisfies :

- d(x, y) = 0 if and only if x = y,
- d(x, y) = d(y, x) for all $x, y \in X$,
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Theorem 3.1. [8] Suppose we are given a complete generalized metric space (X, d) and a strictly contractive mapping $J : X \to X$, with the Lipshitz constant L < 1. If there exists a nonnegative integer k such that

$$d(J^k x, J^{k+1} x) < \infty$$

for some $x \in X$, then the following are true: (I) the sequence $J^n x$ converges to a fixed point x^* of J; (II) x^* is the unique fixed point of J in the set $Y = \{y \in X : d(J^k x, y) < \infty\};$

(III) $d(y, x^*) \leq \frac{1}{1-L}d(y, Jy)$ for all $y \in Y$.

In 1996, Isac and Th.M. Rassias [14] were the first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with applications.

Theorem 3.2. Let $f: X \longrightarrow Y$ be a mapping for which there exists a function $\varphi: X^2 \longrightarrow [0, \infty)$ satisfying

$$\phi(x) := \varphi(x, x) + 2\varphi(x, 0),$$

(25)
$$\|Df(x,y),z\| \le \varphi(x,y)$$

and

(26)
$$\lim_{n \to \infty} \frac{1}{3^{4n}} \varphi(3^n x, 3^n y) = 0$$

for all $x, y \in X$ and all $z \in Y$. Let 0 < L < 1 be a constant such that $\varphi(x, y) \leq 81L\varphi(\frac{x}{3}, \frac{y}{3})$ for all $x, y \in X$. Then, there exists a unique quartic mapping $Q: X \longrightarrow Y$ satisfying

(27)
$$||f(x) - Q(x), z|| \le \frac{1}{81(1-L)}\phi(x)$$

for all $x \in X$ and all $z \in Y$.

Proof. Let us consider the set $S := \{g : X \longrightarrow Y\}$ and introduce the generalized metric on S as follows:

$$d(g,h) = \inf\{\alpha \in [0,\infty) : \|g(x) - h(x), z\| \le \alpha \phi(x), \forall x \in X \text{ and } \forall z \in Y\}$$

where, as usual, $inf \emptyset = +\infty$. The proof of the fact that (S, d) is a complete generalized metric space can be found in [6]. Now, we consider the linear mapping $J : S \longrightarrow S$ defined by

$$Jg(x) := \frac{1}{81}g(3x)$$

for all $g \in S$ and all $x \in X$. First we assert that J is strictly contractive on S. For given $g, h \in S$, let $\alpha \in [0, \infty)$ be an arbitrary constant with $d(g, h) \leq \alpha$, that is

$$\|g(x) - h(x), z\| \le \alpha \phi(x).$$

So we have

$$||Jg(x) - Jh(x), z|| = \frac{1}{81} ||g(3x) - h(3x), z|| \le \frac{1}{81} \alpha \phi(3x) \le \alpha L \phi(x)$$

for all $g, h \in S$, all $x \in X$ and all $z \in Y$. Then, $d(Jg, Jh) \leq Ld(g, h)$, $\forall g, h \in S$; that is, J is a strictly contractive self-mapping on S with the Lipschitz constant L. Replacing y by x in (25), we have

(28)
$$||f(3x) - 4f(2x) - 17f(x), z|| \le \varphi(x, x)$$

for all $x \in X$ and all $z \in Y$. Letting y = 0 in (25), we get

(29)
$$||2f(2x) - 32f(x), z|| \le \varphi(x, 0)$$

for all $x \in X$ and all $z \in Y$. From the inequalities (29) and (30), it follows that

$$||f(3x) - 81f(x), z|| \le (\varphi(x, x) + 2\varphi(x, 0))$$

Then,

(30)
$$\|\frac{1}{81}f(3x) - f(x), z\| \le \frac{1}{81}\phi(x)$$

for all $x \in X$ and all $z \in Y$. Hence,

$$d(f, Jf) \le \frac{1}{81}$$

for all $f \in S$. By Theorem 3.1, there exists a unique mapping $Q: X \longrightarrow Y$ satisfying the following:

Q is fixed point of J, that is, Q(3x) = 81Q(x) for all x ∈ X. The mapping Q is a unique fixed point of J in the set M = {g ∈ S : d(f,g) ≤ ∞}. This implies that Q is a unique mapping such that there exists α ∈ (0,∞) satisfying ||f(x) - Q(x), z|| ≤ αφ(x), for all x ∈ X and z ∈ Y.

• $d(J^n, Q) \longrightarrow 0$ as $n \longrightarrow \infty$, which implies the equality

(31)
$$\lim_{n \to +\infty} J^n f(x) = \lim_{n \to +\infty} \frac{f(3^n x)}{3^{4n}} = Q(x)$$

for all $x \in X$.

(32)
$$d(f,Q) \le \frac{1}{1-L}d(f,Jf) \le \frac{1}{81(1-L)}$$

which implies the inequality (28)

It follows from (25), (26) and (32), that

$$\|DQ(x,y),z\| = \lim_{n \to +\infty} \frac{1}{3^{4n}} \|Df(3^n x, 3^n y), z\| \le \lim_{n \to +\infty} \frac{1}{3^{4n}} \varphi(3^n x, 3^n y) = 0$$

for all $x, y \in X$ and all $z \in Y$. Hence, $Q: X \longrightarrow Y$ is a quartic mapping, as desired.

Corollary 3.3. Let $(X, \|.\|_X)$ be a normed space and $(Y, \|., .\|_Y)$ be a 2-Banach space. Let ϵ and p be nonnegative real numbers with p < 4 and let $f : X \longrightarrow Y$ be a mapping fulfilling

(33)
$$\|Df(x,y),z\|_{Y} \le \epsilon \left(\|x\|_{X}^{p} + \|y\|_{X}^{p}\right)$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(34)
$$||f(x) - Q(x), z||_Y \le \frac{4\epsilon}{81 - 3^p} ||x||_X^p$$

for all $x \in X$ and all $z \in Y$.

Proof. Taking $\varphi(x,y) = \epsilon(\|x\|_X^p + \|y\|_X^p)$ for all $x, y \in X$ and choosing $L = 3^{p-4}$ in Theorem 3.2, we get the desired result.

Corollary 3.4. Let $(X, \|.\|_X)$ be a normed space and $(Y, \|., .\|_Y)$ be a 2-Banach space. Let ϵ, p and q be nonnegative real numbers with p + q < 4 and let $f : X \longrightarrow Y$ be a mapping fulfilling

(35)
$$\|Df(x,y),z\|_{Y} \le \epsilon \left(\|x\|_{X}^{p},\|y\|_{X}^{q}\right)$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

(36)
$$||f(x) - Q(x), z||_Y \le \frac{\epsilon}{81 - 3^{p+q}} ||x||_X^{p+q}$$

for all $x \in X$ and all $z \in Y$.

982

Proof. Taking $\varphi(x,y) = \epsilon(\|x\|_X^p, \|y\|_X^q)$ for all $x, y \in X$ and choosing $L = 3^{p+q-4}$ in Theorem 3.2, we get the desired result.

References

- M. Almahalebi, A fixed point approach of quadratic functional equations, Int. Journal of Math. Analysis, Vol.7 (2013), no.30, 1471-1477.
- [2] M. Almahalebi and S. Kabbaj, A fixed point approach to the orthogonal stability of an additive quadratic functional equation, Advances in Fixed Point Theory, (2013) (submitted).
- [3] A. Alotaibi, S.A. Mohiuddine, On the stability of a cubic functional equation in random 2-normed spaces, Advan. in Diff. Equat., doi:10.1186 /1687-1847-201 2-39, 2012.
- [4] T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan, vol. 2, pp. 64?6, 1950.
- [5] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal Pure Appl Math.4(1), Art.ID4 (2003).
- [6] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346, 43-52 (2004).
- [7] S. Czerwik, Functional equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
- [8] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull Amer Math Soc.74, 305-309 (1968).
- [9] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963) 115-148.
- [10] S. Gähler, Linear 2-normiete Räumen, Math. Nachr. 28 (1964) 1-43.
- [11] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
- [12] D. H.Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27, (1941), 222-224.
- [13] D.H. Hyers, G. Isac, and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel 1998.
- [14] G. Isac and Th.M. Rassias, Stability of ψ -additive mappings: applications to nonlinear analysis, Intern J Math Math Sci.19, 219-228 (1996).
- [15] S.H. Lee, S.M. Im, I.S. Hwang, Quartic functional equation, J. Math. Anal. Appl. 307(2005) 787-394.
- [16] W.G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011) 193-202.

- [17] J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. 34(1999) 243-252.
- [18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297?00, 1978.
- [19] S.M. Ulam, A collection of the Mathematical Problems, Interscience Publ. New York, (1960), 431-436.