

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 4, 972-984

ISSN: 1927-5307

A FIXED POINT APPROACH TO STABILITY OF THE QUARTIC EQUATION IN 2-BANACH SPACES

MUAADH ALMAHALEBI* AND SAMIR KABBAJ

Laboratory LAMA, Harmonic Analysis and functional equations Team, Department of Mathematics - Faculty of Sciences - University of Ibn Tofail, Kenitra, Morocco

Abstract

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the quartic functional equation

$$
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y)
$$

by using the direct method and the fixed point method in 2-Banach spaces.
Keywords: Hyers-Ulam stability; 2-Banach space; Quartic functional equation.
2000 Mathematics Subject Classification: 39B82, 46B99

1. Introduction and preliminaries

In 1940, S. M. Ulam [19] asked the first question on the stability problem for mappings. In 1941, D. H. Hyers [12] solved the problem of Ulam. This result was generalized by Aoki [4] for additive mappings and by Th. M. Rassias [18] for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. In 1994, a further generalization was obtained by P. Găvruta

[^0]Received March 20, 2013
[11]. During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings.
In the middle of 1960s, S. Gähler [9,10] introduced the concept of linear 2-normed spaces.
We recall some basic facts concerning 2-normed spaces and some preliminary results. Definition 1.1. let X be a real linear space with $\operatorname{dim} X>1$ and $\|.,\|:. X \times X \longrightarrow \mathbb{R}$ be a function satisfying the following properties:
(1) $\|x, y\|=0$ if and only if x and y are linearly dependent,
(2) $\|x, y\|=\|y, x\|$,
(3) $\|\lambda x, y\|=|\lambda|\|x, y\|$,
(4) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$
for all $x, y, z \in X$ and $\lambda \in \mathbb{R}$. Then the function $\|.,$.$\| is called a 2-norm on X$ and the pair $(X,\|.,\|$.$) is called a linear 2-normed space. Sometimes the condition (4) called the$ triangle inequality.

Example 1.2. For $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in E=\mathbb{R}^{2}$, the Euclidean 2-norm $\|x, y\|_{E}$ is defined by

$$
\|x, y\|_{E}=\left|x_{1} y_{2}-x_{2} y_{1}\right|
$$

Definition 1.3. A sequence $\left\{x_{k}\right\}$ in a 2-normed space X is called a convergent sequence if there is an $x \in X$ such that

$$
\lim _{k \rightarrow \infty}\left\|x_{k}-x, y\right\|=0
$$

for all $y \in X$. If $\left\{x_{k}\right\}$ converges to x, write $x_{k} \longrightarrow x$ as $k \longrightarrow \infty$ and call x the limit of $\left\{x_{k}\right\}$. In this case, we also write $\lim _{k \rightarrow \infty} x_{k}=x$.

Definition 1.4. A sequence $\left\{x_{k}\right\}$ in a 2-normed space X is said to be a Cauchy sequence with respect to the 2-norm if

$$
\lim _{k, l \rightarrow \infty}\left\|x_{k}-x_{l}, y\right\|=0
$$

for all $y \in X$. If every Cauchy sequence in X converges to some $x \in X$, then X is said to be complete with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach space.

Now, we state the following results as lemma (See [16] for the details).
Lemma 1.5. Let X be a 2-normed space. Then,
(1) $\mid\|x, z\|-\|y, z\|\|\leq\| x-y, z \|$ for all $x, y, z \in X$,
(2) if $\|x, z\|=0$ for all $z \in X$, then $x=0$,
(3) for a convergent sequence x_{n} in X,

$$
\lim _{n \longrightarrow \infty}\left\|x_{n}, z\right\|=\left\|\lim _{n \longrightarrow \infty} x_{n}, z\right\|
$$

for all $z \in X$.

In [16], Won-Gil Park has investigated approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in 2-Banach spaces. In [3], A. Alotaibi and S.A. Mohiuddine have investigated stability of the cubic functional equation in random 2-normed spaces.

In [15], S.H. Lee, S.M. Im and I.S. Hwang considered the following functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y) \tag{1}
\end{equation*}
$$

and they established the general solution and the stability problem for the functional equation (1) (see also [17]). It is easy to show that the function $f(x)=x^{4}$ satisfies the functional equation (1), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping.

In this paper, we prove the Hyers-Ulam-Rassias stability of the quartic functional equation (1) in 2-Banach spaces by using the direct method and fixed point method.

2. Stability of the functional equation (1): Direct method

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the quartic functional equation (1) in 2-Banach spaces. Let X be a linear space and Y be a

2-Banach space with $\operatorname{dim} Y>1$. For convenience, we use the following abbreviation for a given mapping $f: X \rightarrow Y$

$$
\begin{equation*}
D f(x, y):=f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y) \tag{2}
\end{equation*}
$$

for all $x, y \in X$.
Theorem 2.1. Let $\varphi: X \times X \longrightarrow[0,+\infty)$ be a function such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y):=\sum_{k=0}^{\infty} \frac{1}{2^{4 k}} \varphi\left(2^{k} x, 2^{k} y\right)<\infty \tag{3}\\
\lim _{n \longrightarrow \infty} \frac{1}{2^{4 n}} \varphi\left(2^{n} x, 2^{n} y\right)=0 \tag{4}
\end{gather*}
$$

for all $x, y \in X$. Suppose that $f: X \longrightarrow Y$ be a mapping with

$$
\begin{equation*}
\|D f(x, y), z\| \leq \varphi(x, y) \tag{5}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then, there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{1}{32} \widetilde{\varphi}(x, 0) \tag{6}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. Putting $x=y=0$ in (5), we obtain $f(0)=0$. Putting $y=0$ in (5), we get

$$
\begin{equation*}
\left\|\frac{1}{16} f(2 x)-f(x), z\right\| \leq \frac{1}{32} \varphi(x, 0) \tag{7}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$. If we replace x by $2^{n} x$ in (7) and divide both sides of (7) by $2^{4 n}$, we infer that

$$
\left\|\frac{1}{2^{4(n+1)}} f\left(2^{n+1} x\right)-\frac{1}{2^{4 n}} f\left(2^{n} x\right), z\right\| \leq \frac{1}{2^{4 n+5}} \varphi\left(2^{n} x, 0\right)
$$

for all $x \in X$, all $z \in Y$ and integers $n \geq 1$. Hence, we have

$$
\begin{gather*}
\left\|\frac{1}{2^{4(n+1)}} f\left(2^{(n+1)} x\right)-\frac{1}{2^{4 m}} f\left(2^{m} x\right), z\right\| \leq \sum_{i=m}^{n}\left\|\frac{1}{2^{4(i+1)}} f\left(2^{(i+1)} x\right)-\frac{1}{2^{4 i}} f\left(2^{i} x\right), z\right\| \\
\leq \frac{1}{32} \sum_{i=m}^{n} \frac{1}{2^{4 i}} \varphi\left(2^{i} x, 0\right) \tag{8}
\end{gather*}
$$

for all $x \in X$, all $z \in Y$ and all non-negative integers m and n with $n \geq m$. Therefore, we conclude from (3), (4) and (8) that the sequence $\left\{\frac{1}{2^{4 n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{4 n}} f\left(2^{n} x\right)\right\}$ converges in Y for all $x \in X$. So, we can define the mapping $Q: X \longrightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \longrightarrow \infty} \frac{1}{2^{4 n}} f\left(2^{n} x\right) \tag{9}
\end{equation*}
$$

for all $x \in X$. That is

$$
\lim _{n \longrightarrow \infty}\left\|\frac{1}{2^{4 n}} f\left(2^{n} x\right)-Q(x), z\right\|=0
$$

for all $x \in X$ and all $z \in Y$. Letting $m=0$ and passing the limit $n \longrightarrow \infty$ in (8), we get the inequality (6). Now, we show that $Q: X \longrightarrow Y$ is a quartic mapping. It follows from (3), (5), (9) and Lemma 1.5 that

$$
\|D Q(x, y), z\|=\lim _{n \longrightarrow \infty} \frac{1}{2^{4 n}}\left\|D f\left(2^{n} x, 2^{n} y\right), z\right\| \leq \lim _{n \longrightarrow \infty} \frac{1}{2^{4 n}} \varphi\left(2^{n} x, 2^{n} y\right)=0
$$

for all $x, y \in X$ and all $z \in Y$. By Lemma 1.6, we obtain that $D Q(x, y)=0$ for all $x, y \in X$. So, the mapping $Q: X \longrightarrow Y$ is quartic. To prove the uniqueness of Q, let $A: X \longrightarrow Y$ be another quartic mapping satisfying (6). Since the mapping $A: X \longrightarrow Y$ satisfies (1), then by letting $y=0$ in (1) we get $A(2 x)=2^{4} f(x)$ for all $x \in X$. Therefore, we have

$$
\|Q(x)-A(x), z\|=\lim _{n \longrightarrow \infty} \frac{1}{2^{4 n}}\left\|Q\left(2^{n} x\right)-A\left(2^{n} x\right), z\right\| \leq \frac{1}{32} \lim _{n \longrightarrow \infty} \widetilde{\varphi}\left(2^{n} x, 0\right)=0
$$

for all $x \in X$ and all $z \in Y$. By Lemma 1.6, $\|Q(x)-A(x)\|=0$ for all $x \in X$. So $Q=A$. This proves the uniqueness of Q.

Corollary 2.2. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $\left(Y,\|., .\|_{Y}\right)$ be a 2-Banach space. Let ϵ and p be nonnegative real numbers with $p<4$ and let $f: X \longrightarrow Y$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y), z\|_{Y} \leq \epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right) \tag{10}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\|_{Y} \leq \frac{\epsilon}{32-2^{p+1}}\|x\|_{X}^{p} \tag{11}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. In Theorem 2.1, let $\varphi(x, y)=\epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right)$ for all $x, y \in X$. Then (10) implies that $f(0)=0$. So we obtain (11) from (6).

Theorem 2.3. Let $\varphi: X \times X \longrightarrow[0,+\infty)$ be a function such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y):=\sum_{k=0}^{\infty} \frac{1}{3^{4 k}} \varphi\left(3^{k} x, 3^{k} y\right)<\infty \tag{12}\\
\lim _{n \longrightarrow \infty} \frac{1}{3^{4 n}} \varphi\left(3^{n} x, 3^{n} y\right)=0 \tag{13}
\end{gather*}
$$

for all $x, y \in X$. Suppose that $f: X \longrightarrow Y$ be a mapping with

$$
\begin{equation*}
\|D f(x, y), z\| \leq \varphi(x, y) \tag{14}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then, there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{1}{81}(\widetilde{\varphi}(x, x)+2 \widetilde{\varphi}(x, 0)) \tag{15}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. Putting $x=y=0$ in (14), we get $f(0)=0$. Replacing y by x in (14), we get

$$
\begin{equation*}
\|f(3 x)-4 f(2 x)-17 f(x), z\| \leq \varphi(x, x) \tag{16}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Letting $y=0$ in (14), we obtain

$$
\begin{equation*}
\|2 f(2 x)-32 f(x), z\| \leq \varphi(x, 0) \tag{17}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. From (16) and (17), we get

$$
\begin{equation*}
\left\|\frac{1}{81} f(3 x)-f(x), z\right\| \leq \frac{1}{81}(\varphi(x, x)+2 \varphi(x, 0)) \tag{18}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. We replace x by $3^{n} x$ in (18) and divide both sides of (18) by $3^{4 n}$, we infer that

$$
\left\|\frac{1}{3^{4(n+1)}} f\left(3^{n+1} x\right)-\frac{1}{3^{4 n}} f\left(3^{n} x\right), z\right\| \leq \frac{1}{3^{4 n+4}}(\varphi(x, x)+2 \varphi(x, 0))
$$

for all $x \in X$, all $z \in Y$ and integers $n \geq 1$. Hence, we have

$$
\begin{gathered}
\left\|\frac{1}{3^{4(n+1)}} f\left(3^{(n+1)} x\right)-\frac{1}{3^{4 m}} f\left(3^{m} x\right), z\right\| \leq \sum_{i=m}^{n}\left\|\frac{1}{3^{4(i+1)}} f\left(3^{(i+1)} x\right)-\frac{1}{3^{4 i}} f\left(3^{i} x\right), z\right\| \\
\leq \frac{1}{81} \sum_{i=m}^{n} \frac{1}{3^{4 i}} \varphi\left(3^{i} x, 3^{i} x\right)+\frac{1}{81} \sum_{i=m}^{n} \frac{1}{3^{4 i}} \varphi\left(3^{i} x, 0\right)
\end{gathered}
$$

for all $x \in X$, all $z \in Y$ and all non-negative integers m and n with $n \geq m$. Therefore, we conclude from (12), (13) and (19) that the sequence $\left\{\frac{1}{3^{4 n}} f\left(3^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, there exists a mapping $Q: X \longrightarrow Y$ defined by

$$
\begin{equation*}
Q(x):=\lim _{n \longrightarrow \infty} \frac{1}{3^{4 n}} f\left(3^{n} x\right) \tag{20}
\end{equation*}
$$

for all $x \in X$. Letting $m=0$ and passing the limit $n \longrightarrow \infty$ in (19), we get the inequality (15). The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $\left(Y,\|., .\|_{Y}\right)$ be a 2-Banach space. Let ϵ and p be nonnegative real numbers with $p<4$ and lat $f: X \longrightarrow Y$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y), z\|_{Y} \leq \epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right) \tag{21}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\|_{Y} \leq \frac{4 \epsilon}{81-3^{p}}\|x\|_{X}^{p} \tag{22}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. In Theorem 2.3, let $\varphi(x, y)=\epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right)$ for all $x, y \in X$. Then (21) implies that $f(0)=0$. So we obtain (22) from (15).

Corollary 2.5. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $\left(Y,\|., .\|_{Y}\right)$ be a 2-Banach space. Let ϵ, p and q be nonnegative real numbers with $p+q<4$ and let $f: X \longrightarrow Y$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y), z\|_{Y} \leq \epsilon\left(\|x\|_{X}^{p} \cdot\|y\|_{X}^{q}\right) \tag{23}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\|_{Y} \leq \frac{\epsilon}{81-3^{p+q}}\|x\|_{X}^{p+q} \tag{24}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. In Theorem 2.3, let $\varphi(x, y)=\epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{q}\right)$ for all $x, y \in X$. Then (23) implies that $f(0)=0$. So we obtain (24) from (15).

3. Stability of the functional equation (1): Fixed point method

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the quartic functional equation (1) by using fixed point method in 2-Banach spaces. We recall a fundamental result in fixed point theory.
Let X be a set. A function $d: X \times X \rightarrow[0, \infty)$ is called a generalized metric on X if d satisfies :

- $d(x, y)=0$ if and only if $x=y$,
- $d(x, y)=d(y, x)$ for all $x, y \in X$,
- $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 3.1. [8] Suppose we are given a complete generalized metric space (X, d) and a strictly contractive mapping $J: X \rightarrow X$, with the Lipshitz constant $L<1$. If there exists a nonnegative integer k such that

$$
d\left(J^{k} x, J^{k+1} x\right)<\infty
$$

for some $x \in X$, then the following are true:
(I) the sequence $J^{n} x$ converges to a fixed point x^{*} of J;
(II) x^{*} is the unique fixed point of J in the set $Y=\left\{y \in X: d\left(J^{k} x, y\right)<\infty\right\}$;
(III) $d\left(y, x^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

In 1996, Isac and Th.M. Rassias [14] were the first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with applications.

Theorem 3.2. Let $f: X \longrightarrow Y$ be a mapping for which there exists a function $\varphi: X^{2} \longrightarrow[0, \infty)$ satisfying

$$
\begin{gather*}
\phi(x):=\varphi(x, x)+2 \varphi(x, 0) \\
\|D f(x, y), z\| \leq \varphi(x, y) \tag{25}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{1}{3^{4 n}} \varphi\left(3^{n} x, 3^{n} y\right)=0 \tag{26}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Let $0<L<1$ be a constant such that $\varphi(x, y) \leq 81 L \varphi\left(\frac{x}{3}, \frac{y}{3}\right)$ for all $x, y \in X$. Then, there exists a unique quartic mapping $Q: X \longrightarrow Y$ satisfying

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{1}{81(1-L)} \phi(x) \tag{27}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. Let us consider the set $S:=\{g: X \longrightarrow Y\}$ and introduce the generalized metric on S as follows:

$$
d(g, h)=\inf \{\alpha \in[0, \infty):\|g(x)-h(x), z\| \leq \alpha \phi(x), \forall x \in X \text { and } \forall z \in Y\}
$$

where, as usual, inf $\varnothing=+\infty$. The proof of the fact that (S, d) is a complete generalized metric space can be found in [6]. Now, we consider the linear mapping $J: S \longrightarrow S$ defined by

$$
J g(x):=\frac{1}{81} g(3 x)
$$

for all $g \in S$ and all $x \in X$. First we assert that J is strictly contractive on S. For given $g, h \in S$, let $\alpha \in[0, \infty)$ be an arbitrary constant with $d(g, h) \leq \alpha$, that is

$$
\|g(x)-h(x), z\| \leq \alpha \phi(x)
$$

So we have

$$
\|J g(x)-J h(x), z\|=\frac{1}{81}\|g(3 x)-h(3 x), z\| \leq \frac{1}{81} \alpha \phi(3 x) \leq \alpha L \phi(x)
$$

for all $g, h \in S$, all $x \in X$ and all $z \in Y$. Then, $d(J g, J h) \leq L d(g, h), \forall g, h \in S$; that is, J is a strictly contractive self-mapping on S with the Lipschitz constant L. Replacing y by x in (25), we have

$$
\begin{equation*}
\|f(3 x)-4 f(2 x)-17 f(x), z\| \leq \varphi(x, x) \tag{28}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$. Letting $y=0$ in (25), we get

$$
\begin{equation*}
\|2 f(2 x)-32 f(x), z\| \leq \varphi(x, 0) \tag{29}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$. From the inequalities (29) and (30), it follows that

$$
\|f(3 x)-81 f(x), z\| \leq(\varphi(x, x)+2 \varphi(x, 0))
$$

Then,

$$
\begin{equation*}
\left\|\frac{1}{81} f(3 x)-f(x), z\right\| \leq \frac{1}{81} \phi(x) \tag{30}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$. Hence,

$$
d(f, J f) \leq \frac{1}{81}
$$

for all $f \in S$. By Theorem 3.1, there exists a unique mapping $Q: X \longrightarrow Y$ satisfying the following:

- Q is fixed point of J, that is, $Q(3 x)=81 Q(x)$ for all $x \in X$. The mapping Q is a unique fixed point of J in the set $M=\{g \in S: d(f, g) \leq \infty\}$. This implies that Q is a unique mapping such that there exists $\alpha \in(0, \infty)$ satisfying $\|f(x)-Q(x), z\| \leq \alpha \phi(x)$, for all $x \in X$ and $z \in Y$.
- $d\left(J^{n}, Q\right) \longrightarrow 0$ as $n \longrightarrow \infty$, which implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} J^{n} f(x)=\lim _{n \rightarrow+\infty} \frac{f\left(3^{n} x\right)}{3^{4 n}}=Q(x) \tag{31}
\end{equation*}
$$

for all $x \in X$.

$$
\begin{equation*}
d(f, Q) \leq \frac{1}{1-L} d(f, J f) \leq \frac{1}{81(1-L)} \tag{32}
\end{equation*}
$$

which implies the inequality (28)
It follows from (25), (26) and (32), that

$$
\|D Q(x, y), z\|=\lim _{n \rightarrow+\infty} \frac{1}{3^{4 n}}\left\|D f\left(3^{n} x, 3^{n} y\right), z\right\| \leq \lim _{n \rightarrow+\infty} \frac{1}{3^{4 n}} \varphi\left(3^{n} x, 3^{n} y\right)=0
$$

for all $x, y \in X$ and all $z \in Y$. Hence, $Q: X \longrightarrow Y$ is a quartic mapping, as desired.
Corollary 3.3. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $\left(Y,\|., .\|_{Y}\right)$ be a 2-Banach space. Let ϵ and p be nonnegative real numbers with $p<4$ and let $f: X \longrightarrow Y$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y), z\|_{Y} \leq \epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right) \tag{33}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\|_{Y} \leq \frac{4 \epsilon}{81-3^{p}}\|x\|_{X}^{p} \tag{34}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.
Proof. Taking $\varphi(x, y)=\epsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right)$ for all $x, y \in X$ and choosing $L=3^{p-4}$ in Theorem 3.2, we get the desired result.

Corollary 3.4. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $\left(Y,\|., .\|_{Y}\right)$ be a 2-Banach space. Let ϵ, p and q be nonnegative real numbers with $p+q<4$ and let $f: X \longrightarrow Y$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y), z\|_{Y} \leq \epsilon\left(\|x\|_{X}^{p} \cdot\|y\|_{X}^{q}\right) \tag{35}
\end{equation*}
$$

for all $x, y \in X$ and all $z \in Y$. Then there exists a unique quartic mapping $Q: X \longrightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x), z\|_{Y} \leq \frac{\epsilon}{81-3^{p+q}}\|x\|_{X}^{p+q} \tag{36}
\end{equation*}
$$

for all $x \in X$ and all $z \in Y$.

Proof. Taking $\varphi(x, y)=\epsilon\left(\|x\|_{X}^{p} \cdot\|y\|_{X}^{q}\right)$ for all $x, y \in X$ and choosing $L=3^{p+q-4}$ in Theorem 3.2, we get the desired result.

References

[1] M. Almahalebi, A fixed point approach of quadratic functional equations, Int. Journal of Math. Analysis, Vol. 7 (2013), no.30, 1471-1477.
[2] M. Almahalebi and S. Kabbaj, A fixed point approach to the orthogonal stability of an additive quadratic functional equation, Advances in Fixed Point Theory, (2013) (submitted).
[3] A. Alotaibi, S.A. Mohiuddine, On the stability of a cubic functional equation in random 2-normed spaces, Advan. in Diff. Equat.,doi:10.1186 /1687-1847-201 2-39, 2012.
[4] T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan, vol. 2, pp. 64?6, 1950.
[5] L. Cădariu and V. Radu, Fixed points and the stability of Jensen s functional equation, J. Inequal Pure Appl Math.4(1), Art.ID4 (2003).
[6] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 , 43-52 (2004).
[7] S. Czerwik, Functional equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
[8] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull Amer Math Soc.74, 305-309 (1968).
[9] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963) 115-148.
[10] S. Gähler, Linear 2-normiete Räumen, Math. Nachr. 28 (1964) 1-43.
[11] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[12] D. H.Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27, (1941), 222-224.
[13] D.H. Hyers, G. Isac,and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel 1998.
[14] G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: applications to nonlinear analysis, Intern J Math Math Sci.19, 219-228 (1996).
[15] S.H. Lee, S.M. Im, I.S. Hwang, Quartic functional equation, J. Math. Anal. Appl. 307(2005) 787-394.
[16] W.G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011) 193-202.
[17] J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. 34(1999) 243-252.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297?00, 1978.
[19] S.M. Ulam, A collection of the Mathematical Problems, Interscience Publ. New York, (1960), 431436.

[^0]: *Corresponding author

