
SPACELIKE CONSTANT ANGLE SURFACES IN MINKOWSKI
3-SPACE
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Abstract. In [1], the classi�cations are given for the spacelike surfaces whose the normals make a constant

angle with a timelike constant direction. In this paper, by choosing the constant direction spacelike ,

we observed that there are di¤erent kinds of surfaces in the classi�cation. As a result, a thorough

classi�cation is given for constant angle spacelike surfaces. It is shown that the minimal spacelike constant

angle surfaces are planes. Finally , examples are given to show the spacelike constant angle surfaces.
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1. Introduction

A constant angle surfaces in Euclidean 3-space is a surface whose the unit normal

makes a constant angle with a �xed direction. These surfaces generalize the concept of

helix, that is, curves whose tangent lines make a constant angle with a �xed vector of E3:

Helical features characterise all screws and bolts as well as some gears. These com-

ponents therefore play important roles in mechanical construction and are studied in

undergraduate mechanical engineering.
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Their representations in an assembly would be treated in courses on mechanics and

machines, and their production, to some extent, in workshop practice. Also, DNA (de-

oxyribonucleic acid) is a double-stranded molecule that is twisted into a helix like spiral

staircase.

Recently, constant angle surfaces have been the subject of some studies: Munteanu and

Nistor [6] studied constant angle surfaces in Euclidean 3-space. They obtained classi�ca-

tions for all constant angle surfaces in E3: Cermelli and Scala [2] proved that constant

angle surfaces have some important applications to physics, it was shown how constant

angle surfaces can be used to describe interfaces occurring in special equilibrium con�g-

urations of liquid crystals and layered �uids. Lopez and Munteanu [1] studied constant

angle surfaces in Minkowski 3-space. But , they investigated only spacelike surfaces with

the constant timelike direction. They gave a parametrization for such surfaces as

r(u; v) = (u cosh� cos(v) + 1 (v); u cosh� sin(v) + 2 (v);�u sinh�)

where

(v) = (1(v); 2(v)) = sinh�

0@ vZ
0

sin(�)�(�)d� ;�
vZ
0

cos(�)�(�)d�

1A

By choosing the constant direction spacelike, we obtain di¤erent parametrazion for

the spacelike surfaces. Morever, we show that minimal spacelike constant angle surfaces

are planes.The objective of the study in this paper is to classify spacelike constant angle

surfaces in Minkowski 3-space IR31. By choosing the constant direction spacelike , we

obtain di¤erent parametrizations for the spacelike surfaces. Moreover, we show that

minimal spacelike constant angle surfaces are planes.

2. Preliminaries

Let us consider Minkowski 3-space IR31 = [IR
3; (+;+;�)] . The norm of X 2 IR31 is

denoted by kXk and de�ned as kXk =
p
jhX;Xij:A vector X = (x1; x2; x3) 2 IR31 is

called a spacelike, timelike and null (lightlike) vector if hX;Xi > 0 or X = 0 , hX;Xi <



SPACELIKE CONSTANT ANGLE SURFACES IN MINKOWSKI 3-SPACE 453

0 and hX;Xi = 0 for X 6= 0 , respectively: A timelike vector is said to be positive

(resp.negative) if and only if x3 > 0 (resp.x3 < 0), [4]. A smooth regular curve � : I �

IR ! IR31 is said to be timelike, spacelike or lightlike curve if the velocity vector �
0
is a

timelike, spacelike or lightlike vector, respectively [4]. In fact, a timelike curve corresponds

to the path of on observer moving at less than the speed of light. Null curves correspond

to moving at the speed of light and spacelike curves to moving faster than light.

For X and Y be spacelike vectors in IR31:

If the inequality jhX; Y ij > kXk kY k is satis�ed, there is a unique real number � such

that, hX; Y i = kXk kY k cosh�:

If the inequality jhX; Y ij � kXk kY k is satis�ed, there is a unique real number � such

that, hX; Y i = kXk kY k cos�:

Let X be � spacelike vector and Y be a positive timelike vector in IR31: Then there

is a unique nonnegative real number � such that hX; Y i = kXk kY k sinh�:For X and

Y be timelike vectors in IR31:Then there is a unique real number � such that, hX; Y i =

kXk kY k cosh�; [5] A surfaceM in IR31 is called a spacelike surface if the induced metric

g on the surface is a Euclid metric. The normal vector on the timelike surface is a

spacelike vector, [6]. Let M is a spacelike surface in IR31 and N is unit normal of M .

For all X; Y 2 �(M); we get DXY = DXY � g(S(X); Y )N where is induced metric

on the surface M , D and D are Levi-Civita connections on IR31 and M , respectively.

S : �(M)! �(M), S(X) = �DXN is the shape operator ofM , [4] : The mean curvature

H of the spacelike surface r = r(u; v) is given by

H =
1

2
(2FM �GL� En)

�
F 2 � EG

��1
(2:1)

where E = g(ru; ru), F = g(ru; rv), G = g(rv; rv), L = g(r uu; N), M = g(ruv; N),

n = g(rvv; N) are coe¢ cients of the Minkowski �rst and second fundamental forms,[7] : A

spacelike surface with vanishing mean curvature is called a minimal surface, [8] :
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3.Spacelike Constant Angle with Constant Spacelike Direction

Let M be a spacelike surface and � be constant angle between the unit normal N =

(n1; n2; n3) and the �xed spacelike direction k. Without loss of generality, the �xed

direction is taken to be the �rst real axis.

There is one case for angle � :

g(N; k) = sinh�:

Now we will examine this case :

Since k is a spacelike unit vector, for an unitary spacelike vector �eld e1 on M , we get

k = cosh�e1 + sinh�N (3:1)

Lemma 1. Let e2 be an unitary vector �eld on M and orthogonal to e1. For the ortho-

normal basis fe1; e2g of �(M); we get

De2N = �e2 ; De2 e1 = �� tanh�e2 ; � = �(u; v)

De1N = De1e1 = De1e2 = 0:

Proof. By applying De2 to the equality (3:1), we have

De2k = cosh�De2e1 + sinh�De2N (3:2)

Since e2 [g (N; e1)] = 0; we get

g
�
De2N; e1

�
+ g

�
N;De2e1

�
= 0 (3:3)
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As e2 [g (N;N)] = 0. This clearly implies that De2N 2 �(M): Therefore

De2N = �1e1 + �e2 (3:4)

From (3:2) and (3:4) , we get

De2e1 = � tanh� (�1e1 + �e2) (3:5)

we will investigate the case � = 0 later. It is easy to see, from (3:3), that De2N = �e2

and De2e1 = �� tanh�e2.

Next by applying De1 for the equality (3.1), we obtain

De1k = cosh�De1e1 + sinh�De1N (3:6):

Since e1 [g (N;N)] = 0, we get

De1N = �1e1 + �2e2 ; �1; �2 2 IR (3:7)

From (3:6) , (3:7) and e1 [g (e1; e1)] = 0 , we have

De1e1 = ��2 tanh�e2 (3:8)

Because the shape operator S ofM is symmetric, we see that, g(S(e1); e2) = g(e1; S(e2));

�2 = �1 = 0. Hence, we get De1N = De1e1 = 0:

With respect to the basis fe1; e2; Ng of IR31; we can write De1e2 = a1e1 + a2e2 +

a3N ; a1; a2; a3 2 IR: Simply calculations give

De1e2 = 0:

Now, we can give the following results:
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Corollary 3.1

De1e1 = De1e2 = 0; De2e1 = �� tanh�e2; De2e2 = � tanh�e1:

The spacelike surface M can be expressed as r = r(u; v) = (x(u; v); y(u; v); z(u; v)):

We may assume that ru = e1 , rv = �(u; v)e2 where � :M ! IR is a smooth function.

By corollary 3.1, we get

r uu = 0; rvu = �u
1

�
rv; ruv = �� tanh�rv

and

rvv = ��
2 tanh�ru +

1

�
�vrv + ��

2N

Since ruv = rvu and Nuv = Nvu , we obtain the following diferential equations:

�u + �� tanh� = 0; �u � �2 tanh� = 0 (3:9)

solving the equations (3:9), we have

�(u; v) = � coth�

u+ �(v)
; �(u; v) = '(v)(u+ �(v)) (3:10)

or

�(u; v) = 0; �(u; v) = �(v) (3:11)

Now we can give the classi�cations for M: Let (3:10) be a solution for equations (3:9):

Since g(ru; k) = cosh� and g(rv; k) = 0 , we get
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r(u; v) = (u cosh�; h(u; v))

where h(u; v) 2 IR21: As g(ru; ru) = 1 , we have that

g(hu; hu) = y
2
u � z2u = � sinh2 �:

Therefore, we obtain

hu = (sinh�f1(v); sinh�f2(v))

where f(v) = (f1(v); f2(v)) 2 IR21 and kf(v)k = 1: Thus, we get

r(u; v) = (u cosh�; u sinh�f1(v) + 1(v); u sinh�f2(v) + 2(v))

As ruv = rvu , it is easy to see that

d1
dv

= sinh�
df1
dv
�(v)

d2
dv

= sinh�
df2
dv
�(v):

Without loss of generality, if we get f(v) = (cosh v; sinh v); this implies that

r(u; v) = (u cosh�; u sinh� cosh v + 1(v); u sinh� sinh v + 2(v)) (3:12)

where
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(v) = (1(v); 2(v)) = sinh�

0@ vZ
0

sinh ��(�)d� ;

vZ
0

cosh ��(�)d�

1A
Let (3:11) be a solution for equations (3:9): Since �u = 0; we have rvu = 0: As ruu = 0

and ruv = 0 , we get huu = 0 and huv = 0: This implies that hu is a constant vector

in IR21: We may assume that hu = (sinh� sinh�;� sinh� cosh�) such that � is a con-

stant. Therefore, we can write h(u; v) = (u sinh� sinh�+1(v);�u sinh� cosh�+2(v)).

Because ru and rv are orthogonal, we obtain

(v) = (1(v); 2(v)) = (cos��(v);� sinh��(v)):

The last equation implies that

r(u; v) = (u cosh�; u sinh� sinh�+ cosh��(v);�u sinh� cosh�� sinh��(v))

By applying a Lorentz transformation of the form

26664
0 cosh� sinh�

0 sinh� cosh�

1 0 0

37775
We obtain

r(u; v) = (�(v);� u sinh�; cosh�)

This is a parametrization for the Lorentz plane

cosh�y + sinh�z = 0:
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Special Case: If � = 0 then k = e1: Thus , k is a tangent to M . It follows that

r(u; v) = (u; cosh��(v); sinh��(v)):

In this case, M is a part of the cylindrical surface.

Finally, we can give the following theorem:

Theorem 3.1. Every spacelike constant angle surface M with constant spacelike direc-

tion is a congruent to the following surfaces:

(i) r(u; v) = (u cosh�; u sinh� cosh v + 1(v); u sinh� sinh v + 2(v))

where

(v) = (1(v); 2(v)) = sinh�

0@ vZ
0

sinh ��(�)d� ;

vZ
0

cosh ��(�)d�

1A :
(ii) A part of the cylindrical surface:

r(u; v) = (u; 1 (v); 2 (v))

where

(v) = (1(v); 2(v)) = (cos��(v);� sinh��(v))

(iii) A Lorentz plane which have the equation

cosh�y + sinh�z = 0

From (2:1), The mean curvature of the spacelike constant angle surface M is given by
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H = �1
2
"�:

where " = g(k; k): Thus we can give the following result:

Corollary 3.2. Minimal spacelike constant angle surface are the planes.

Example 3.1.

a) If we take �(v) = 1 and � = 2 in (3:12); we obtain the following parametrization

for

M : r(u; v) = (u cosh(2); cosh(v) (u sinh(2) + 1)� 1; sinh(v)(u sinh(2) + 1) (Fig:1)

b) If we take �(v) = v and � = 2 in (3:12); we obtain the following parametrization

for

M : r(u; v) =

0@ u cosh(2); cosh(v) (u sinh(2)� 1) + 1 + v sinh(v);

sinh(v)(u sinh(2)� 1 + v cosh(v)

1A (Fig:2)
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Figure 1: Spacelike constant angle surface

with spacelike direction

Figure 2: Spacelike constant angle surface with

spacelike direction
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