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Abstract. A canal surface is the envelope of a moving sphere with varying radius, de�ned

by the trajectory C(t) of its centers and a radius function r(t) and canal surface is para-

metrized through Frenet frame of the spine curve C(t). In this paper, we parametrize

the perspective silhouette of a canal surface in Minkowski 3-space when the spine curve

C(t) is a spacelike or timelike curve and then we detect all connected components of the

silhouette.
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1. Introduction

The perspective silhouette curve of a parametric surface S(u; v) comprises a set of

surface points which satisfy

N(u; v) � (S(u; v)��!O ) = 0

where N(u; v) is the surface normal of S(u; v),
�!
O is the viewpoint and "�" is the dot
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product in the Euclidean 3-space. For the silhouette curve, an alternative de�nition can

be given below.

Silhouette curve can be de�ned as a nice consequence of Lambert�s cosine law in optics

branch of physics. Lambert�s law states that the intensity of illumination on a di¤use

surface is proportional to the cosine of the angle generated between the surface normal

vector N and the light vector d (Here, in the case of silhouette curve cos � = 0 , i.e.,

� =
�

2
). According to this law the intensity is irrespective of the actual viewpoint, hence

the illumination is the same when viewed from any direction [11].

In computer graphics, silhouette �nding and rendering has a central role in a grow-

ing number of applications. The silhouette is the simplest form of line art and is used

in cartoons, technical illustrations, architectural design and medical atlases. In non-

photorealistic rendering (NPR), complex models and scenes are rendered as simple line

drawings by rendering silhouette edges [1].

Silhouettes are among the most important lines in describing the shape of a three-

dimensional object. Also, they play a signi�cant role in non-photorealistic rendering.

More recently, Seong et al: [10] introduced an e¢ cient and robust algorithm for computing

the perspective silhouette of the boundary of a general swept volume and also construct

the topology of connected components of the silhouette.

Kim and Lee [7] presented a method for computing the perspective silhouette of canal

surfaces. They utilized the fact that both these types of surface can be decomposed into a

set of circles and the normal vectors of these circles form a cone. Using the characteristics,

they computed the perspective silhouettes of these surfaces.

A canal surface is the envelope of a family of one parameter spheres and is useful to

represent various objects e.g. pipe, hose, rope or intestine of a body. Moreover, canal

surface is an important instrument in surface modelling for CAD/CAM such as tubular

surfaces, torus and Dupin cyclides.

This paper is organized as follows. Section 2 presents basic concepts about curves in

Minkowski 3-space. In section 3 we observe the perspective silhouette of a canal surface
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in Euclidean 3-space. Finally, in section 4 we obtain the perspective silhouettes of canal

surfaces in Minkowski 3-space.

2. Preliminaries

We start to introduce Minkowski 3-space. The space R31 is a three dimensional real

vector space endowed with the inner product

hx; yiL = �x1y1 + x2y2 + x3y3:

This space is called Minkowski 3-space or Lorentz Minkowski space and denoted by E31 .

A vector in this space is said to be spacelike, timelike and lightlike (null) if hx; xi > 0 or

x = 0, hx; xi < 0 and hx; xi = 0 or x 6= 0, respectively. Also, a regular curve � : I �! E31

is called spacelike, timelike and lightlike if the velocity vector
:
� is spacelike, timelike and

lightlike, respectively [8].

The cross product of x = (x1; x2; x3) and y = (y1; y2; y3) in R31 is de�ned as follows.

x� y =

���������
e1 �e2 �e3
x1 x2 x3

y1 y2 y3

��������� = (x2y3 � x3y2; x1y3 � x3y1; x2y1 � x1y2)
where �ij is kronecker delta, ei = (�i1; �i2; �i3) and e1�e2 = �e3, e2�e3 = e1, e3�e1 = �e2.

Let ft; n; bg be the moving Frenet frame along the curve � with arclenght parameter s.

For a spacelike curve �, the Frenet-Serret equations are26664
t
0

n
0

b
0

37775 =
26664
0 � 0

�"� 0 �

0 � 0

37775
26664
t

n

b

37775
where ht; ti = 1, hn; ni = �1, hb; bi = �", ht; ni = ht; bi = hn; bi = 0 and � is the curvature

and � is the torsion of �. Here, " determines the kind of spacelike curve �. If " = 1,

then �(s) is a spacelike curve with spacelike principal normal n and timelike binormal b.

If " = �1, then �(s) is a spacelike curve with timelike principal normal n and spacelike

binormal b [6].
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If the curve � is timelike, then the Frenet-Serret equations are26664
t
0

n
0

b
0

37775 =
26664
0 � 0

� 0 �

0 �� 0

37775
26664
t

n

b

37775
where ht; ti = �1, hn; ni = hb; bi = 1, ht; ni = ht; bi = hn; bi = 0 [6].

De�nition 1 ([9]). Let v and w be spacelike vectors.

(a) If v and w span a timelike vector subspace, then there is a unique non-negative real

number � � 0 such that

hv; !i = kvk kwk cosh �:

(b) If v and w span a spacelike vector subspace, then there is a unique non-negative real

number � � 0 such that

hv; !i = kvk kwk cos �:

De�nition 2 ([9]). Let v be a spacelike vector and w be a positive timelike vector in R31.

Then, there is a unique non-negative real number � � 0 such that

hv; wi = kvk kwk sinh �:

Lemma 1. In the Minkowski 3-space E31 , the following properties are satis�ed.

(i) Two timelike vectors are never orthogonal.

(ii) Two null vectors are orthogonal if and only if they are linearly dependent.

(iii) A timelike vector is never orthogonal to a null (lightlike) vector [6].

3. Canal Surface and Its Perspective Silhouette in E3

A canal surface is the envelope of a moving sphere with varying radius, de�ned by the

trajectory C(t) (spine curve) of its center and a radius function r(t). This moving sphere

S(t) is tangent to the canal surface at a characteristic circle K(t). Now, we decompose
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and parametrize the canal surface by means of its characteristic circles. A section of the

canal surface can be given as follows.

Figure 1:[7] A characteristic circle K(t) on the sphere S(t)

In this case the canal surface point p = K(t; �) holds the following equations.

kp� C(t)k = r(t)

(p� C(t)) � C 0
(t) + r(t)r

0
(t) = 0:

For the point p = K(t; �), the vector
������!
C(t)M(t) is orthogonal projection of

���!
C(t)p onto

tangent C
0
(t) as obtained below.

������!
C(t)M(t) =

���!
C(t)p � C 0

(t)

C 0(t) � C 0(t)
C

0
(t)

M(t)� C(t) =
(p� C(t)) � C 0

(t)

C 0(t) � C 0(t)
C

0
(t):

Furthermore, since (p � C(t)) � C 0
(t) = �r(t)r0(t) we get the center M(t) and radius

function R(t) of characteristic circles as

(3.1) M(t) = C(t) + r(t) cos�(t)
C

0
(t)

kC 0(t)k ; cos�(t) = �
r
0
(t)

kC 0(t)k

R(t) = r(t) sin�(t) = r(t)

q
kC 0(t)k2 � r0(t)2

kC 0(t)k
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where �(t) is the angle between
���!
C(t)p and C

0
(t). Thus, the canal surface is parametrized

as follows.

(3.2) K(t; �) =M(t) +R(t) (cos �n(t) + sin �b(t))

K(t; �) = C(t)� r(t)r0(t) C
0
(t)

kC 0(t)k2
+ r(t)

q
kC 0(t)k2 � r0(t)2

kC 0(t)k (cos �n+ sin �b)

where n(t) and b(t) are the principal normal and binormal to C(t), respectively. In other

words, n(t) and b(t) are the basis vectors of the plane containing characteristic circleK(t).

Here, when
C 0

(t)
2 > r0(t)2, the canal surface K(t; �) is regular.

From now on, we will examine the perspective silhouette of canal surface in Euclidean

3-space [7]. For the regular canal surfaceK(t; �), let tmin < t < tmax and N(t; �) be normal

vector of K(t; �). From a given viewpoint
�!
O = (Ox; Oy; Oz), the perspective silhouette of

canal surface is the set of points which satisfy

(3.3) N(t; �) � (K(t; �)��!O ) = 0:

Since tangent plane at p is the same for canal surface and moving sphere, the normal

N(t; �) can be written as

(3.4) N(t; �) = K(t; �)� C(t):

If Eq (3.4) is substituted in Eq (3.3), it follows that

A(t) cos � +B(t) sin � +D(t) = 0:

Then, the perspective silhouette of the canal surface is parametrized by

(3.5) p(t) =M(t) +R(t)(c(t)n(t) + s(t)b(t))

where

cos � =
�A(t)D(t)�B(t)

p
A(t)2 +B(t)2 �D(t)2

A(t)2 +B(t)2
= c(t)

sin � =
�B(t)D(t)� A(t)

p
A(t)2 +B(t)2 �D(t)2

A(t)2 +B(t)2
= s(t)
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and

A(t) = n(t) � (C(t)��!O )

B(t) = b(t) � (C(t)��!O )

D(t) =
�r0(t)C 0

(t) � (C(t)��!O ) + r(t)
C 0

(t)
2

kC 0(t)k
q
kC 0(t)k2 � r0(t)2

:

If it is computed a set of points p(t) by varying the value of the parameter t and connected

them, then the components of the silhouette are traced. Since A(t), B(t) and D(t) are

continuous functions, A(t)2+B(t)2�D(t)2 is also a continuous function. If there are two

values t0 and t1, such that tmin � t0; t1 � tmax and which also satisfy

A(t0)
2 +B(t0)

2 �D(to)2 < 0 and A(t1)2 +B(t1)2 �D(t1)2 > 0;

then there exists a value tm between t0 and t1 such that A(tm)2 + B(tm)2 �D(tm)2 = 0.

Therefore, the solutions of t which satisfy A(t)2+B(t)2�D(t)2 = 0 represent the boundary

values of t for the connected components of the silhouette. Thus, if A(t), B(t) and D(t)

are substituted in the equation A(t)2 + B(t)2 � D(t)2 = 0 and it is solved the obtained

equation, the connected components of the silhouette are found.

4. The Perspective Silhouette of A Canal Surface in E31

In this section we will obtain the perspective silhouette of a canal surface in Minkowski

3-space E31 . Initially, let us give canal surfaces in E
3
1 . A canal surface point p = K(t; �)

holds the following equations.

kp� C(t)kL = r(t)

(p� C(t)) � C 0
(t) + r(t)r

0
(t) = 0:

In this case,

(1) For a spacelike center curve C(t) with the spacelike normal, the canal surface is
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parametrized by

(4.1) K(t; �) = C(t)� r(t)r0(t) C
0
(t)

kC 0(t)k2
� r(t)

q
kC 0(t)k2 � r0(t)2

kC 0(t)k (cosh �n+ sinh �b)

where T =
C

0
(t)

kC 0(t)k [5].

(2) For a spacelike center curve C(t) with the timelike normal, the canal surface is para-

metrized by

(4.2) K(t; �) = C(t)� r(t)r0(t) C
0
(t)

kC 0(t)k2
� r(t)

q
kC 0(t)k2 � r0(t)2

kC 0(t)k (sinh �n+ cosh �b)

where T =
C

0
(t)

kC 0(t)k [3].

(3) For a timelike center curve C(t), the canal surface is parametrized by

(4.3) K(t; �) = C(t) + r(t)r
0
(t)

C
0
(t)

kC 0(t)k2
� r(t)

q
kC 0(t)k2 + r0(t)2

kC 0(t)k (cos �n+ sin �b)

where T =
C

0
(t)

kC 0(t)k [4].

In three cases above, since

hN(t; �); N(t; �)iL = hK(t; �)� C(t); K(t; �)� C(t)iL = r2(t) > 0;

the normal vector N(t; �) becomes spacelike, that is, the canal surfaces which are obtained

become timelike. For this reason, the perspective silhouette of canal surface in E31 can be

spacelike or timelike. For the cases (1) and (2), because

hp� C(t); p� C(t)iL = r2(t) > 0 and
D
C

0
(t); C

0
(t)
E
> 0;

from the De�nition 1(a) the angle between p � C(t) and C 0
(t) is cos�(t) = � r

0
(t)

kC 0(t)k .

Also, according to the De�nition 1(b) the angle between p� C(t) and C 0
(t) is

cosh�(t) = � r
0
(t)

kC 0(t)k :
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Then, the center and radius of characteristic circles are as follows.

M(t) = C(t)� r(t)r0(t) C
0
(t)

kC 0(t)k2

R(t) =

q
r2(t)� kM(t)� C(t)k2

= r(t)

q
kC 0(t)k2 � r0(t)2

kC 0(t)k :

Now, we will parametrize the perspective silhouette curve for three cases.

(1) For Eq (4.1), if we �rstly substitute N(t; �) and K(t; �) below

N(t; �) � (K(t; �)��!O ) = 0

(K(t; �)� C(t)) � (K(t; �)��!O ) = 0

[
�r(t)r0(t)
kC 0(t)k2

C
0
(t) +R(t)(cosh �n+ sinh �b)] �

[(C(t)��!O )� r(t)r
0
(t)

kC 0(t)k2
C

0
(t) +R(t)(cosh �n+ sinh �b)] = 0

�r(t)r0(t)
kC 0(t)k2

[C
0
(t) � (C(t)��!O )] +R(t) cosh �[n � (C(t)��!O )]

+R(t) sinh �[b � (C(t)��!O )] +R(t)2 + r(t)
2r

0
(t)2

kC 0(t)k2
= 0

and then we multiply the last equation by
1

R(t)
, we obtain

n � (C(t)��!O ) cosh � + b � (C(t)��!O ) sinh � +
�r0C 0

(t) � (C(t)��!O ) + r
C 0

(t)
2

kC 0(t)k
q
kC 0(t)k2 � r0(t)2

= 0:

By taking

A(t) = n(t) � (C(t)��!O )

B(t) = b(t) � (C(t)��!O )

D(t) =
�r0(t)C 0

(t) � (C(t)��!O ) + r(t)
C 0

(t)
2

kC 0(t)k
q
kC 0(t)k2 � r0(t)2

we obtain

A(t) cosh � +B(t) sinh � +D(t) = 0:
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Since cosh � =
p
1 + sinh2 �, we get the quadratic equation with unknown sinh �

(A(t)2 �B(t)2) sinh2 � � 2B(t)D(t) sinh � + A(t)2 �D(t)2 = 0:

Solutions of this quadratic equation are

sinh � =
B(t)D(t)� A(t)

p
B(t)2 +D(t)2 � A(t)2

A(t)2 �B(t)2 = sh(t):

So we have

cosh � =
�A(t)D(t)� A(t)

p
B(t)2 +D(t)2 � A(t)2

A(t)2 �B(t)2 = ch(t):

Then, the perspective silhouette can be parametrized by

(4.4) p(t) =M(t) +R(t)(ch(t)n(t) + sh(t)b(t)):

(2) For Eq (4.2), using N(t; �) = K(t; �)� C(t) and N(t; �) � (K(t; �)��!O ) = 0, we get

n � (C(t)��!O ) sinh � + b � (C(t)��!O ) cosh � +
�r0C 0

(t) � (C(t)��!O ) + r
C 0

(t)
2

kC 0(t)k
q
kC 0(t)k2 � r0(t)2

= 0:

If we take

A(t) = n(t) � (C(t)��!O )

B(t) = b(t) � (C(t)��!O )

D(t) =
�r0(t)C 0

(t) � (C(t)��!O ) + r(t)
C 0

(t)
2

kC 0(t)k
q
kC 0(t)k2 � r0(t)2

we obtain

A(t) sinh � +B(t) cosh � +D(t) = 0:

Since cosh � =
p
1 + sinh2 �, we get the quadratic equation with unknown sinh �

(A(t)2 �B(t)2) sinh2 � + 2A(t)D(t) sinh � +D(t)2 �B(t)2 = 0:

Solutions of this quadratic equation are

sinh � =
�A(t)D(t)�B(t)

p
A(t)2 �B(t)2 +D(t)2

A(t)2 �B(t)2 = sh(t):
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Hence we have

cosh � =
�B(t)D(t)� A(t)

p
A(t)2 �B(t)2 +D(t)2

A(t)2 �B(t)2 = ch(t):

Then, the perspective silhouette can be parametrized by

(4.5) p(t) =M(t) +R(t)(sh(t)n(t) + ch(t)b(t)):

(3) In the third case, since


C

0
(t); C

0
(t)
�
< 0 and hp� C(t); p� C(t)iL = r2(t) > 0, from

De�nition (2) sinh�(t) =
r
0
(t)

kC 0(t)k . Then

M(t) = C(t) + r(t)r
0
(t)

C
0
(t)

kC 0(t)k2

R(t) =

q
r2(t)� kM(t)� C(t)k2

= r(t)

q
kC 0(t)k2 + r0(t)2

kC 0(t)k :

For Eq (4.3), applying N(t; �) � (K(t; �)��!O ) = 0 we obtain

n � (C(t)��!O ) cos � + b � (C(t)��!O ) sin � +
r
0
C

0
(t) � (C(t)��!O ) + r

C 0
(t)
2

kC 0(t)k
q
kC 0(t)k2 + r0(t)2

= 0:

If we say

A(t) = n(t) � (C(t)��!O )

B(t) = b(t) � (C(t)��!O )

D(t) =
r
0
(t)C

0
(t) � (C(t)��!O ) + r(t)

C 0
(t)
2

kC 0(t)k
q
kC 0(t)k2 + r0(t)2

we get

A(t) cos � +B(t) sin � +D(t) = 0:

Therefore it concludes that

cos � =
�A(t)D(t)�B(t)

p
A(t)2 +B(t)2 �D(t)2

A(t)2 +B(t)2
= c(t)

and

sin � =
�B(t)D(t)� A(t)

p
A(t)2 +B(t)2 �D(t)2

A(t)2 +B(t)2
= s(t):
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In this case, the perspective silhouette can be parametrized by

(4.6) p(t) =M(t) +R(t)(c(t)n(t) + s(t)b(t)):

For the cases (1) and (2) the solutions of t which satisfy B(t)2 +D(t)2 � A(t)2 = 0 and

A(t)2�B(t)2+D(t)2 = 0 determine the boundary values of t for the connected components

of the silhouette, respectively. Again, for the case (3) the solutions of t which satisfy

A(t)2+B(t)2�D(t)2 = 0 determine the boundary values of t for the connected components

of the silhouette. Finally, by solving these equations, each connected component of the

perspective silhouettes are obtained.
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