

SOME REMARKS ON OPERATIONS ON GRAPHS

S. N. DAOUD ${ }^{1,2, *}$ AND O. A. EMBABY ${ }^{1,3}$
${ }^{1}$ Department of Applied Mathematics, Faculty of Applied Science, Taibah University, Al-Madinah, K.S.A.
${ }^{2}$ Department of Mathematics, Faculty of Science, El-Minufiya University, ShebeenEl-Kom, Egypt
${ }^{3}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta Egypt

Abstract

In this paper we investigate the closedness of some known operations on certain kinds of graphs. We show that the operations, Cartesian product and Tensor product are closed on Hamiltonian, Eulerian, and perfect graphs while they are not closed on triangulated graphs, it also the operation, join product, is shown to be not closed on Eulerian graphs but is closed on Hamiltonian, perfect and triangulated graphs. Other operations and graphs are also investigated.

Keywords: Cartesian product, Join product, Tensor product, Normal product, Composition product, Triangulated, Perfect, Hamiltonian, Eulerian graph.

Mathematics Subject Classification: 05C05, 05C50.

1- Introduction

By a simple graph G, we mean that a graph with no loops or multiple edges.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be simple graphs. Then
(1) The simple graph $G=(V, E)$, where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$ is called the union of G_{1} and G_{2}, and is denoted by $G_{1} \cup G_{2},[2,5]$.
When G_{1} and G_{2} are vertex disjoint, $G_{1} \cup G_{2}$ is denoted by $G_{1}+G_{2}$, and is called the sum of the graphs G_{1} and G_{2}.
(2) If G_{1} and G_{2} are vertex-disjoint graphs. Then the join, $G_{1} \vee G_{2}$, is the supergraph of $G_{1}+G_{2}$, in which each vertex of G_{1} is adjacent to every vertex of $G_{2},[2,6]$.
*Corresponding author
Received April 2, 2013
(3) The Cartesian product, $G_{1} \times G_{2}$, is the simple graph with vertex set $V\left(G_{1} \times G_{2}\right)=V_{1} \times V_{2}$ and edge set $E\left(G_{1} \times G_{2}\right)=\left[\left(E_{1} \times V_{2}\right) \cup\left(V_{1} \times E_{2}\right)\right]$ such that two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ iff either:
(i) $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2}, or
(ii) u_{1} is adjacent to v_{1} in G_{1} and $u_{2}=v_{2},[1,7]$.
(4) The composition, or lexicographic product, $G_{1}\left[G_{2}\right]$, is the simple graph with $V_{1} \times V_{2}$ as the vertex set in which the vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are adjacent if either u_{1} is adjacent to v_{1} or $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}.

The graph $G_{1}\left[G_{2}\right]$ need not to be isomorphic to $G_{2}\left[G_{1}\right],[2,8]$.
(5) The normal product, or the strong product, $G_{1} \circ G_{2}$, is the simple graph with $V\left(G_{1} \circ G_{2}\right)=V_{1} \times V_{2}$ where $\left(u_{1}, u_{2}\right)$ and ($\left.v_{1}, v_{2}\right)$ are adjacent in $G_{1} \circ G_{2}$ iff either:
(i) $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}, or
(ii) u_{1} is adjacent to v_{1} and $u_{2}=v_{2}$, or
(iii) u_{1} is adjacent to v_{1} and u_{2} is adjacent to $v_{2},[2,9]$.
(6) The tensor product, or Kronecher product, $G_{1} \otimes G_{2}$, is a simple graph with $V\left(G_{1} \otimes G_{2}\right)=V_{1} \times V_{2}$ where $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \otimes G_{2} \operatorname{iff} u_{1}$ is adjacent to v_{1} in G_{1} and u_{2} is adjacent to v_{2} in G_{2}.

Note that $G_{1} \circ G_{2}=\left(G_{1} \times G_{2}\right) \cup\left(G_{1} \otimes G_{2}\right),[2,10]$.
(7) The k th power G^{k} of a simple graph G has $V\left(G^{k}\right)=V(G)$ where u and v are adjacent in G^{k} wherever $d_{G}(u, v) \leq k$, where $d_{G}(u, v)$ is the length of a shortest $u-v$ path in G, [2].
(8) The closure of a graph G, denoted $\operatorname{cl}(G)$, is that graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least n until no such pair remains, [3].

2- Main results

(2-1) Regular graphs

A graph G is said to be regular if all the vertices of G have the same degree, [1].

Lemma (2.1.1)A finite graph G has at least two vertices of the same degree.

Lemma (2.1.2)If G is a graph with n vertices which is regular of degree d, then $x(G) \geq \frac{n}{n-d}$.

Lemma (2.1.3)If $G^{k}=c l(G)$, then G is a regular graph.

Lemma (2.1.4)Complement of a regular graph is regular with degree $d^{\prime}=n-d-1$.

Lemma (2.1.5) If G is a regular graph, then G^{k} and $c l(G)$ are regular graphs.

Theorem (2.1.6)Let G_{1} and G_{2} be regular graphs such that $d_{G_{1}}=d_{1}$ and $d_{G_{2}}=d_{2}$, then:
(i) $G_{1} \cup G_{2}$ is not regular graph.
(ii) $G_{1} \times G_{2}$ is a regular graph with $d_{G_{1} \times G_{2}}=d_{1}+d_{2}$.
(iii) $G_{1} \vee G_{2}$ is a regular graph with $d_{G_{1} \vee G_{2}}=d_{1}+d_{2}+1$.
(iv) $G_{1} \otimes G_{2}$ is a regular with $d_{G_{1} \otimes G_{2}}=d_{1} d_{2}$.
(v) $G_{1} \circ G_{2}$ is a regular with $d_{G_{1} \circ G_{2}}=d_{1}+d_{2}+d_{1} d_{2}$.
(vi) $G_{1}\left[G_{2}\right]$ is a regular graph with $d_{G_{1}\left[G_{2}\right]}=n_{2} d_{1}+d_{2}$, and $G_{2}\left[G_{1}\right]$ is a regular graph with $d_{G_{2}\left[G_{1}\right]}=n_{1} d_{2}+d_{1}$, where n_{1}, n_{2} are the number of vertices of G_{1}, G_{2} respectively.

(2-2) Complete graphs

A complete graph is a graph in which every two distinct vertices are joined by exactly one edge, i.e., the complete graph is necessary simple graph. The complete graph with n vertices is denoted by $K_{n},[1]$.

Lemma (2.2.1) If G is a complete graph, then $G^{k}=c l(G)=G$ but the converse is not true.

G

$$
G^{2}=c l(G)
$$

Fig. (1)
Lemma (2.2.2)If G_{1} and G_{2} are complete graphs, then $G_{1}\left[G_{2}\right]=G_{1} \circ G_{2}$.

Lemma (2.2.3) Complement of a complete graph k_{n} is a null graph N_{n}.

Theorem (2.2.4)Let G_{1}, G_{2} be complete graphs such that $G_{1}=K_{n}, G_{2}=K_{m}$ then:
(i) $G_{1} \cup G_{2}$ is not complete graph.
(ii) $G_{1} \times G_{2}$ is not complete graph.
(iii) $G_{1} \otimes G_{2}$ is not complete graph.
(iv) $G_{1} \vee G_{2}$ is a complete graph, $\left(K_{n} \vee K_{m}=K_{m+n}\right)$.
(v) $G_{1} \circ G_{2}=G_{1}\left[G_{2}\right]$ is complete graph, $\left(K_{n} \circ K_{m}=K_{n}\left[K_{m}\right]=K_{n m}\right)$.

(2-3) Bipartite graphs

A graph is bipartite if its vertex set can be partitioned into nonempty subsets X and Y such that each edge of G has one end in X and the other in Y. the pair (X, Y) is called a bipartition of the bipartite graph G. The bipartite graph G with bipartition (X, Y) is denoted by $G(X, Y)$. A simple bipartite graph $G(X, Y)$ is complete if each vertex of X is adjacent to all the vertics of Y. If $G(X, Y)$ is complete with $|X|=p$ and $|Y|=q$, then $G(X, Y)$ is denoted by $K_{p, q}$. It is noticed that $K_{p, q}$ has $p+q$ vertices (p vertices of degree p and q vertices of degree p) and $p q$ edges, $K_{p, q}=K_{q, p}$ and $k_{1, q}$ is called a star graph, [14].

Lemma (2.3.1) For a simple bipartite graph $m \leq \frac{n^{2}}{4}$.
Lemma (2.3.2) A bipartite graph $G(p, q)$ is complete $\operatorname{iff} q=\binom{p}{2}$.

Lemma (2.3.3) If a bipartite graph $G(X, Y)$ is regular, then $|X|=|Y|$.

Lemma (2.3.4) Every tree is a bipartite graph.

Lemma (2.3.5) A connected graph G is complete bipartite iff no induced subgraph of G is a K_{3} or P_{4}.

Lemma (2.3.6)If every cycle of a graph has an even number of edges, then the graph is bipartite.

Lemma (2.3.7) $N_{p} \vee N_{q}=K_{p, q}$.

Lemma (2.3.8) $\left(K_{p, q}\right)^{2}=K_{p+q}$ and $\left(K_{p, q}\right)^{k}=K_{p, q}$ for $k>2$.

Lemma (2.3.9) $c l\left(k_{p, p}\right)=k_{2 p}, p \geq 2$.

Lemma (2.3.10) Cyclomatic number, $\mu\left(k_{p, q}\right)=(p-1)(q-1)$.

(2-4) Hamiltonian graphs

A connected graph G is Hamiltonian if there is a cycle which includes every vertex of G, such a cycle is called a Hamiltonian cycle.

Dirace's Theorem, [2]Let G be a simple graph with n vertices, where $n \geq 3$. If $\operatorname{deg} v \geq \frac{1}{2} n$ for each vertex v, then G is Hamiltonian.

Ore's Theorem, [2] Let G be a simple graph with n vertices, where $n \geq 3$. If $\operatorname{deg} v+\operatorname{deg} w \geq n$ for each pair of non-adjacent vertices v and w, then G is Hamiltonian.

Lemma (2.4.1) No tree can be Hamiltonian graph.

Lemma(2.4.2) Any bipartite graph with odd number of vertices cannot be Hamiltonian.

Lemma (2.4.3) $K_{p, q}$ is Hamiltonian if $p=q \geq 2$ and K_{n} is Hamiltonian if $n \geq 3$.

Lemma (2.4.4)If G is a (p, q) graph with $q \geq\binom{ p-1}{2}+3$, then G is Hamiltonian.

Lemma (2.4.5) $\operatorname{cl}(G)$ is a Hamiltonian graph $\operatorname{iff} G$ is Hamiltonian.

Lemma (2.4.6)If G is a Hamiltonian graph, then G^{k} is a Hamiltonian graph but the converse is not true.

Not

$G^{2}=K_{5}$
Hamiltoni

Fig. (2)

Theorem (2.4.7)

Let G_{1} and G_{2} be Hamiltonian graphs, then:
(i) $G_{1} \times G_{2}$ is a Hamiltonian graph.
(ii) $G_{1} \vee G_{2}$ is a Hamiltonian graph.
(iii) $G_{1} \circ G_{2}$ is a Hamiltonian graph.
(iv) $G_{1}\left[G_{2}\right]$ is a Hamiltonian graph.
(v) $G_{1} \otimes G_{2}$ is a Hamiltonian graph..
(vi) $G_{1} \cup G_{2}$ is not necessary a Hamiltonian graph.

G_{1}

G_{2}

$G_{1} \cup G_{2}$

Fig. (3)

(2-5) Eulerian graphs

A connected graph G is Eulerian if there is a closed trail which includes every edge of G, such a trail is called Eulerian trail, [2]. A graph is Eulerianiff every vertex of G has even degree, [1]. A graph G is Eulerianiff each edge e of G belongs to an odd number of cycles of G, [4] i.e., a graph is Eulerianiff it has an odd number of cycle decomposition, [2].

Lemma (2.5.1) $K_{p, q}$ is an Eulerian if p, q are even, $p, q \geq 2$.

Lemma (2.5.2)If G is an Eulerian graph, then G^{k} and $c l(G)$ are not necessary Eulerian graphs.

Fig. (4)

Lemma (2.5.3)An Eulerian regular graph is a Hamiltonian graph.

Lemma (2.5.4) $K_{2 n+1}, n \geq 1$ is an Eulerian graph.

Theorem (2.5.5)Let G_{1}, G_{2} be Eulerian graphs, then:
(i) $G_{1} \cup G_{2}$ is not necessary Eulerian graph.
(ii) $G_{1} \vee G_{2}$ is not necessary Eulerian graph.
(iii) Cartesian product $G_{1} \times G_{2}$ is an Eulerian graph.
(iv) $G_{1} \circ G_{2}$ is an Eulerian graph.
(v) $G_{1}\left[G_{2}\right]$ is an Eulerian graph.
(vi) $G_{1} \otimes G_{2}$ is an Eulerian graph.

Fig. (5)

(2-6) Triangulated graphs

A simple graph G is called triangulated if every cycle of length at least four has a chord, that is an edge joining two non-adjacent vertices of the cycle, [2].

Lemma (2.6.1)If G is a triangulated graph, then G^{k} is a triangulated graph but the converse is not true.

Lemma (2.6.2)If G is a triangulated graph, then $\operatorname{cl}(G)$ is a triangulated but the converse is not true.

Fig. (6)
Lemma (2.6.3)A complete graph $K_{n}, n \geq 3$ is a triangulated graph but the converse is not true.

Lemma (2.6.4) If $G_{1} \cong G_{2}, G_{1}$ is triangulated, then G_{2} is triangulated.

Theorem (2.6.5)Let G_{1}, G_{2} be triangulated graphs, then:
(i) $G_{1} \cup G_{2}$ is not necessary triangulated graph.
(ii) $G_{1} \times G_{2}$ is not triangulated graph.
(iii) $G_{1} \vee G_{2}$ is a triangulated graph.
(iv) $G_{1} \otimes G_{2}$ is not triangulated graph.
(v) $G_{1} \circ G_{2}$ is a triangulated graph.
(vi) $G_{1}\left[G_{2}\right]$ is a triangulated graph.

Fig. (7)

(2-7) Perfect graphs

A clique of a graph G is a complete subgraph of G. A clique of G is a maximal clique of G if it is not properly contained in other clique, [2]. The maximum order of a complete subgraph of G is called the clique number of G and is denoted by $\omega(G)$. Clearly $\omega(G) \leq x(G)$, the chromatic number of G which is the smallest number n for which G is n-colorable. A graph G is perfect if G and each induced subgraphs have the property that $\omega(G)=x(G)$, [2].

Lemma (2.7.1)The complement of any bipartite graph is perfect.
Lemma (2.7.2) The complement of a null graph N_{n} is perfect.

Lemma (2.7.3)If G is a perfect graph, then G^{k} is perfect.
Lemma (2.7.4) If G is a perfect graph, then $c l(G)$ is perfect.

Lemma (2.7.5) A perfect graph is not necessary triangulated graph and a triangulated graph is not necessary a perfect graph.

The graph is perfect but not triangulated

Weel graph, triangulated but not perfect

Fig. (8)
Lemma (2.7.6) An Eulerian graph is a perfect graph but the converse is not true.

The graph is perfect but not Eulerian
Fig. (9)

Lemma (2.7.7)Hamiltonian graph is perfect graph but the converse is not true.

The graph is perfect but not Hamiltonian
Fig. (10)

Lemma (2.7.8) A regular graph is perfect graph but the converse is not true.

Perfect graph but not regular
Fig. (11)
Theorem (2.7.9) Let G_{1}, G_{2} be perfect graphs, then:
(i) $G_{1} \vee G_{2}$ is a perfect graph,

$$
\chi\left(G_{1} \vee G_{2}\right)=\omega\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)=\omega\left(G_{1}\right)+\omega\left(G_{2}\right) .
$$

(ii) $G_{1} \times G_{2}$ is a perfect graph,

$$
\chi\left(G_{1} \times G_{2}\right)=\omega\left(G_{1} \times G_{2}\right)=\max \left(\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right)=\max \left(\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right)
$$

(iii) $G_{1} \otimes G_{2}$ is a perfect graph.,

$$
\chi\left(G_{1} \otimes G_{2}\right)=\omega\left(G_{1} \otimes G_{2}\right)=\min \left(\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right)=\min \left(\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right) .
$$

(v) $G_{1} \circ G_{2}$ is a perfect graph,

$$
\chi\left(G_{1} \circ G_{2}\right)=\omega\left(G_{1} \circ G_{2}\right)=\chi\left(G_{1}\right) \chi\left(G_{2}\right)=\omega\left(G_{1}\right) \omega\left(G_{2}\right) .
$$

(vi) $G_{1}\left[G_{2}\right]$ is a perfect graph,

$$
G_{1}\left[G_{2}\right]=\omega\left(G_{1}\left[G_{2}\right]\right)=\chi\left(G_{1}\right) \chi\left(G_{2}\right)=\omega\left(G_{1}\right) \omega\left(G_{2}\right) .
$$

(2-8) Line graphs

The line graph $L(G)$ of a graph G is the graph obtained by taking the edges of G as vertices and joining two of these vertices whenever the corresponding edges of G have vertex in common, [1].

Lemma (2.8.1) $L\left(C_{n}\right) \cong C_{n}, n \geq 3$.

Lemma (2.8.2) The line graph of $K_{p, q}$ is regular of degree $p+q-2$.

Lemma (2.8.3) The line graph of K_{n} is regular of degree $2 n-4$.

Lemma (2.8.4) L (Tetrahedron) $=$ Octahedron.

Fig. (12)

Lemma (2.8.5) The line graph of the star graph $K_{1, n}$ is the complete graph K_{n}.

Lemma (2.8.6) The line graph of an Eulerian graph is not necessary an Eulerian graph.

Lemma (2.8.7) The line graph of a tree is a triangulated graph.

Lemma (2.8.8) The line graph of a triangulated graph is not necessary a triangulated graph.

G, triangulated graph

$L(G)$, not triangulated graph

Fig. (13)

Lemma (2.8.9)The line graph of a Hamiltonian graph is a Hamiltonian graph.

Lemma (2.8.10) Line graph of a perfect graph is a perfect graph but the converse is not true.

For example W_{5}, wheel graph, is not perfect but its line graph is perfect.

W_{5}

$L\left(W_{5}\right)$

Fig. (14)

Lemma (2.8.11)If G is not null graph. Then $\chi^{\prime}(G)=\chi(L(G))$.

Lemma (2.8.12) Line graph of a regular graph is a regular graph, $d_{L(G)}=2\left(d_{G}-1\right)$.

Lemma (2.8.13) $L\left(P_{n}\right)=P_{n-1}$.

(2-9) Clique graphs

A clique graph $K(G)$ of a graph G is the intersection of the family of maximal cliques of G. i.e., the vertices of $K(G)$ are maximal cliques of G and two vertices of $K(G)$ are adjacent in $K(G)$ iff the corresponding cliques of G has nonempty intersection, [1].

Lemma (2.9.1) The clique graph $K(G)$ of a graph G is the same to its line graph $L(G)$ in case of G is:
(i) The star graph $K_{1, n}$.
(ii) Complete bipartite graph $K_{p, q}$.
(iii) Cycle graph $C_{n,} n \geq 3$.
(iv) Path graph P_{n}.
(v) Tree, T.

Lemma (2.9.2) The clique graph of $K_{p, q}$ is regular of degree $p+q-2$.

Lemma (2.9.3) The Clique graph of a perfect graph is perfect but the converse is not true.

Fig. (15)
Lemma (2.9.4) The clique graph of a wheel graph W_{n} is a complete graph K_{n}.

Lemma (2.9.5) The clique graph of a regular graph is not necessary regular.

Lemma (2.9.6)The clique graph of an Eulerian graph is not necessary an Eulerian graph.

G
Regular and Eulerian

$K(G)$ Not regular and not Eulerian
Lemma (2.9.7)The clique graph of a Hamiltonian graph is not necessary Hamiltonian.

Hamiltonian

Fig. (17)
Lemma (2.9.8) The clique graph of a triangulated graph is triangulated, but the converse is not true.

G
not triangulated

Fig. (18)

(2.10) Euler characteristic

Theorem (2.10.1)Let G_{1}, G_{2} be two finite connected graphs with number of vertices and edges are n_{1}, n_{2} and m_{1}, m_{2} respectively, then
(i) $\eta\left(G_{1} \cup G_{2}\right)=\eta\left(G_{1}\right)+\eta\left(G_{2}\right)-\eta\left(G_{1} \cap G_{2}\right)$.
(ii) $\eta\left(G_{1} \vee G_{2}\right)=\eta\left(G_{1}\right)+\eta\left(G_{2}\right)-m_{1} m_{2}$.
(iii) $\eta\left(G_{1} \times G_{2}\right)=\eta\left(G_{1}\right) \eta\left(G_{2}\right)-m_{1} m_{2}$.
(iv) $\eta\left(G_{1} \otimes G_{2}\right)=\eta\left(G_{1}\right) \eta\left(G_{2}\right)+n_{1} m_{2}+n_{2} m_{1}-3 m_{1} m_{2}$.
(v) $\eta\left(G_{1} \circ G_{2}\right)=\eta\left(G_{1}\right) \eta\left(G_{2}\right)-3 m_{1} m_{2}$.
(iv) $\eta\left(G_{1}\left[G_{2}\right]\right)=\eta\left(G_{1}\right) \eta\left(G_{2}\right)+n_{2} m_{1}\left(1-n_{2}\right)-m_{1} m_{2}$.

3. Acknowledgements

The authors are deeply indebted and thankful to the deanship of the scientific research for his helpful and for distinct team of employees at Taibah university, AlMadinah Al-Munawarah, K.S.A. for their continuous helps and the encouragement us
to finalize this work. This research work was supported by a grant No. (3021/1434) from the deanship of the scientific research at Taibah university, Al-Madinah AlMunawwarah, K.S.A.

REFERENCES

[1] Gross J. L. and Tucker T. W., Topological graph theory, John Wiely\& Sons, Inc. New York, U. S. A., (1987).
[2] Balakrishnan R. andRanganathan, Textbook of graph theory, Springer-Verlag, Inst. New York, (2000).
[3] Wilson R. J. and Watkins J. J., Graphs an introductory approach, John Wiley \& Sons, Inc. New York, U. S. A., (1981).
[4] Ronald G. , Graph theory, the Benjamin/Cummings Publishing Company, Inc. California, (1988).
[5]Axler S. and Ribet K.A.,Combinatorics and Graph Theory,Springer-Verlag, Inst. New York (2008).
[6]JeanC., Graph Theory and Applications, Wiley(2009).
[7] ReinhardD., Graph Theory, Springer-Verlag New York, (2005).
[8] BangJ. , Digraphs Theory, Algorithms and Applications, Springer-Verlag London Limited (2009).
[9] MichealD., Random Trees, Springer-Wien Inst. New York (2009).
[10]HartmutE. and Gregor E ., Graph Transformations, Springer-Verlag, Inst. New York (2005).

