Arithmetico geometric decomposition of some graphs

R. Hema, D. Subitha, S. Freeda

Abstract


A decomposition (Gab, G(a+d)br, …, G(a+(n-1)d)brn-1) of G is said to be a Arithmetico Geometric Decomposition (ACOGD) or (a, d, b, r, n) – Decomposable if each G(a+(i-1)d)bri-1 is connected and |E(G(a+(i-1)d)bri-1)| = (a + (i - 1)d) bri-1 for every i = 1, 2, ...., n and a, d, b, r (>1) ∈ N. Clearly, q = b(a-(a+(n-1)d) r^n)/(1-r) + dbr(1-r^(n-1)/(1-r)^2, for every n∈ N. In this paper, we seek to find Arithmetico Geometric Decomposition of some graphs.


Full Text: PDF

Published: 2020-11-06

How to Cite this Article:

R. Hema, D. Subitha, S. Freeda, Arithmetico geometric decomposition of some graphs, J. Math. Comput. Sci., 10 (2020), 3101-3108

Copyright © 2020 R. Hema, D. Subitha, S. Freeda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Copyright ©2023 JMCS