ON SEMISIMPLE AND LEFT QUASI-REGULAR ELEMENTS OF ORDERED SEMIGROUPS

NIOVI KEHAYOPULU

Department of Mathematics, University of Athens, 15784 Panepistimiopolis, Athens, Greece

Abstract. We prove, among others, that an ordered semigroup contains a left (resp. right) quasi-regular element if and only it contains a left (resp. right) regular element. It has a semisimple element if and only if it has an intra-regular element. An element \(a \) of an ordered semigroup \(S \) is a semisimple element of \(S \) if and only if there exists an intra-regular element \(b \) of \(S \) such that \(I(a) = I(b) \). The element \(a \) is a left (resp. right) quasi-regular element of \(S \) if and only if there exists a left (resp. right) regular element \(b \) of \(S \) such that \(L(a) = L(b) \) (resp. \(R(a) = R(b) \)). As a consequence, if the ideal \(I(a) \) generated by an element \(a \) of \(S \) has an intra-regular generator, then \(a \) is semisimple. If the principal left (resp. right) ideal \(L(a) \) (resp. \(R(a) \)) of an element \(a \) of \(S \) has a left (resp. right) regular generator, then \(a \) is a left (resp. right) quasi-regular element of \(S \).

Keywords: ordered semigroup; semisimple element; left (right) quasi-regular element; intra-regular, left (right) regular element; \(\pi \)-semisimple, left (right) quasi \(\pi \)-regular element.

2010 AMS Subject Classification: Primary 06F05; Secondary 20M10.

1. Introduction and prerequisites

Let \(S \) be an ordered semigroup. A nonempty subset \(T \) of \(S \) is called a subsemigroup of \(S \) if \(T^2 \subseteq T \). For a subset \(H \) of \(S \), we denote by \((H) \) the subset of \(S \) defined by

\[\{ t \in S \mid t \leq h \text{ for some } h \in H \}. \]

A nonempty subset \(A \) of \(S \) is called a left (resp.
right) ideal of \(S \) if (1) \(SA \subseteq A \) (resp. \(AS \subseteq A \)) and (2) if \(a \in A \) and \(b \in S \) such that \(b \leq a \), then \(b \in A \). A nonempty subset \(A \) of \(S \) is called an ideal of \(S \) if it is both a left and a right ideal of \(S \). The left (resp. right) ideals, and so the ideals of \(S \) are clearly subsemigroups of \(S \). For an element \(a \) of \(S \), \(I(a) \), \(L(a) \), \(R(a) \), denotes the ideal, left ideal, and the right ideal of \(S \), respectively, generated by \(a \) \((a \in S)\), and we have \(I(a) = (a \cup Sa \cup aS \cup SaS) \), \(L(a) = (a \cup Sa) \), \(R(a) = (a \cup aS) \) [2]. As usual, for an element \(b \) of \(S \), denote by \(< b >\) the subsemigroup of \(S \) generated by \(b \), that is, the smallest (with respect to the inclusion relation) subsemigroup of \(S \) containing \(b \). We have \(< b > = \{ b, b^2, b^3,, b^n \mid n \in N \}\) \((N = \{1,2,......\} \) is the set of natural numbers). An element \(a \) of \(S \) is called intra-regular if \(a \in (Sa^2S) \), equivalently, if \(a \leq xa^2y \) for some \(x,y \in S \) (cf., for example, [4]). It is called left (resp. right) regular if \(a \in (Sa^2) \) (resp. \(a \in (a^2S) \)), that is, if \(a \leq xa^2 \) (resp. \(a \leq a^2x \)) for some \(x \in S \) [3]. An element \(a \) of an ordered semigroup \(S \) is called semisimple if \(a \in (SaSaS) \) [5]; it is called left (resp. right) quasi-regular if \(a \in (SaSa) \) (resp. \(a \in (aSaS) \)) [5,6]. So the element \(a \) is semisimple, left quasi-regular or right quasi-regular if \(a \leq xayaz, a \leq xaya, a \leq axay \) for some \(x,y,z \in S \), respectively. An ordered semigroup \(S \) is called intra-regular, left (right) regular, semisimple or left (right) quasi-regular if every element of \(S \) is so.

Semisimple and left (right) quasi-regular elements of semigroups (without order) as well as \(\pi \)-semisimple and left quasi \(\pi \)-regular semigroups have been studied in [1]. An ordered semigroup \(S \) is a semilattice of left strongly simple semigroups if and only if every left ideal of \(S \) is a semisimple subsemigroup of \(S \) (cf. [7; Theorem 9]). It is a semilattice of simple and regular semigroups if and only if every bi-ideal of \(S \) is a semisimple subsemigroup of \(S \), equivalently, if every left ideal of \(S \) is a right quasi-regular subsemigroup of \(S \) [8]. Characterization of left (right) quasi-regular and semisimple ordered semigroups in terms of fuzzy sets has been given in [5]. In the present paper we prove, among others, that an ordered semigroup contains a left (resp. right) quasi-regular element if and only if it contains a left (resp. right) regular element. It contains a semisimple element if and only if it contains an intra-regular element. Moreover we prove that an element \(a \) of an
ordered semigroup S is a semisimple element of S if and only if there exists an intra-regular element b of S such that $I(a) = I(b)$. An element a of an ordered semigroup S is a left (resp. right) quasi-regular element of S if and only if there exists a left (resp. right) regular element b of S such that $L(a) = L(b)$ (resp. $R(a) = R(b)$). As a consequence, if S is an ordered semigroup, $a \in S$ and b an intra-regular element of S such that $I(a) = \langle b \rangle$, then a is semisimple. If b is a left (resp. right) regular element of S and $L(a) = \langle b \rangle$ (resp. $R(a) = \langle b \rangle$), then a is left (resp. right) quasi-regular. We use the terminology semisimple, π-semisimple instead of the terminology intra quasi-regular, intra quasi π-regular given for semigroups (without order) in [1]. For an ordered semigroup S, we denote by $IQReg(S)$ (or $Sems(S)$), $LQReg(S)$, $RQReg(S)$ the set of semisimple (intra quasi-regular according to [1]), left quasi-regular and right quasi-regular elements of S, respectively. It has been proved in [1] that a semigroup S is left quasi π-regular if and only if it is π-semisimple and $IQReg(S) = LQReg(S)$. If an ordered semigroup S is π-semisimple and $IQReg(S) = LQReg(S)$, then it is left quasi π-regular, but the converse statement does not seem to be true, in general. However, for an ordered semigroup S we have $LQReg(S) \subseteq IQReg(S)$, and if S is left quasi π-regular, then it is π-semisimple.

2. Main results

Proposition 1. Let S be an ordered semigroup. If a is an intra-regular element of S, then a is a semisimple element of S. If a is a left (resp. right) regular element of S, then a is a left (resp. right) quasi-regular element of S.

Proof. Let a be an intra-regular element of S and let $x, y \in S$ such that $a \leq xa^2y$. Then we have $a \leq x(xa^2y)ay = (x^2a)(ay)(ay) \in SaSaS$, so $a \in (SaSaS]$, and a is semisimple. Let a be a left regular element of S and $x \in S$ such that $a \leq xa^2$. Then we have $a \leq x(xa^2)a = x^2aaa \in SaSa$, so $a \in (SaSa]$, and a is a left quasi-regular element of S. Finally, if a is a right regular element of S and $y \in S$ such that $a \leq a^2y$, then $a \leq a(a^2y)y = aaay^2 \in aSaS$, so $a \in (aSaS]$, and a is a right quasi-regular element of S. □
Proposition 2. Let S be an ordered semigroup and $a \in S$. If $a \leq xayaz$ for some $x,y,z \in S$, then the element yaz is an intra-regular element of S. If $a \leq xaya$ for some $x,y \in S$, then the element ya is a left regular element of S. If $a \leq axay$ for some $x,y \in S$, then the element ax is a right regular element of S.

Proof. Let $a \leq xayaz$ for some $x,y,z \in S$. Then we have
\[
yaz \leq y(xayaz)z = (yx)a(yaz^2) \leq (yx)(xayaz)(yaz^2)
= (yx^2a)(yaz)^2, \quad \text{where } yx^2a, z \in S,
\]
so the element yaz is an intra-regular element of S.

Let $a \leq xaya$ for some $x,y \in S$. Then we have
\[
ya \leq y(xaya) = (yx)a(ya) \leq (yx)(xaya)(ya)
= (yx^2a)(ya)^2, \quad \text{where } yx^2a \in S,
\]
so the element ya is a left regular element of S.

Similarly, if $a \leq axay$ for some $x,y \in S$, then
\[
ax \leq (axay)x = (ax)a(yx) \leq (ax)(axay)(yx)
= (ax)^2(ay^2x), \quad \text{where } ay^2x \in S,
\]
so the element ax is a right regular element of S. \hfill \square

By Propositions 1 and 2 we have the following

Theorem 3. (cf. also [5]) An ordered semigroup has a semisimple element if and only if it has an intra-regular element. An ordered semigroup contains a left (resp. right) quasi-regular element if and only if it contains a left (resp. right) regular element.

Remark 4. If a is an intra-regular element of an ordered semigroup S, then $I(a) = (SaS]$. In fact: First of all, $(SaS] \subseteq (a \cup Sa \cup aS \cup SaS] = I(a)$. Let now $t \in I(a)$. Then $t \leq a$ or $t \leq pa$ or $t \leq aq$ or $t \leq paq$ for some $p,q \in S$. On the other hand, since a is intra-regular, there exist $x,y \in S$ such that $a \leq xa^2y$. If $t \leq a$, then $t \leq xa^2y \in SaS$, and $t \in (SaS]$. If $t \leq pa$ for some $p \in S$, then $t \leq pxa^2y \in SaS$, so $t \in (SaS]$. If $t \leq aq$ for some
q \in S$, then $t \leq xa^2yq \in SaS$, so $t \in (SaS]$. Finally, if $t \leq paq$ for some $p,q \in S$, then $t \leq pxa^2yq \in SaS$, and $t \in (SaS]$.

Theorem 5. Let S be an ordered semigroup. An element a of S is a semisimple element of S if and only if there exists an intra-regular element b of S such that $I(a) = I(b)$.

Proof. \Longrightarrow. Let a be a semisimple element of S. Then $a \leq xayaz$ for some $x, y, z \in S$. By Proposition 2, the element yaz is an intra-regular element of S. In addition, we have $I(a) = I(yaz)$. In fact: First of all,

$$I(yaz) = (yaz \cup Syaz \cup yazS \cup SyazS) \subseteq (SaS) \subseteq I(a).$$

Let now $t \in I(a)$. Then $t \leq a$ or $t \leq pa$ or $t \leq aq$ or $t \leq paq$ for some $p,q \in S$. If $t \leq a$, then $t \leq xayaz \in Syaz$. Then $t \in (Syaz) \subseteq I(yaz)$, so $t \in I(yaz)$. If $t \leq pa$ for some $p \in S$, then $t \leq p(xayaz) \in Syaz$, and $t \in (Syaz) \subseteq I(yaz)$, so $t \in I(yaz)$. If $t \leq aq$ for some $q \in S$, then $t \leq (xayaz)q \in S(yaz)S$, and $t \in (S(yaz)S) \subseteq I(yaz)$, so $t \in I(yaz)$. If $t \leq paq$ for some $p,q \in S$, then $t \leq p(xayaz)q \in S(yaz)S$, so $t \in (S(yaz)S) \subseteq I(yaz)$, and $t \in I(yaz)$.

\Longleftarrow. Let $a \in S$ and b an intra-regular element of S such that $I(a) = I(b)$. Then $I(a) = I(b)$ and $b \leq xb^2y$ for some $x, y \in S$. Then we have

$$a \in I(b) \subseteq I(xb^2y) = (xb^2y \cup Sxb^2y \cup xb^2yS \cup Sxb^2yS) \subseteq (Sb^2S).$$

Since $b \in I(a)$, we have $b \leq a$ or $b \leq pa$ or $b \leq qa$ or $b \leq paq$ for some $p,q \in S$. If $b \leq a$, then $b^2 \leq a^2$, $a \in (Sb^2S) \subseteq (Sa^2S)$, so $a \in (Sa^2S)$, and a is an intra-regular element of S. Then, by Proposition 1, a is a semisimple element of S. If $b \leq pa$ for some $p \in S$, then $b^2 \leq papa$, then $a \in (Sb^2S) \subseteq (SpapaS) \subseteq (SaSaS)$, so $a \in (SaSaS)$, and a is semisimple. If $b \leq aq$ for some $q \in S$, then $b^2 \leq aqaq$, $a \in (Sb^2S) \subseteq (SaqaqS) \subseteq (SaSaS)$, $a \in (SaSaS)$, and a is semisimple. If $b \leq paq$ for some $p,q \in S$, then $a \in (Sb^2S) \subseteq (SpaqpaqS) \subseteq (SaSaS)$, and a is semisimple. \square

Theorem 6. Let S be an ordered semigroup. An element a of S is a left quasi-regular element of S if and only if there exists a left regular element b of S such that $L(a) = L(b)$.

Proof. \implies. Let a be a left quasi-regular element of S. Then $a \leq xaya$ for some $x, y \in S$. By Proposition 2, the element ya is a left regular element of S. Moreover we have $L(a) = L(ya)$. In fact: First of all,

$$L(ya) = (ya \cup Sya] \subseteq (Sa] \subseteq (a \cup Sa] = L(a).$$

Let now $t \in L(a)$. Then $t \leq a$ or $t \leq pa$ for some $p \in S$. If $t \leq a$, then $t \leq xaya \in Sya$. Then $t \in (Sy[a] \subseteq (ya \cup Sya] = L(ya)$, and $t \in L(ya)$. If $t \leq pa$ for some $p \in S$, then $t \leq p(xaya) \in Sya$, and $t \in L(ya)$.

\impliedby. Let $a \in S$, b a left regular element of S such that $L(a) = L(b)$, and $x \in S$ such that $b \leq xb^2$. Then we have $a \in L(b) \subseteq L(xb^2) = (xb^2 \cup Sxb^2] \subseteq (Sb^2]$. Since $b \in L(a)$, we have $b \leq a$ or $b \leq pa$ for some $p \in S$. If $b \leq a$, then $a \in (Sb^2] \subseteq (Sa^2]$, $a \in (Sa^2]$, and a is a left regular element of S. By Proposition 1, a is a left quasi-regular element of S. If $b \leq pa$ for some $p \in S$, then $a \in (Sb^2] \subseteq (Spapa] \subseteq (SaSa]$, and a is again a left quasi-regular element of S.

The right analogue of Theorem 6 also holds, and we have

Theorem 7. Let S be an ordered semigroup. An element a of S is a right quasi-regular element of S if and only if there exists a right regular element b of S such that $R(a) = R(b)$.

Theorem 8. Let S be an ordered semigroup and $a, b \in S$. If $I(a) =\lhd b >$, then $I(a) = I(b)$. If $L(a) =\lhd b >$ (resp. $R(a) =\lhd b >$), then $L(a) = L(b)$ (resp. $R(a) = R(b)$).

Proof. Let $I(a) =\lhd b >$. As $I(b)$ is an ideal of S containing b, it is a subsemigroup of S containing b. On the other hand, $\lhd b >$ is the smallest subsemigroup of S containing b, so $\lhd b > \subseteq I(b)$, and $I(a) \subseteq I(b)$. Let now $t \in I(b)$. Then $t \leq b$ or $t \leq xb$ or $t \leq by$ or $t \leq xby$ for some $x, y \in S$. If $t \leq b$, then $t \leq b \in \lhd b > = I(a)$, and $t \in I(a)$. If $t \leq xb$ for some $x \in S$, then $t \leq xb \in S < b >= SI(a) \subseteq I(a)$, so $t \in I(a)$. If $t \leq by$ for some $y \in S$, then $t \leq by \in \lhd b > = I(a)S \subseteq I(a)$, and $t \in I(a)$. If $t \leq xby$ for some $x, y \in S$, then $t \leq xby \in S < b > = SI(a)S \subseteq I(a)$, and $t \in I(a)$.

Let now $L(a) =\lhd b >$. $L(b)$ as a left ideal, it is a subsemigroup of S, thus

$$L(a) =\lhd b > \subseteq L(b).$$
Let now \(t \in L(b) \). Then \(t \leq b \) or \(t \leq xb \) for some \(x \in S \). If \(t \leq b \), then \(t \leq b \in L(a) \), and \(t \in L(a) \). If \(t \leq xb \) for some \(x \in S \), then \(t \leq xb \in S < b > = SL(a) \subseteq L(a) \), and \(t \in L(a) \). In a similar way we prove that \(R(a) =< b > \) implies \(R(a) = R(b) \). \(\square \)

By Theorems 5, 6, 7 and 8 we have the following

Theorem 9. Let \(S \) be an ordered semigroup and \(a \in S \). If \(b \) is an intra-regular element of \(S \) such that \(I(a) =< b > \), then \(a \) is a semisimple. If \(b \) is a left (resp. right) regular element of \(S \) and \(L(a) =< b > \) (resp. \(R(a) =< b > \)), then \(a \) is left (resp. right) quasi-regular.

For the sake of completeness, we keep the notation given for semigroups (without order) in [1] and, for an ordered semigroup \(S \), we denote by \(IQReg(S) \), \(LQReg(S) \), \(RQReg(S) \) the set of semisimple, left quasi-regular and right quasi-regular elements of \(S \), respectively.

Remark 10. We have \(LQReg(S) \subseteq IQReg(S) \) and \(RQReg(S) \subseteq IQReg(S) \). In fact, if \(a \in LQReg(S) \), then \(a \in (SaSa) \) i.e. \(a \leq xaya \) for some \(x, y \in S \), then \(a \leq xay(xaya) \in SaSaS \), so \(a \in (SaSaS) \), and \(a \in IQReg(S) \). If \(a \in RQReg(S) \), then \(a \leq axay \leq (axay)xay \in SaSaS \), and \(a \in IQReg(S) \).

Proposition 11. Let \(S \) be an ordered semigroup. If \(a \in IQReg(S) \), then there exist \(x, y, z \in S \) such that \(a \leq (xay)^naz^n \) for every \(n \in N \).

Proof. Let \(a \in IQReg(S) \). Then there exist \(x, y, z \in S \) such that \(a \leq xayaz \). Then we have

\[
a \leq (xay)az = (xay)(xayaz)z = (xay)^2az^2 \\
\leq (xay)^2(xayaz)z^2 = (xay)^3az^3 \\
\leq \ldots \leq (xay)^naz^n
\]

for every \(n \in N \). \(\square \)

Definition 12. An element \(a \) of an ordered semigroup \(S \) is called \(\pi \)-semisimple if there exists \(n \in N \) such that the element \(a^n \) is a semisimple element of \(S \), that is, if a power of \(a \) is semisimple. An element \(a \) of an ordered semigroup \(S \) is called left (resp. right) quasi-\(\pi \)-regular if there exists \(n \in N \) such that the element \(a^n \) is a left (resp. right) quasi-regular element of \(S \) i.e. if a power of \(a \) is left (resp. right) quasi-regular. An ordered semigroup
S is called π-semisimple, left quasi π-regular or right quasi π-regular, respectively, if every element of S is so.

Theorem 13. Let S be an ordered semigroup and $a \in S$. If a is left quasi π-regular (or right quasi π-regular), then it is π-semisimple as well. "Conversely", if a is π-semisimple and $IQ\text{Reg}(S) = LQ\text{Reg}(S)$, then a is a left quasi π-regular element of S. If a is π-semisimple and $IQ\text{Reg}(S) = RQ\text{Reg}(S)$, then a is a right quasi π-regular element of S.

Proof. Let a be left quasi π-regular element of S. Then there exists $n \in \mathbb{N}$ such that $a^n \in (Sa^nSa^n]$. Then we have

$$a^n \in (Sa^nS(Sa^nSa^n]) = (Sa^nS(Sa^nSa^n)] \subseteq (Sa^nSa^nS],$$

so a is a π-semisimple element of S. Let now a be a π-semisimple element of S and $IQ\text{Reg}(S) = LQ\text{Reg}(S)$. Since a is π-semisimple, there exists $n \in \mathbb{N}$ such that $a^n \in (Sa^nSa^nS]$. That is $a^n \in IQ\text{Reg}(S) (= LQ\text{Reg}(S))$. Then $a^n \in LQ\text{Reg}(S)$ which means that the element a is a left quasi π-regular element of S. Finally, let a be π-semisimple element of S, $IQ\text{Reg}(S) = RQ\text{Reg}(S)$, and $a^n \in (Sa^nSa^nS]$ for some $n \in \mathbb{N}$. Then $a^n \in IQ\text{Reg}(S) (= RQ\text{Reg}(S))$, and a is a right quasi π-regular element of S. \qed

Theorem 14. If an ordered semigroup S is left quasi π-regular (or right quasi π-regular), then it is π-semisimple. "Conversely", if S is π-semisimple and $IQ\text{Reg}(S) = LQ\text{Reg}(S)$ (resp. $IQ\text{Reg}(S) = RQ\text{Reg}(S)$), then it is left (resp. right) quasi π-regular.

Problem. Find an example of a left quasi π-regular ordered semigroup having a semisimple element which is not left quasi-regular.

References

