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Abstract. The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G.

A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric

digraph ED(G) of a graph(digraph) G is the digraph that has the same vertex as G and an arc from u

to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this survey we take a look on the

progress made till date in the theory of Eccentric digraphs of graphs and digraphs, in general. And list

the open problems in the area.
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1. Introduction and Definitions

Its over a decade since Buckley [9] de�ned eccentric digraph ED(G) of a graph G. Later

Boland and Miller [6] introduced the concept of the eccentric digraph of a digraph. The

eccentric digraph of a graph or digraph, is a distance based mapping, which assigns a

binary relation induced by distances in a graph that can also be represented by a graph.

Many distance based relations can be found in literature in the study of antipodal graphs

[3], antipodal digraphs [17], eccentric graphs [1, 12] , etc.
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All of these serve as the second level of abstraction, for all properties of graphs such as

distance, diameter, radius, etc.

In the following we shall consider both directed graphs and symmetric digraphs (or, the

undirected graphs). A directed graph or digraph G consists of a �nite nonempty set V (G)

called vertex set with vertices and edge set E(G) of ordered pairs of vertices called arcs;

that is E(G) represents a binary relation on V (G). A graph G is a symmetric digraph if

in G for any edge (u; v) 2 E(G) implies(v; u) 2 E(G): If (u; v) is an arc, it is said that u

is adjacent to v and also that v is adjacent from u: The set of vertices which are adjacent

from (to) a given vertex v is denoted by N+(u)[N�(u)]and its cardinality is the out-degree

of v [in-degree of v]. A walk of length k from a vertex u to a vertex v in G is a sequence

of vertices u = u0; u1; u2; :::::::; uk�1; uk = v such that each pair (ui�1; ui) is an arc of G.

A digraph G is strongly connected if there is a u to v walk for any pair of vertices u and v

of G. A digraph is connected if its underlying graph is connected. A digraph is unilateral

if for every two distinct vertices u and v, there is either a u� v path or a v�u path. The

distance d(u; v) from u to v is the length of a shortest u to v walk. The eccentricity, e(v)

of v is the distance to a farthest vertex from v. If dist(u; v) = e(u)(v 6= u) we say that v is

an eccentric vertex of u. We de�ne dist(u; v) =1 whenever there is no path joining the

vertices u and v. The radius rad(G) and diameter diam(G) are minimum and maximum

eccentricities, respectively. A graph is self-centered if rad(G) = diam(G):An eccentric

path of vertex v is a geodesic from v to an eccentric vertex of v. A vertex v is said to

be an antipodal vertex of u if d(u; v) = diam(G): The reader is referred to Buckley and

Harary [10] and Chartrand and Lesniak [11] for additional, unde�ned terms.

Buckley [9] de�nes the eccentric digraph ED(G) of a graph G as having the same

vertex set as G and there is an arc from u to v if v is an eccentric vertex of u. It is worth

noting that in the same paper Buckley has acknowledged Prof. Alan Goldman of John

Hopkins University for indicating to consider a digraph where arcs are determined based

on eccentric vertices in a graph.

The antipodal digraph of a digraph G denoted by A(G), has the vertex set as G with

an arc from vertex v in A(G) if and only if v is an antipodal vertex of u in G; that is
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dist(u; v) = diam(G). This notion of antipodal digraph of a digraph was introduced by

Johns and Sleno [17] as an extension of the de�nition of the antipodal graph of a graph

given by Aravamudhan and Rajendran [3]. It is clear that A(G) is a subgraph of ED(G),

and A(G) = ED(G) if and only if G is self centered. A graph G is said to be a self-

antipodal graph if A(G) = G.And the self-antipodal graphs were studied by Acharya and

Acharya [2].

In [1] Akiyama et.al have de�ned eccentric graph of a graph G, denoted by Ge; having

the same set of vertices as G with two vertices u and v being adjacent in Ge if and only

if either v is an eccentric vertex of u in G or u is an eccentric vertex of v in G, that is

distG(u; v) = minfeG(u); eG(v)g. Note that Ge is the underlying graph of ED(G).

In [6] Boland and Miller introduced the concept of the eccentric digraph of a digraph. In

[15] Gimbert et.al. have proved that Ge = ED(G)if and only if G is self-centered. In the

same paper, the authors have characterized eccentric digraphs in terms of complement of

the reduction of G, denoted by G� . Given a digraph G of order p a reduction of G, is

derived from G by removing all its arcs incident from vertices with out-degree p�1. Note

that ED(G) is a subdigraph of G�:

In [16],Gimbert and Lopez have studied the behavior of sequences of iterated eccentric

digraphs. Given a positive integer k � 2, the kth iterated eccentric digraph of G is

written as EDk(G) = ED(EDk�1(G)) , where ED0(G) = G and ED1(G) = ED(G):

One of these open problems was discussed in Medha Itagi Huilgol et.al [19]. We have

characterized graphs with speci�ed maximum degree such that ED(G) = G and in [21]

the higher powers of eccentric digraphs such that EDn(G) = G are considered.

In [20] we have considered the relations between the highly symmetric graphs viz.

distance degree regular (DDR) graphs and eccentric digraphs. The DDR graphs being self

centered, yield symmetric eccentric digraphs. We showed that the unique eccentric node

DDR graphs have their all iterated eccentric digraphs as DDR graphs.

2. Fundamental results

In this section we start with the basic structural results while the de�nition was in-

troduced by Buckley [9]. Following Chartrand and Ollermann [13], we use G� to denote
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the symmetric digraph whose underlying graph is G. Thus G� is the digraph that is

obtained from G by replacing each edge of G by a symmetric pair of arcs. If D1 and D2

are digraphs, then Buckley [9] de�nes D1 ! D2 to be the digraph D1UD2 with additional

arcs from each vertex of D1 to each vertex of D2. Several results which give properties of

eccentric digraphs of graphs are given below.

Remark 1. [9]: If G is disconnected with components of order n1; n2; : : : : : : :; nk, then

ED(G) = (Kn1 ;n2 ; : : : : : : :;nk )
�:

The eccentric digraphs of many familiar graphs can easily be determined.

Theorem 1. [9]: For the complete graphs Kn, complete bipartite graphs Km;n and cycles

Cn ,we have the following:

ED(Kn) = (Kn)
�

ED(K1;n) = K1 ! (Kn)
�for n > 1

ED(Km;n) = (Km)
�U(Kn)

�for m; n � 2

ED(C2t) = (tK2)
�

ED(C2t+1) = (C2t+1)
�

Remark 2. [6]: If G is disconnected with k strongly connected components of order

n1; n2; : : : : : : :; nk then ED(G) = (Kn1 ;n2 ; : : : : : : :;nk ), a (directed) complete multipartite

graph.

Remark 3. [19]: ED(G) = (Kn1 ;n2 ; : : : : : : :;nk ) = Kn1 :

Remark 4. [6]:An eccentric digraph has no vertex of out-degree 0.

Remark 5. [6]: If G is a complete digraph then ED(G) = G.

Remark 6. [6]: If G is a multipartite digraph then ED2(G) = G:

Remark 7. [6]: The eccentric digraph of a directed cycle is a directed cycle, with directions

reversed.

Remark 8. [19]: There exists no directed cycle in an eccentric digraph.
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The above two conditions are not su¢ cient for a graph to be an eccentric digraph.

Example 1. Consider a symmetric cycle having a pendant vertex adjacent to one of the

vertices on the cycle.

Figure 1.

The above graph cannot be an eccentric digraph.

Next we will discuss some results on trees.

Lemma 1. [19]: For every vertex v in a tree T , each eccentric path of v contains a central

vertex of T .

The well-known result of Jordan [10] states that the center of a tree consists either a

single vertex or two adjacent vertices. If C(T ) = fu; vg, then let Tu denote the set of all

vertices closer to u than to v, and let Tv be the set of all vertices closer to v than to u:

Lemma 2. [9]: If C(T ) = fu; vg, then the eccentric vertices for each vertex in Tu are

within Tv , and the eccentric vertices for each vertex in Tv are within Tu:

Lemma 3. [9]: For each vertex x in a tree T , the set of eccentric vertices for x consists

of all the eccentric vertices of the nearest central vertex c to x in T that are at least as far

from x as from c.

Remark 9. : A central vertex c is nearest to itself.

Theorem 2. [9]: For any tree T , the eccentric digraph ED(T ) is connected. ED(T ) is

unilateral if and only if d(T ) � 2,and ED(T ) is strong if and only if T = K1orK2:

Lemma 4. [9]: If r(G) = 1; then ED(G) = (KjC(G)j)
� !

�D
V (G)� C(G)

E��
:
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3. Characterizations on Eccentric digraphs

Many open problems were posed by Boland, Buckley and Miller [5] concerning eccentric

digraphs and characterizations. Mainly three of the previously posed problems were

answered by Gimbert et.al. [15] viz.,

1. Characterize those graphs and digraphs that are antipodal.

2. Find hereditary properties of graphs and digraphs and their antipodal (eccentric).

3. Investigate relationships between antipodal and eccentric graphs(digraphs).

In case of undirected graphs, Buckley�s [9] result is the most fundamental one which is

in terms of complement of graph. Later on many results, most of the characterizations

are based on some kind of complement of graph. We now look into these results.

Theorem 3. [9]: Let G be a non trivial graph. Then G is a self-centered graph with

radius 2 if and only if ED(G) = (G)�.

As noted in Bollabas�[3], almost all graphs are self-centered with radius 2, we have the

following result.

Lemma 5. [9]: For almost every graph G, its eccentric digraph is ED(G) = (G)�.

This result was extended by Gimbert et. al. [15] to the directed case by considering a

modi�cation of the complement operation, viz., the complement of the reduction of G.

De�nition 1. [15]: Given a digraph G of order n, a reduction of G, denoted by G�; is

derived from G by removing all its arcs incident from vertices with out-degree n� 1. The

digraph
�
G�
�
; is known as the complement of the reduction of G.

Remark 10. : ED(G) is a subdigraph of
�
G�
�
and moreover, their corresponding sets

of vertices with out-degree n� 1 are the same.

Next result characterizes when the eccentric digraph of a graph (digraph) is equal to

the complement of its reduction.

Proposition 1. [15]: Let G be a digraph. Then ED(G) =
�
G�
�
; if and only if, for any

vertex u 2 V (G) with eccentricity > 2 the following (local) transitive condition holds:
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(u; v); (v; w) 2 E(G)) (u;w) 2 E(G);8v; w 2 V (G) and u 6= v:

The next result is the generalization of Buckley�s result for the undirected graphs.

Proposition 2. [15]: Let G be a graph of order n > 1. Then ED(G) =
�
G�
�
; if and

only if G satis�es one of the following conditions:

(i). rad(G) = 1,

(ii). G is a self-centered of radius 2;

(iii). G is the union of complete graphs.

A digraph (graph) G is de�ned to be eccentric if there exists a digraph H such that

ED(H) �= G as de�ned by Gimbert et.al.[15]. But in case of the term �eccentric graph�

has been used by Chartrand and Gu[12] to denote a graph G such that all its vertices are

eccentric( that is, ED(G) has minimum in-degree � 1). Next result gives a characteriza-

tion for eccentric digraphs.

Theorem 4. [15]: A digraph G is eccentric if and only if ED(G) =
�
G�
�
:

Remark 11. : The same cannot be assured in terms of undirected graphs, that is, if

ED(G) =
�
G�
�
then it is not necessary for the existence of an undirected graph H such

that ED(H) = G:

Example 2. :

Figure 2

For the graph of Figure 2, ED(G) =
�
G�
�
holds but, there does not exist an undirected

graph H such that ED(H) = G.
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In light of the above theorem and the note, a question remains unanswered, which we

pose as an open problem as follows:

Problem 1. : When there exists a symmetric digraph or undirected graph G for a digraph

H such that ED(G) = H?

For the undirected case the following result is due to Gimbert et.al.[15].

Theorem 5. [15]: Let G be a graph of order n > 1: Then G is eccentric if and only if G

is self-centered with radius two or G is the union of complete graphs.

Corollary 1. [15]:(i). Every non-connected graph with minimum degree > 0 is eccentric.

(ii). The eccentric graphs of radius 1 are the complete multipartite graphs with at least

one partite set of cardinality 1:

(iii). Every connected graph with radius � 3 or diameter � 4 is eccentric.

Corollary 2. [15]: A tree is eccentric if and only if its diameter is not equal to 3:

Remark 12. [6]: If a digraph G is not eccentric then there exists an eccentric digraph H

such that H contains G as an induced subdigraph and jHj � jGj+ 1:

In case of undirected case, the condition of being self-centered guarantees that the

corresponding eccentric digraph is actually a graph since the distance is symmetric. But,

this cannot be extended to the directed graphs, as the distance is not a metric. Hence the

characterization of digraphs G such that ED(G) is symmetric remains open. But, there is

a complete solution in case of non-strongly connected graphs due to Gimbert. Et.al.[15].

Proposition 3. [15]: Let G be a non-strongly connected digraph. Then ED(G) is a

symmetric digraph if and only if G = C1 [ C2 [ ::: [ Ck ; k � 2;or G = Kn ! C1 [ C2 [

::: [ Ck ; k � 1;where C1; C2; :::; Ck are strongly connected digraphs.

Proposition 4. [15] : Let G be a strongly connected digraph such that ED(G) is sym-

metric. Then the following conditions hold:

(i). rad(G) > 1, unless G is a complete digraph,

(ii). If diam(G) = 2 then G is self-centered graph.
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4. Graphs with isomorphic Eccentric digraph

In this section we consider a special class of graphs for which the eccentric digraphs

are isomorphic to the graph. In case of undirected graphs, Buckley [9] proved that the

eccentric digraph of a graph G is equal to its complement, if and only if G is either a

self-centered graph of radius two or G is the union of k � 2 complete graphs. In [15],

Gimbert et. al. have proved that the eccentric digraph ED(G) is symmetric if and only

if G is self centered.

Also, we just mention about the period and tail of a graph, which will be elaborated in

the next two sections. For every digraph G there exist smallest integers p > 0 and t � 0

such that EDt(G) = EDp+t(G) . In case of labeled graphs p is called the period of G and

t the tail of G where as for unlabelled graphs these quantities are referred as iso-period

,donoted by p0(G) and iso-tail , t0(G) respectively.

Here we are looking at graphs which have their eccentric digraphs isomorphic to them-

selves. So by Gimbert�s result these graphs are self-centered graphs. In this section we

consider self-centered, undirected graphs. The following observations are easily justi�ed.

Remark 13. [5]: Odd cycles is a class of graphs for which ED(G) = G:

Remark 14. [19]: Odd cycles are graphs with minimum number of edges and maximum

eccentricity on given number of vertices such that ED(G) = G:

Remark 15. [19] : For a self-centered graph G with radius � 3, the complement G is self-

centered with radius equal to two. Hence G � G; and G � G; and ED(G) is isomorphic to

a subgraph of G. Further, by using Buckley�s result [9], we can say that ED(G) = G = G:

That is if ED(G) = ED(G); then G = ED(G):

Remark 16. [5]: Complete graphs is another class of graphs for which ED(G) = G:

Remark 17. [19]: It is easy to see that for graphs up to order 7, the only graphs for

which ED(G) = G; are K2; K3; K4; K5; C5; K6; K7; C7:
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Remark 18. [19]: Two isomorphic graphs have their eccentric digraphs isomorphic, but

the converse need not be true always.

As an example we give a pair of non-isomorphic, self-centered graphs with same eccen-

tricity having one eccentric digraph.

Figure 3

Lemma 6. [19] : Let G be a self-centered graph with radius 2, then ED(G) = G if and

only if G is self-complementary.

Lemma 7. [19]: All self-centered graphs G with eccentricity greater than or equal to 3

with G having period = 1; tail = 1, satisfy the condition ED(G) = G:

For G to be isomorphic to ED(G), the necessary condition is that the for every vertex

of degree, say k; there must exist another vertex with k number of eccentric vertices. This

can be de�ned as eccentric degree of a vertex.

De�nition 2. [19]: For a vertex v of a graph G eccentric degree of v, denoted as ecc:deg(v)

is de�ned to be the number of vertices at eccentric distance from v: Also, the eccentric

degree sequence of a graph is de�ned as a listing of eccentric degrees of vertices written in

non-increasing order.
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So for ED(G) = G; the eccentric degree sequence of G should be equal to the degree

sequence of G. But this condition is not su¢ cient as seen in the example below. Here

both G and ED(G) have their degree sequence and eccentric degree sequences as (34; 29)

, but ED(G) � G:

Figure 4

Next, we consider self-centered graphs with given maximum degree�(G). By [10],�(G) �

p� 2r + 2; for a self-centered graph G with radius r. The next result shows that there is

no possibility of constructing a graph satisfying ED(G) = G; with �(G) = p� 2r + 2:

Proposition 5. [19]: There does not exist a graph G with �(G) = p � 2r + 2;such that

ED(G) = G:

Theorem 6. [19]: A connected self-centered graph G with �(G) = p�2r+1, is isomorphic

to its eccentric digraph if and only if its degree sequence is of the form (p� 2r+ 1)2; 2p�2

with structure K1+(Kp�2r+1) �F �K2+(K2�H)+(K2�H)+ � � �+(K2�H) fr� timesg;

where F is the graph obtained by joining one vertex of (Kp�2r+1) to one vertex of K2 and

remaining p � 2r vertices to one vertex of K2, and H is the 1 � factor removed from

successive K2 +K2.

In the next result we consider a particular case of graphs with ED(G) = G; that is,

odd cycles.

Lemma 8. [19]: In a labeled odd cycle C2n+1; n � 1; two vertices vi; vj are at eccentric

distance in ED(C2n+1), if and only if dG(vi; vj) = (n=2) or ((n+ 1)=2):

Remark 19. [19]: For unlabelled odd cycles, iterations of ED(C2n+1) can be packed into

Kn , since there are ((n� 1)=2)� 1 = ((n� 3)=2); ED(G)s, whereas, rad(C2n+1) = n:
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Remark 20. [19]: In case of labeled odd cycles the sequence of ED(G)0scan be packed into

Kn, if the permutation on n number of vertices de�ned by f(1) = 1; f(2i) = r+ 2� i; i =

1; 2; 3; :::; r; f(2i+1) = 2r+2� i; i = 1; 2; 3; ::::; r; is a product of three cyclic permutations

of length 1; r; r; respectively.

Next, we construct a class of self-centered graphs which have ED(G) = G; which

contain an odd cycle as a base.

Proposition 6. [19]: There exists a self-centered graph G, such that ED(G) = G; con-

taining an odd cycle.

Following is an example of a self-centered graph with radius 4, satisfying ED(G) �= G

,with C9, as base. So S = f1; 2; 3; : : : 9g and V (Cn) = fS1; S2; S3; S4; S5g,where S1 =

f1g; S2 = f2; 5; 8g; S3 = f4g; S4 = f7g; S5 = f3; 6; 9g: For each Si; 1 � i � 4 we have S11 =

f11g; S12 = f12g; S13 = f13g; S21 = f21; 51; 81g; S22 = f22; 52; 82g; S23 = f23; 53; 83g;S31 =

f41g; S32 = f42g; S33 = f43g; S41 = f71g; S42 = f72g; S43 = f73g:

Figure 5

5. ECCENTRIC DIGRAPHS OF DDR GRAPHS

In this section we consider a special class of graphs, viz., the eccentric digraphs of

distance degree regular (DDR) graphs. The distance degree sequence (dds) of a vertex v in

a graphG = (V;E) is a list of the number of vertices at distance 1; 2; : : : ; e(v) in that order,
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where e(v) denotes the eccentricity of v in G. Thus, the sequence (di0 ; di1 ; di2 ; : : : ; dij ; : : :)

is the dds of the vertex vi in G where, dijdenotes number of vertices at distance j from

vi. The concept of distance degree regular (DDR) graphs was introduced by G. S. Bloom

et.al.[4], as the graphs for which all vertices have the same dds.

A graph is said to be a unique eccentric node(u.e.n.) graph if for every vertex there

exists a unique eccentric vertex in G.

Proposition 7. [20]: There exists a DDR graph G such that ED(G) �= G:

Proposition 8. [20]:There exists a DDR graph G such that, ED(G) is a disconnected

graph each of whose components are complete bipartite graphs.

Proposition 9. [20]:For a unique eccentric node(u. e. n.) DDR graph, if p > 4 then

tail = 1, period = 2, and if p = 4; tail = 0; period = 2:

Proposition 10. [20]:For a given diameter d(� 3), there exist 2d� 6 DDR graphs with

tail = 1 and period = 1.

Remark 21. [20]: The unique eccentric node DDR graphs have their all iterated eccentric

digraphs as DDR graphs.

For non unique eccentric node DDR graphs the problem remains still open.

Problem 2. : When do non-unique eccentric node DDR graphs have their all iterated

digraphs as DDR graphs?

6. ITERATED ECCENTRIC DIGRAPHS

Another line of investigation concerns the iterated sequence of eccentric digraphs.

It is obvious that for any digraph G with jV (G)j = n;its eccentric digraph sequence

EDk(G) cannot cycle through all possible digraphs. For every digraph G there exist

smallest integers p > 0 and t � 0 such that EDt(G) = EDp+t(G) . In case of labeled

graphs p is called the period of G and t the tail of G where as for unlabelled graphs these

quantities are referred as iso-period p0(G) and iso-tail t0(G) respectively. A graph G is
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said to be periodic if t(G) = 0: Also, the iso-period of G divides period of G:We list some

results on iterated eccentric digraphs.

Remark 22. [6]: If a digraph G is the union of k > 1 vertex disjoint strongly connected

digraphs of orders n1; n2; :::; nk; for m > 0,

EDm(G) =

8<: Kn1;n2;:::;nk ; if m is odd;

Kn1 [Kn2 [ :::: [Knk ; if m is even:

9=; :
Theorem 7. [21] There exist self centered graphs with radius r = (p � 1)=2 with odd

cycle Cp, as a base, satisfying EDn(Cp) = Cp;where n is the least positive integer such

that for a labeled cycle Cp, whenever (i) p is an odd integer and p � 7; p 6= 3(2m+1);m =

1; 2; 3 : : :and p 6= x2; x(� 5)is a prime integer (ii)p � 7; p = 3(2m + 1);m = 1; 2; 3 : : :

(iii)p = x2; x(� 5) is a prime integer.

Theorem 8. [21]:In a labeled odd cycle on 3(2m+1);m = 1; 2; 3 : : :vertices, the distance

between any pair of vertices is 2m + 1 if and only if the distance between these pair of

vertices is 2m+ 1 in its eccentric digraph.

Theorem 9. [21]: For a given integer n � 3; there exist two odd cycles with period n.

Theorem 10. [21]: If G is a graph having a chordless cycle of length 2d + 1, where d

is a diameter of G and each of whose vertices having eccentricity equal to d, then ED(G)

also has a chord less cycle of length 2d+ 1:

Next result proves that the tail and iso-tail of any digraph always coincide, which

answers a question posed in [14].

Proposition 11. [16]: For every digraph G; t(G) = t0(G):

Period and tail of random graphs were considered by Gimbert and Lopez [16] in detail.

Some terminology about random graphs can be obtained from Bollabas [2,3].

Proposition 12. [3]: Let be �xed natural numbers and let 0 < p < 1 be also �xed. Then

in G(n; p) almost every digraph G = (V;E) is such that for every sequence of d distinct

vertices x1; x2; :::; xd there exists a vertex x 2 fx1; x2; :::; xdg such that
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(xi; x) 2 ED(G); if 1 � i � a;

(x; xi) 2 ED(G); if a < i � b;

(xi; x) =2 ED(G); if b < i � c;

(x; xi) =2 ED(G); if c < i � d

9>>>>>>=>>>>>>;
As a corollary to this result Gimbert and Lopez have proved the following result.

Corollary 3. [16]: Let 0 < p < 1 be �xed. Then in G(n; p) almost every digraph G is

such that G and its complement are both self-centered with radius 2.

In Gimbert et.al[14] it was pointed out that if you pick a digraph G at random on a

computer then it has its period equal to two. This had led to the conjecture that almost

every digraph has period two and was proved by Gimbert and Lopez[16] as follows:

Proposition 13. [16]: Let 0 < p < 1 be �xed. Then in G(n; p) almost every digraph has

period two and tail zero.

The odd cycle plays an important in the construction of eccentric digraphs. Gimbert

and Lopez[16] had constructed digraphs whose period is equal to the period of the odd

cycle by taking an odd cycle as a basis and using the generalized lexicographic product.

As a consequence, the iso-period takes any value. Following results [21] we have shown

the existence of non-isomorphic graphs with same order with tail zero and iso-period n.

Theorem 11. [21]: For a given integer n � 3; there exist at least two non-isomorphic

self- centered graphs having same order with tail 0 and iso-period n:

But, the complete characterization is still awaited. Here is the original problem as listed

in [5].

Problem 3. [5]: Find graphs or digraphs for which m is the smallest integer such that

EDm(G) = G, for m = 1; 2; 3; ::::; f(n):

As noted above we already have partial results. There is another related problem.

Problem 4. [5]: Given the order of a graph or a digraph, what is the maximum possible

value of f(n) in Open Problem 3?
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7. PLANARITY

There exists another very important aspect of eccentric digraphs which needs to be

answered is with respect to the planarity of ED(G): In the �rst paper of Buckley[9] the

following Problem is stated. But a complete characterization exists for undirected trees

due to Buckley[9].

Problem 5. [5]: Find a characterization for ED(G) to be planar for digraphs.

Theorem 12. [9]: For a tree T; its eccentric digraph ED(T ) is planar if and only if none

of the following conditions hold:

(i) d(T ) = 2 and T has order at least 5,

(ii) d(T ) = 3 and the double star S2;3 � T ,

(iii) d(T ) � 4; d(T ) is odd and one of the two central vertices has at least three

eccentric vertices, or

(iv) d(T ) � 4; d(T ) is even and either the unique central vertex c has at least four

eccentric vertices or c has three eccentric vertices x; y; and z and the set of branches at c

containing none of x; y; or z contains at least two vertices other than c.

In [22] we have proved that a planar or non-planar graph G can have a planar eccentric

digraph. But we are still in search of a characterization.

8. CONCLUSION

We conclude this survey with a comment that even though there are many results,

characterizations in terms of complements of graphs exist in literature, there are open

problems, structural results, constructions, graph properties in relation to the eccentric

digraphs remain untouched.
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