REGULAR PROPER *-SEMIGROUP EMBEDDINGS AND INVOLUTIONS

ADEL A. ABDELKARIM

Department of Mathematics, Faculty of Science, Jerash University, Jerash, Jordan

Abstract. It is proved that if \((S, \star)\) is a proper *-semigroup and if \(D\) is 0-characteristic integral domain then \((D[S], \star)\) is nil-semisimple provided that \(S\) is finite or \(i \in D\). Let \((S, \star)\) be a finite proper *-semigroup and \(F\) be a finite field of characteristic \(p\) such that \((F[S], \star)\) is a proper *-ring. Then \(F[S]\) is a direct product of fields and \(2 \times 2\) matrix rings over fields. Furthermore, \(p \neq 2, p \neq 1 \mod 4\).

Keywords: proper *; maximal proper *; symmetric, alpha inner.

2010 AMS Subject Classification: 20M17, 20M19.

1. Introduction

A semigroup with involution \((S, \star)\) is called a *-semigroup. It is called a \(p^\ast\)-semigroup if the involution \(\ast\) is proper. Thus \(\forall a, b \in S, aa^\ast = ab^\ast = bb^\ast \Rightarrow a = b\). A ring with involution \((R, \star)\) is a *-ring. It is called a \(p^\ast\)-ring if the involution \(\ast\) is proper. Thus \(aa^\ast = 0 \Rightarrow a = 0\) for all \(a \in R\). Let \((S, \star), (T, \star)\) be two *-semigroups. An injective mapping \(f : (S, \star) \rightarrow (R, \star)\) from a *-semigroup \((S, \star)\) into a *-ring \((R, \star)\) such that for all \(a, b \in (S, \star)\), \(f(ab) = f(a)f(b), f(a^\ast) = (f(a))^\ast\) is called a *-embedding. Let \((S, \star)\) be a *-semigroup and consider the semigroup ring \(Z[S]\) of \(S\) over \(Z\). If \((S, \star)\) is a \(p^\ast\)-semigroup then \((Z[S], \star)\) need not be a \(p^\ast\)-ring as in ([6]). Let \((S, \star)\) be a *-semigroup. The involution \(\ast\) is called a maximal proper involution if for every distinct elements \(s_1, \ldots, s_n \in S\), there exists an element \(s_i\) such that \(s_is_i^\ast \neq s_js_j^\ast, j \neq i\), and

Received June 4, 2014
A.A. ABDELKARIM

$s_is_i^* = s_is_i^* = s_is_i^*; k, l = 1, ..., n$. Such a *-semigroup is called an mp-semigroup. For example any inverse semigroup is an mp-semigroup under its inverse involution as in ([6]). If (S, \ast) is an mp-semigroup then $(Z[S], \ast)$ is a p*-ring and (S, \ast) is *-embeddable in $(Z[S], \ast)$, ([6]). Let (R, \ast) be a *-ring and let n be a fixed positive integer. If for every distinct elements $r_1, ..., r_n \in R$ it holds that $\sum r_ir_i^* = 0$ implies that $r_i = 0, i = 1, ..., n$ then we say that (R, \ast) is n-formally complex. Let F be a field, let α be an automorphism of order 1 or 2 and let $D \in M_n(F)$ be a diagonal matrix. Then F is $D(\alpha) - formally complex$ if and only if $\sum d_i\alpha(a_i) = 0$ implies all $a_i = 0$. If D is the identity matrix we say that F is $n-$formally complex and if this true for all n we say that F is formally-complex. On the other hand, if α is the identity then we say that F is $D(\alpha) - real$ and if D is the identity we say that F is $n-$formally real and if this is the case for all n we say that F is formally real. If (S, \ast) is an mp-semigroup and (R, \ast) is formally complex *-ring then $(R[S], \ast)$ is a p*-ring and (S, \ast) is *-embeddable in $(R[S], \ast)$, as in [6]) where it is shown there is a finite p*-semigroup that cannot be *-embedded in any p*-ring. Let (R, \ast) be a *-ring. An ideal I in R is called a *-ideal if $I^\ast = I$. In this case the ring R/I is a *-ring under the involution $(r + I)^\ast = r^* + I$.

Let F be a field and let α be an automorphism on F of order 1 or 2. Let $R = M_n(R)$ and let $A \in R$. If we apply to every entry in A the automorphism α we get A^α. An involution \ast on R is called $\alpha-$inner if there is an invertible matrix P such that for all A in R we have $A^\ast = P^{-1}A^{\alpha t}P$ and if α is the identity mapping then \ast is called inner.

Let F be a field and let α be an automorphism on F and let two matrices $A, B \in M_n(F)$. We say that the matrices A, B are $\alpha-$congruent if there is a matrix C such that $A = CBC^{\alpha t}$. Also we say that a matrix $A \in M_n(F)$ is $\alpha-$symmetric if $A = A^{\alpha t}$ and it is called $\alpha-$antisymmetric if $A^{\alpha t} = -A$. Here A^α is got from the matrix A by applying α to its entries. It is known that if A is a symmetric matrix in $M_n(F), F$ is a field then it is congruent to a diagonal matrix and if A is anti-symmetric invertible matrix then A is congruent to a direct sum of 2 by 2 matrices each of which is of the form $\alpha \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \alpha \in F$. See [3] pp. 365-372.

Let (S, \ast) be a proper *-semigroup of order 5 or less. It was noticed (through a computer program) that once the involution \ast in the *-semigroup ring $(Z[S], \ast)$ is not proper then the
p*-semigroup \((S, *)\) is not *-embeddable in any ring p*-ring. Up to now there is no proof or disproof for this claim.

In the first part of this note we find a necessary and sufficient condition for a certain class of involutions on \(R = M_n(F)\), \(F\) is a field, to be proper involutions. In the second part we give a plan to decide if a given proper *-semigroup is *-embeddable in a p*-ring and if so we seek to find a p*-algebra of matrices that *-embeds \((S, *)\) and we look for all involutions *' on \(S\) that makes \((S, *')\) *-isomorphic with \((S, *)\). Incase \((S, *)\) is not *-embeddable in a p*-ring we locate the *-subsemigroup \((T, *)\) such that \((S/T, *)\) is *-embeddable in a p*-ring.

2. Preliminaries

We cite the following known facts.

Theorem 1. (A) Let \((S, *)\) be an mp semigroup and let \((R, *)\) be a formally complex ring. Then \((R[S], *)\) is a proper *-ring and hence it has a zero nil radical, ([6]).

We cite the following version of Wedderburn Theorem from [2] p. 435

Theorem 2. (B) If \(R\) is a non zero left Artinean nil-semisimple ring then it isomorphic with a finite direct sum of finite matrix rings over a division ring.

We Also cite the following from [5], p.63.

Theorem 3. (B): If \(A\) is a left Noetherian ring, then every nil ideal is nilpotent.

We also cite the following version of Skolem-Noether theorem; see[2], p.460.

Theorem 4. (C): Let \(R\) be a simple left-Artinian ring and let \(K\) be the center of \(R\) (so that \(R\) is a \(K\)-algebra). Let \(A\) and \(B\) be finite dimensional simple \(K\)-algebras of \(R\) that contain \(K\). If \(\alpha : A \to B\) is a \(K\)-algebra isomorphism that leaves \(K\) fixed elementwise, then \(\alpha\) extends to an inner automorphism of \(R\).

We cite the following theorem from [1], p136.

Theorem 5. (D): Let \((R, *)\) be a semi-simple *-ring with involution * such that \(\forall x \in R, \exists n(x), (x + x^*)^n(x) = x + x^*\). Then \(R\) is a subdirect product of fields and 2 \(\times\) 2 matrix rings over fields.
Proposition 6. Let F be a field and let $P \in M_n(F)$ be a symmetric matrix then there is a diagonal matrix D congruent to P; i.e.,

$$\exists C \in M_n(F), CPC^t = D,$$ see [4], for example. If P is antisymmetric then P is congruent to a direct sum of matrices of the form $\alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and 0-matrices where $\alpha \in F$.

As a generalization we state a similar proposition whose proof is similar to that of proposition [6] and its proof is omitted.

Proposition 7. Let F be a field and let α be an automorphism of order 2 on F. Let $P \in M_n(F)$ be an invertible matrix such that $P^{\alpha t} = P$. Then there is a matrix C and a diagonal matrix D such that $CPC^{\alpha t} = D$.

3. Main results

Given a semigroup S we can ask how to find all proper involutions on S. For example if S is an inverse semigroup then the inverse operator is one of the proper involutions on S. Similarly given a ring R there is a problem of finding all proper involutions on R. For example if we take a field F and its corresponding matrix ring $R = M_n(F)$ the problem is to find all proper involutions on R. The transpose operator is an involution which need not be proper unless F is n-real. For example the transpose involution is not proper on $R = M_2(Z_2)$.

Let F be a field and let $R = M_n(F)$ be the matrix ring over F and let $Z(R) = \{cI : c \in F\}$ be the center of R. Let \ast be an involution on R. Let $A \in Z(R)$. Then for all $X \in R, AX = XA$ implies that $A^tX^t = X^tA^*$ and so $A^* \in Z$. Thus for all $c \in F, (cI)^* = c^*I$ and so \ast induces an automorphism (called the corresponding automorphism) of order at most 2 on F. Conversely we will show that any automorphism α of order at most 2 on F induces an involution \ast on $R = M_n(F)$ given by $A^* = P^{-1}A^{\alpha t}P$ for all $A \in R$ as shown in the following proposition.

Proposition 8. (1) Let \ast be an involution on $R = M_n(F)$ whose corresponding automorphism is the identity on F. Then there is an invertible matrix P such that $A^* = P^{-1}A^{\alpha t}P$ for every matrix A in $M_n(F)$.
(2) Let \(* \) be an involution on \(M_n(F) \) whose corresponding automorphism \(\alpha \) on \(F \) has order 2. Then there is an invertible matrix \(P \) such that \(A^* = P^{-1}A^{\alpha}P \) for every matrix \(A \in M_n(F) \).

Proof. (1) The operator \(h : A \mapsto A^{*t} \) is an automorphism that fixes the center of \(M_n(F) \) elementwise. From Noether-Skolem Theorem it follows that there is an invertible matrix \(P \) such that for all \(A \in R, h(A) = A^{*t} = PAP^{-1} \). Thus \(A^* = Q^{-1}A^tQ, Q = P^t \) for every \(A \in M_n(F) \).

(2) The operator \(k : A \mapsto A^{*\alpha} \) is an automorphism on \(M_n(F) \) that fixes the center \(Z(R) = \{ cI : c \in F \} \) elementwise. From Noether-Skolem Theorem there is an invertible matrix \(P \) such that for every matrix \(A \) we have \(k(A) = A^{*\alpha} = P^{-1}AP \). Thus for every matrix \(A \in R \) we have \(A^* = P^\alpha A^{\alpha}P^{-1} = Q^{-1}A^{\alpha}Q, Q = P^{-1}A^{\alpha} \).

Corollary 9. Let \(* \) be an involution on \(R = M_n(F) \) whose corresponding automorphism \(\alpha \) is of order 1 or 2 on \(F \). Then there is an invertible matrix \(P \) such that \(A^* = P^{-1}A^{\alpha}P \) for every matrix \(A \) in \(M_n(F) \).

We can generalize the preceding propositions to division rings. The proof of the following proposition is similar to the proof of proposition 8 and it is omitted.

Proposition 10. Let \(R = M_n(D) \) be a matrix ring on a division ring \(D \). Let \(* \) be an involution on \(R \). Let \(Z(R) \) be the center of \(D \). Then there is an automorphism \(\alpha \) on the ring \(Z(R) \) of order 1 or 2 and there is an invertible matrix \(P \) such that for all \(A \in R \), \(A^* = P^{-1}A^{\alpha}P \).

We prove the following.

Proposition 11. Let \(\alpha \) be an automorphism of order 1 or 2 on the field \(F \). Let \(P \in R \) be an invertible matrix on \(F \). Define \(* \) on \(R \) as \(A^* = P^{-1}A^{\alpha}P \) for all \(A \in R \). Then \(* \) is an involution if and only if \(P^\alpha = cI, c = \pm 1, c^n = 1 \).

Proof. We have for all \(A, B \in R, (A + B)^* = A^* + B^*, (AB)^* = B^*A^* \). To make \(* \) as an involution we need \(A^{**} = A \) to hold on \(R \). Thus \(P^{-1}P^\alpha AP^{-1}A^{\alpha}P = A \) for all \(A \in R \). Thus \(P^{-1}P^\alpha = cI \) or \(P^\alpha = cP \) for some nonzero scalar \(c \). Also we notice that \(P^{**} = P \) and from \(P^* = P^{-1}P^\alpha P = P^{-1}cPP = cP \) we get \(P = P^{**} = (cP)^* = c^2P \) and so \(c^2 = 1 \) and \(c = \pm 1 \). From \(P^t = cP \) and upon taking determinants we get we get \(c^n = 1 \). If \(n \) is odd we must have \(c = 1 \) and if \(n \) is even we still have \(c = \pm 1 \).
Remark 1. If one of the diagonal elements of P in proposition (11) is nonzero then $c = 1$ and $P^t = P$. Otherwise and if all diagonal elements are 0 we have only the condition $c = \pm 1$ and n is even.

Next we discuss conditions on P that guarantees that the involution $*$ is proper

Proposition 12. Let F be a field and let $R = M_n(F)$.

(1) Let $*$ be an involution on R defined by $A^* = P^{-1}A^tP$ for all $A \in R$. Let $P = P$. If $P^{-1} = QQ^t$ for some matrix Q and if F is formally real then $*$ is a proper involution.

(2) Let $*$ be an involution on R defined by $A^* = P^{-1}A^\alpha tP$ for all $A \in R$ with $P^t = P$ and let the corresponding automorphism α on F be of order 2. If $P^{-1} = QQ^\alpha$ for some matrix Q and if F is formally α–complex then $*$ is a proper involution.

Proof. (1) For $*$ to be proper we need the condition $AA^* = 0$ to hold if and only if $A = 0$ for all $A \in R$. This is equivalent to require that $AP^{-1}A^tP = 0$ implies that $A = 0$. Or $AP^{-1}A^t = 0$ implies that $A = 0$. Or, $AQ^t = 0$ implies that $A = 0$. If F is formally real this is equivalent to $AQ = 0$ implies that $A = 0$ which is the case since Q is invertible.

(2) For $*$ to be proper we need the condition $AA^* = 0$ to hold if and only if $A = 0$ for all $A \in R$. This is equivalent to $AP^{-1}A^\alpha tP = 0$ if and only if $A = 0$. Or $AP^{-1}A^\alpha t = 0$ if and only if $A = 0$. But $P^{-1} = QQ^\alpha$ and so $AP^{-1}A^\alpha t = AQQ^\alpha A^\alpha t = 0$ implies that AQ and hence $A = 0$ since F is α–formally complex. ■

Proposition 13. Let $R = M_n(F), F$ being a field. Let $*$ be an involution on R with a corresponding automorphism α and a corresponding matrix $P, P^\alpha = P$. Let D be the corresponding diagonal matrix that is congruent to P as was mentioned in proposition 7. If α is the identity mapping then $*$ is proper if and only if F is D–real. If α is of order 2 then $*$ is proper if and only if F is D–complex.

Proof. We need to show, for $*$ to be proper, that $AP^{-1}A^\alpha t = 0$ if and only if $A = 0$. Since $P^{-1} = CDC^\alpha$, we see that we need $ACDC^\alpha A^\alpha t = 0$ if and only if $A = 0$ if and only if $AC = 0$ if and only if $A = 0$. It is clear that we need F to be $D(\alpha)–$complex. ■
Proposition 14. Let F be a p-characteristic field and let $*$ be a proper involution on $R = M_n(F)$ such that its corresponding automorphism is the identity. Let P be the corresponding matrix for the involution $*$ as in the proof of proposition (11) and let D be a diagonal matrix congruent to P with diagonal entries set $D = \{d_1, ..., d_n\}$. Then $p \neq 2, P^* = P = P^t$, and F is D-real. Conversely if F is D-real then the involution is proper.

Proof. We have seen in the proof of proposition (11) that $P^t = \pm P$. Assume, to get a contradiction, that $P^* = -P$. Let $Q = P^t$. Define $f : F^n \times F^n \to F^n$ by $f(u, v) = u^t Q v$. Then f is a bilinear form on F^n. In fact, f is alternating because $f(u, v) = (f(u, v))^t \Rightarrow u^t Q v = v^t Q^t u = -v^t Q u = -f(v, u), \forall u, v \in F^n$. Thus $\forall v \neq 0, f(v, v) = 0$. Let us pick one such v and let us form the matrix A whose first row is v^t and whose all other rows are zero rows. Straightforward calculations show that $A^t QA = 0$. Thus $A^t PA = 0$. Thus $A \neq 0, A^* A = P^{-1} A^t PA = 0$, a contradiction with properness of $*$ on R. It follows that $p \neq 2$, otherwise $P = -P$ and we saw that this contradicts properness of $*$. To complete the proof let C be an invertible matrix such that $CP^{-1} C^t = D$, a diagonal invertible matrix. Now $\forall A \in R, \exists B \in R, A = BC, AA^* = 0 \Leftrightarrow BC(P^{-1} C^t B^t P) = BDB^t P = 0 \Leftrightarrow BDB^t = 0$. Thus $* \text{ is proper if and only if the only solution in } B \in M_n(F) \text{ for the equation } BDB^t = 0 \text{ is } B = 0$. If we take for B a matrix which is everywhere 0 except possibly on its first row $\{x_1, ..., x_n\}$ we see that the condition implies the equation $\sum d_i x_i^2 = 0$ has only the trivial solution. Thus F is D-real.

Let $*$ be an involution on $R = M_n(F), n \text{ is even, with a corresponding matrix } P \text{ with } P^* = -P$. We give an example that $*$ is not proper.

Example 1. Let F be any field and let $R = M_2(F)$ and we take the invertible anti-symmetric matrix matrix $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Let α be an automorphism on F of degree 1 or 2. We define an involution $*$ on R defined by $A^* = P^{-1} A\alpha^t P$ for all $A \in R$. This involution is not proper if we take $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ then a simple calculation reveals that $AA^* = 0$-matrix although A is not zero.

Proposition 15. Let F be a field and let $* \text{ be a proper involution on } M_n(F) \text{ with a corresponding matrix } P. \text{ Then } P^t = P \text{ and } \text{char}(F) \neq 2.$
Proof. If \(P' = -P \) then from the fact in the introduction and from the preceding example * is not proper. If the characteristic of the field is 2 then \(P' = -P \) and again the involution is not proper. \(\square \)

Proposition 16. Let \((S, \ast)\) be a finite proper \(*\)-semigroup and \(F \) be a finite field of characteristic \(p \neq 0 \) such that \((R, \ast) = (F[S], \ast)\) is a proper \(*\)-ring. Then \(R \) is a direct product of fields and \(2 \times 2 \) matrix rings over fields. Furthermore, \(p \neq 2, p \neq 1 \mod 4. \) The converse is also true.

Proof. \(x \in R, y = x + x^* \). Then not all positive powers of \(y \) are distinct owing to the finiteness of \(R \). Let \(m > 1 \) be a positive power of \(y \) such that \(\exists n > m, y^n = y^n \) such that \(m = 2k, n = 2l \). Then, since \(y = y^*, y^n = (yy^*)^k = y^n = (yy^*)^l \). Using \(*\)-cancellation, we get \(y^k = y, k > 1 \). Thus \(\forall x \in R, \exists n(x), (x + x^*)^{n(x)} = x + x^* \) and Theorem D applies. The last part follows from the fact that any involution on \(M_2(Z_p) \) is transpose-inner and the transpose involution is proper if and only if \(p \neq 2, p \neq 1 \mod 4. \) \(\square \)

Proposition 17. Let \((R, \ast) = (M_m(Z_n), \ast)\) be a proper \(*\)-ring. Then \(m = 2, n = p_1\ldots p_k, p_i \neq p_j(i \neq j), p_i \neq 2, p_i \neq 1 \mod 4, \forall i = 1, \ldots, k. \)

Proof. That \(m = 2 \) follows from Theorem D. That \(p_i \neq p_j(i \neq j) \) follows from \(*\) being proper: \(p_1 = p_2 \Rightarrow \frac{n}{p_1}(\frac{n}{p_1})^* = 0 \neq \frac{n}{p_1} \). The proof of the other parts is similar to the proof in proposition 16. \(\square \)

Proposition 18. Let \((R, \ast) = (M_2(Z_p), \ast)\) be a proper \(*\)-ring. Then \(*\) is inner.

Proof. Let \(C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, G = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). Then \(C, D \) generate the ring \(R \). This is easily seen. Let \(C^* = A, D^* = B \). We are looking for a matrix \(u = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \) such that \(C^* = A = u^{-1}Cu = u^{-1}C^*u = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), \(D^* = B = u^{-1}Du = u^{-1}D^*u = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \). Thus \(uA = Cu, uB = Du \Rightarrow uA = CD^{-1}uB = GuB \Rightarrow \begin{pmatrix} z & t \\ -x & -y \end{pmatrix}. \) \(A = B. \) The last matrix equation gives rise to solutions in \(x, y, z \) and \(t \) since \(A \) and \(B \) are invertible. Furthermore the resulting
matrix \(\begin{pmatrix} z & t \\ -x & -y \end{pmatrix} \), which has the same determinant as that of \(u \), is invertible since \(A \) and \(B \) are. Thus \(u \) is invertible. Thus * is inner at least for the matrices \(C \) and \(D \). But \(C \) and \(D \) generate the whole matrix ring and, for example, \((CD)^* = D^*C^* = u^{-1}D'u u^{-1}C'u = u^{-1}(CD)^*u \). Thus * is inner in general.

3.1. *-Semigroup Embedding in a Proper *-Ring. We start this subsection with the following remarks:

Although the following remarks are almost routine we present them here for the sake of completeness.

Remark 2. Let \((R,\ast)\) be an \(m \)-characteristic proper *-ring without \(1 \). Then either \(m = 0 \) or \(m \) is square-free. Also \((R,\ast)\) can be *-embedded in an \(m \)-characteristic proper *-ring \((R_1,\ast)\) with \(1 \).

Illustration 1. Let \(r \) be a nonzero element of \(R \) such that there is a smallest positive integer \(m \) with \(mr = 0 \) and \(m = kp^2 \), \(k \) is not a unit and \(p \) is a prime. then \(kp \) is not zero. But then \((kpr)(kpr)^* = 0 \). From properness of * it follows that \(kpr = 0 \) which is a contradiction with \(kpr \) not zero. To prove the other part we have two cases to consider.

Illustration 2.

Case 1. : \(m = 0 \). In this case we take the Cartesian product \(Z \otimes R \) and define addition and multiplication as follows. \((m,r) + (m',r') = (m + m', r + r'), (m,r)(m',r') = (mm', mr' + m'r + rr')\) for every \(m, m' \in Z, r, r' \in R \). This makes of \(Z \otimes R \) a ring \(R_1 \). We define an operator * on \(R' \) by \((m,r)^* = (m, r^*)\). Then it is straightforward to see that * is an involution. In fact, it is proper. For, \((m,r)(m,r)^* = (0,0) = (m^2, mr + mr^* + rr^*) \Rightarrow m = 0, rr^* = 0 \Rightarrow r = 0, (m, r) = (0,0)\).

Illustration 3.

Case 2. : \(m \neq 0 \). In this case \(m \) is square-free. For if \(m = p^2k \), \(p \) is prime, then there exists \(0 \neq r \in R, mr = 0, nr \neq 0 \) for all positive integers \(n < m \). But then \(0 \neq pkr, (pkr)(pkr)^* = 0 \), a contradiction with the properness of the involution * . Now we form \(Z_m \otimes R \). We define addition and multiplication as in Case 1. It is straightforward to see that these operations are well-defined making of \(Z_m \otimes R \) a ring denoted by \(R_2 \). We define * on \(R_1 \) as in Case 1. Then * is an
involution and it is proper. For,
\[(0,0) = (k, r)(k, r)^* = (k^2, kr^* + kr + rr^*) \Rightarrow k^2 = 0 \Rightarrow k = 0\]
for all \(k \in \mathbb{Z}_m, r \in R\). The last implication follows since \(m\) is square-free forcing \(\mathbb{Z}_m\) to have a 0-radical. It follows that \(rr^* = 0\) and so \(r = 0, (m, r) = (0, 0)\).

Remark 3. Let \((R, *)\) be an 0-characteristic proper *-ring. Then \((R, *)\) can be *-embedded in a 0-characteristic proper *-algebra \((R_1, *)\) over \(Q\).

Illustration 4. We may assume that \(R\) contains 1. Then \(R\) contains a copy of \(\mathbb{Z}\). Now we localize \(R\) at the multiplicatively closed set \(\mathbb{Z}\setminus\{0\}\). (See [2] for definition of localization). The resulting *-ring denoted by \((R_1, *)\) contains a copy of \(Q\) and it is a proper *-ring. For if \([[(r, m)]][(r, m)]^* = [(0, 1)]\) then \(rr^* = 0\) and so \(r = 0, [(r, m)] = [(0, 0)]\).

Now we prove the following.

Proposition 19. Let \((R, *)\) be a *-ring. Let \(I_1\) be the ideal generated by all \(A\) in \((R, *)\) such that \(AA^*\) or \(A^*A\) is 0 and, for \(k > 1\), let \(I_k\) be the ideal generated by all \(A \in (R, *)\) such that \(AA^*\) or \(A^*A\) is in \(I_{k-1}\). Then \(I_k\) is a *-ideal, \(I_k \subseteq I_{k+1}\), and if \(I\) is the union of all \(I_k\), \(k > 0\), then \(I\) is a *-ideal and \((R/I, *)\) is a p*-ring.

Proof. That \(I_k\) is a *-ideal and that \(I_k \subseteq I_{k+1}\) are trivial to verify. Also \(I\) is a *-ideal. If \(AA^*\) is in \(I\) then it is in some \(I_k\) and so \(A\) is in \(I_{k+1}\) and hence \(A\) is in \(I\). Thus \((R/I)\) is a p*-ring. \(\blacksquare\)

Corollary 20. Let \((S, *)\) be a *-semigroup, not necessarily a p*-semigroup, and let \((Z[S], *)\) be the corresponding *-semigroup ring of \((S, *)\) over \(Z\). Let \(I_{k}, k > 0\), and \(I\) be the ideals as in the preceding proposition. Then \((Z[S]/I, *)\) is a p*-ring. If \((S, *)\) is a finite p*-semigroup then it is *-embeddable in a p*-ring if and only if there are no distinct elements \(s, t\) in \(S\) such that \(s - t\) in any \(I_k\). In this case if \(S\) is commutative then \((S, *)\) is *-embeddable in a subdirect product of fields. Also in this case if \(Z[S]/I\) is finite then \((S, *)\) is *-embeddable in a finite direct product of matrix rings each over a finite field.

Proof. The proof is a direct consequence of the proposition (19), remarks 3 and 2 and Wedderburn’s Theorem since \((S, *)\) in case of \(S\) is finite and hence the corresponding algebra is Artinean. For then \((S, *)\) is a finite p*-semigroup such that \((R, *) = (Z[S]/I, *)\) is infinite and
there are no distinct elements s,t in S such that $s - t$ is in any I_k. Then $(Q[S]/I_*,\ast)$ is isomorphic to a finite direct product of matrices over division ring and hence (S,\ast) is represented as a $p\ast$-semigroup of matrices over a division ring.

Proposition 21. Let (S,\ast) be an mp semigroup and let (D,\ast) be a 0-characteristic integral domain with proper involution \ast. If S is finite, or if $i \in D$ then $D[S]$ is nil-semisimple while $(D[S],\ast)$ need not be a proper \ast-ring and the extended involution need not be a proper ring involution.

Proof. We can assume that D is contained in the complex number field C. Assume first that $i \in D$. Then D is closed under complex conjugation which is a proper involution. Since (S,\ast) is an mp-semigroup it follows from Theorem A that $(D[S],\ast)$ is proper \ast and nil-semisimple. Now assume that $i \notin D$ and assume that S is finite. Let J be a nil ideal in $D[S]$. Since S is finite and the D-module $D[S]$ is isomorphic to the direct sum of $|S|$ copies of the Noetherian left D-modules (each is isomorphic to D), then $D[S]$ is a Noetherian left D-module. Hence it is also a Noetherian left $D[S]$-module and thus it is a left-Noetherian ring. By theorem B, J is nilpotent and there is a positive integer n such that $J^n = 0$. Then $I = J + iJ$ is a nilpotent ideal in $D[i][S]$ which is nil-semisimple. Thus I is 0 and hence J is a 0 ideal.

Proposition 22. Let (S,\ast) be a finite mp-semigroup and let F be a 0-characteristic field. Then $F[S]$ is a finite direct product of matrices over a skew field and (S,\ast) is \ast-embeddable in the \ast-ring $(F[S],\ast)$ where \ast is the natural involution inherited from the involution \ast in (S,\ast). If the field F has a non zero characteristic then $F[S]$ is a finite direct product of matrices over a field.

Proof. We can assume without loss of generality that S has an identity element 1 (This easy to prove). Since $F[S]$ is a nil-semisimple ring by proposition 21 and since it is a finite dimensional F-vector space, it follows that it is a finite direct product of matrix rings over a skew field. Let (S,\ast) be a finite mp-semigroup and let F be a field of 0-characteristic. Then the involution on S gets extended to an involution on $F[S]$ in a natural way: $(\sum a_i s_i)^\ast = \sum a_i s_i^\ast$. (But there is no guarantee that this involution is proper on $R[S]$, unless R is formally complex). If $ch(F) \neq 0$ the prime field is Z_p and the subring generated by Z_p and S is finite and has a proper involution and so it is a finite direct sum of matrix rings over a finite skew field (a field then).
Proposition 23. Let \((R,*)\) be a finite proper \(*\)-ring. Then \((R,*)\) is \(*\)-isomorphic with a finite direct product of matrix rings over a field.

Proof. We show that \(R\) has a 0-radical \(I\). For let \(A\) be in \(I\). Then \(AA^*\) is in \(I\). But then there is a natural number \(n\) such that \((AA^*)^n = 0\). By properness of \(*\) it follows that \(AA^* = 0\) and hence \(A = 0\). Thus \(I\) is the zero ideal. From Wedderburn Theorem it follows that \(R\) is isomorphic with a finite direct product of matrix rings over a skew field. Since \(R\) is finite the skew fields are fields. \(\blacksquare\)

Proposition 24. Let \((S,*)\) be a proper \(*\)-semigroup \(*\)-embeddable in a proper \(*\)-ring \((R,*)\). Then

1. There is a \(*\)-ideal \(I\) in \((Z[S],*)\) such that \((Z[S]/I,*)\) is a p*-ring which \(*\)-embeds \((S,*)\).
2. If \(ch(R) = 0\) and \(S\) is finite then \((S,*)\) is \(*\)-embeddable in a finite direct sum of matrix rings over a division ring with proper involution.
3. If \(ch(R) = m \neq 0\) and \(S\) is finite then \((S,*)\) is \(*\)-embeddable in a finite direct sum of matrix rings over a finite prime-characteristic field with proper involution.

Proof. (1) There is a natural \(*\)-mapping \(f : (Z[S],*) \to (R,*)\) given by \(f(\sum m_i s_i) = \sum m_i g(s_i)\), where \(g\) is the \(*\)-embedding of \((S,*)\) into \((R,*)\). If \((Z[S],*)\) is p* then we can take \(I = 0\). If there is \(A\) not 0 in \(Z[S]\) such that \(AA^*\) or \(A^*A = 0\) then we take the ideal \(I_1\) generated by all such \(A\) and we consider the \(*\)-ring \(Z[S]/I_1\). We notice that there can be no two different elements \(s, t\) in \(S\) such that \(s - t\) is in \(I_1\) lest \(s - t = 0\) in \(R\) which would imply non \(*\)-embeddability of \((S,*)\) in \((R,*)\). If this \(*\)-ring is p* then we are done with getting the required p*-ring \(Z[S]/I\). Otherwise there is \(A\) not in \(I_1\) such that \(AA^*\) is in \(I_1\). We take all such \(A\) and all \(B\) such that \(B^*B\) is in \(I_1\) and form the ideal \(I_2\). These are 0 in \(R\) of course. Now we form the \(*\)-ring \(R/I_2\). There can be no two different elements \(s, t\) in \(S\) such that \(s - t\) is in \(I_2\) lest that would contradict \(*\)-embeddability of \((S,*)\) into \((R,*)\). If this \(*\)-ring is p* then we are finished by getting a \(p^*\)-ring \(R/I_2\) which \(*\)-embeds \((S,*)\). We continue this way. The union of these \(*\)-ideals is clearly a \(*\)-ideal \(I\) and \((R/I,*)\) is a \(p^*\)-ring which \(*\)-embeds \((S,*)\).

(2) If \(ch(R) = 0\) and \(S\) is finite we can assume that \(R\) contains a copy of \(Q\). Let \(R' = \langle Q, S \rangle\) be the set of all rational linear combinations of elements of \(S\) in \(R\). Then \(R'\) is a proper \(*\)-ring which
*-embds \((S, \ast)\). Being a homomorphic image of the Artinian ring \(Q[S]\), \(R'\) is Artinian. Since a proper *-ring has 0 nil-radical, by Wedderburn’s Theorem \(R'\) is isomorphic to a finite direct sum \(R_2\) of matrix rings over a skew field. We define an involution * on \(R'\) as follows. Let \(f\) be the isomorphism of \(R'\) onto \(R_2\). Take \(b\) in \(R'\). Then \(b = f(a)\) for a unique element \(a \in R'\). Define \(b^* = f(a^*)\). We show that * is a proper involution. Let \(b, c \in R_2\) and let \(b = f(a_1), c = f(a_2)\). Then \((b + c)^* = (f(a_1) + f(a_2))^* = (f(a_1 + a_2))^* = f(a_1^* + a_2^*) = f(a_1^*) + f(a_2^*) = (f(a_1))^* + (f(a_2))^* = b^* + c^*, (bc)^* = (f(a_1a_2))^* = f(a_2^*)f(a_1^*)
\(= (f(a_2))^*(f(a_1))^* = c^*b^*, b^* = (f(a_1^*))^* = f(a_1^{**}) = f(a_1) = b.\) And if \(bb^* = 0\) then \(f(a_1)(f(a_1^*) = f(a_1a_1^*) = 0\) and so \(a_1a_1^* = 0\) which implies that \(a_1\) and hence \(b = 0\).

(3) If \(ch(R) = m \neq 0\) and \(S\) is finite we can argue similarly that there is a copy of \(Z_m\) in \(R\) and \(R'' = \langle Z_m, S\rangle\) is proper *. Since \(R''\) is finite it is isomorphic to a finite direct sum of matrix rings over a prime characteristic finite field. This is because a finite skew field is a field. The same argument as above applies to show that the involution inherited from \(S\) on the finite sum of matrix rings is proper. This completes the proof. ☑

Proposition 25. Let \((S, \ast)\) be a simple *-semigroup. Then it is a \(p^*\)-semigroup and it is *-embeddable in a \(p^*\)-ring.

Proof. There is a natural *-homomorphism \(f : (S, \ast)\) → \((Z[S]/I, \ast)\) of \((S, \ast)\) into the proper *-ring \((Z[S]/I, \ast)\). Now the kernel of \(f\) gives rise to a *-ideal in \((S, \ast)\) which is *-simple. This ideal must be zero and so \(f\) is a *-embedding and \((S, \ast)\) is a \(p^*\)-semigroup which is *-embedded in a \(p^*\)-ring. ☑

Strategy 1. Assume we have a finite proper *-semigroup \((S, \ast)\) with \(I\) and assume that we would like to know if \((S, \ast)\) is *-embeddable in a proper *-ring \((R, \ast)\) of matrices of characteristic 0. Then we form the algebra \((R, \ast) = (Q[S], \ast)\) where \(\ast\) is the natural involution. If \((R, \ast)\) is \(p^*\) then we are done. If not then we form the ideal \(I_1\) generated by all \(A \in R\) such that \(AA^*\) or \(A^*A = 0\). Then \(I_1\) is closed under the involution \(\ast\) and so \((R_1, \ast) = (R/I, \ast)\) is an algebra with involution and with dimension \(n_1 < n = \mid S \mid \). If there are elements \(s \neq t\) in \(S\) such that \(s - t \in I\) then \((S, \ast)\) is not *-embeddable in a \(p^*\)-ring of characteristic 0. If there is no such pair we check if \((R_1, \ast)\) is \(p^*\). If it is \(p^*\) then we are done and If not then we look for all \(A \in R\) such
that \(A \notin I_1 \) such that \(AA^* \) or \(A^*A \notin I_1 \) and we form the ideal \(I_2 \) generated by all such \(A \) and its involution \(A^* \). This ideal \(I_2 \) is closed under involution. Then we form \((R_2, *) = (R/I_2, *)\) and with dimension \(n_2 < n_1 \). If there are distinct \(s, t \in S \) such that \(s - t \in I_2 \) then \((S, *) \) is not \(*\)-embeddable in a \(p^*\)-ring of characteristic 0. If there is no such pair we check is \((R_2, *) \) is \(p^* \). If so then we are done and If not we look for all \(A \neq 0 \) in \(R \) such that \(AA^* \) or \(A^*A \) is in \(I_2 \) and form the ideal \(I_3 \) generated by these \(A \). This is closed under taking \(* \) and we form \((R_3, *) = (R/I_3, *)\). This has dimension \(n_3 < n_2 < n_1 < n \). etc. In a finite number of steps either we come up with a \(p^*\)-algebra of 0-characteristic which \(*\)-embeds \((S, *) \) or we conclude that there is no such \(p^*\)-ring. The same procedure we can use to check if there is a \(p^*\)-ring of any prescribed nonzero characteristic or not.

Strategy 2. Assume we have a finite proper \(*\)-semigroup \((S, *) \) with 1 which is not \(*\)-embeddable in a \(p^*\)-ring with characteristic 0. It is desired to reform \((S, *) \) to a \(p^*\)-semigroup that is \(*\)-embeddable in a \(p^*\)-ring of characteristic 0. We form as before the \(p^*\)-ring \((Q[S]/I, *)\). Then there is a \(p^*\)-image \((T, *) \) of \((S, *) \) in \((Q[S]/I, *)\). Then there is a \(*\)-congruence \(\sim \) in \(S \) such that the \(p^*\)-semigroup \((S/\sim, *) \) is isomorphic with the \((T, *) \) inside the \(p^*\)-ring \((Q[S]/I, *)\).

Conflict of Interests

The author declares that there is no conflict of interests.

References

