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1. Introduction

In 1966, Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK-algebras and
BCl-algebras [10,11,16]. It is known that the class of BCK-algebras is a proper subclass of the
class of BCl-algebras. Neggers et al [8] introduced a notions, called Q-algebras, which is a
generalization of BCH / BCI / BCK-algebras and generalized some theorems discussed in BCI-
algebras. Moreover, Ahn and Kim [15] introduced the notions of QS-algebras which is a proper
subclass of Q-algebras. Kondo [13] proved that, each theorem of QS-algebras is provable in the
theory of Abelian groups and conversely each theorem of Abelian groups is provable in the
theory of QS-algebras. Derivation is a very interesting and important area of research in the
theory of algebraic structures in mathematics. Several authors [2,6,7,13,14] have studied
derivations in rings and near rings. Jun and Xin [17] applied the notions of derivations in ring

and near-ring theory to BCl-algebras, and they also introduced a new concept called a regular
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derivations in BCI -algebras. They investigated some of its properties, defined a d -derivations
ideal and gave conditions for an ideal to be d-derivations. Later, Abujabal and Al-Shehri [5],
defined a left derivations in BCl-algebras and investigated a regular left derivations. Zhan and
Liu [9] studied f-derivations in BCl-algebras and proved some results. Muhiuddin and Al-roqi
[3,4] introduced the notions of («, £3) -derivations in a BCl-algebras and investigated related

properties. They provided a condition for a (e, ) - derivations to be regular. They also

introduced the concepts of a d invariant (e, ) -derivations and a-ideal, and then they

(@p) ~
investigated their relations. Furthermore, they obtained some results on regular  («, ) -

derivations. Moreover, they studied the notions of t-derivations on BCl-algebras [4] and obtain
some of its related properties. Further, they characterized the notions of p-semisimple BCI-
algebras X by using the notions of t-derivations. In this paper we introduce the notions of
(¢,r) ((r,2))-derivations of a QS-algebras, (r,¢) ((¢,r))-t-derivations of a QS-algebras, t- bi-

derivations of a QS-algebras and investigate some related properties.

2. Preliminaries

In this section, we recall some basic definitions and results that are needed for our work.

Definition 2.1[15] A QS-algebra ( X ,*,0) is a non-empty set X with a constant 0 and a binary
operation * such that for all x,y,z e X satisfying the following axioms:

(QS-1) (xxy)rz=(x*z)*y.

(QS-2) x=*0=x.

(QS-3) x*xx=0.

(QS-4)  (x*y)*(x*z)=z*y.

Definition 2.2 [15] Let (X ,*,0) be a QS-algebra, we can define a binary relation < on X as,

x<y ifandonlyif x#* y =0, this makes X as a partially ordered set.

Proposition 2.3[15] Let ( X ,*,0) be a QS-algebra. Then the following hold: V x,y,ze X.
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X<y implies zxy<z*x
x<y and y<z imply x<z
x*xy<z impliesx*z<y.
(XxZz)x(y*z) <X*Y.

X<y impliesx*z<ys*z,

0#(0*(0*x))=0*x.

o o ~ w e

Lemma 2.4[12] Let ( X ,*,0) be a QS-algebra. If x*y =2z, thenx*xz=y VX y,z e X.
Lemma 2.5[12] Let ( X ,*,0) be a QS-algebra. 0*(x*y)=y=*Xx VX,y e X.

Corollary 2.6[12] Let ( X ,*,0) be a QS-algebra. 0* (0*X) =x ¥x e X.

Lemma 2.7 [12] Let ( X ,*,0) be a QS- algebra. x*(0*y) =y*(0*X) VX y e X.

Proposition 2.8 Let ( X ,*,0) be a QS-algebra. Then the following hold: V x,y,ze X .
L xx(x*xy)=y.
2. X#E(X*(X*kY))=X*Y.
3. (x*(x*y))*y=0.
4. (X*xz)*(y*z)=X*Y.
5. (x*xy)xx=0=*y.
6. x*0=0=x=0.
7. 0% (x*y)=(0*x)*(0*y).
8. x*y=0,y*xXx=0=Xx=Y.
from Def 2.1. (QS-2)  from Def 2.1. (QS-4)
—_— —
Proof. 1. xx*(x*y)=(x*0)*(x*y)= y*0 =Y.
from Propositon 2.8. 1
—
2. xx(x*x(x*xy))= X*Yy
from Proposition 2.8. 1

—
3. (Xx(xxy))*xy= y*y =0.
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4. (x*xz)x(yxz)<x=*y clear fromPropositior2.3. 4

from Lemma 2.5. from Def 2.1. (QS-4)

(xxy)*((xx2) % (y*2)) = (x* y) * ((0* (2 * X)) * (0 (z* y))) = (x*+ y) * ((Z* y) * (2 * X)) =

from Def 2.1. (QS-4)

f—_-/\‘_—\
(x*xy)*(x*y)=0, then x*y < (x*Zz)*(y*2z).

Hence (x*2)*(y*2z)=Xxx*Yy.
from Def 2.1. (QS-1)
—
5. (X*xy)xx= (X*xXx)*xy =0x*y.

from Def 2.1. (QS-2)
——

6. If xx0=0, then x=0

from Def 2.1. (QS-3) from Def 2.1. (QS-4) from Def 2.1. (QS-4)
f_—/\——\ —— f_—/\‘—ﬁ

7. 0(xxy)= () *(xxy) = yEx = (0%x)*(0%Y).

8. xxy=0=>x<y and y*x=0=y<Xx, thenx=y.

Example 2.9 [12] Let X ={0,1,2} be a set in which the operation* is defined as follows:

(SIS )

N | o] o
R ol N -
o N R, N

Then ( X ,*, 0) is a QS-algebra.

Definition 2.10 Let ( X ,*,0) be a QS-algebra and S be a non-empty subset of X , then Sis
called subalgebra of X if xxyeS VX, yeS.

Definition 2.11 (X ,*,0) is a QS-algebra, x,y € X we denote x Ay =y=*(y*X).

3. Derivations of QS-algebras
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Definition 3.1 Let ( X ,*,0) be a QS-algebra. Amapd : X — X is called a left- right derivation
(briefly (1,r)-derivation) of X if d(x*y)=(d(X)*y) A(x*d(y)) V X, yeX.

Similarly, amap d: X — X is called a right- left derivation (briefly (r,I)-derivation) of X if
d(x*xy)=(x*d(Y)Ad(X)*y) VXx,yeX .Amapd:X — X iscalled aderivation of X ifd

is both a (I,r )-derivation and a (r,l)-derivation of X .

Example 3.2 Let X ={0,1,2} be a QS-algebra, in which the operation* is defined as follows:

Nl k| O

N k| O O
O O N|
O N | N

Defineamapd : X — X by

0 if x=0
dx)=<1 if x=1
2 if x=2

Then it is clear that d is a derivation of X .

Definition 3.3 Let ( X ,*,0) be a QS-algebraand d : X — X be a map of a QS-algebra X , then
d is called regular if d (0)=0.

Proposition 3.4 Let ( X ,*,0) be a QS-algebra
1. If d is a(l,r)-derivation of X ,then d(X)=d(X)AX W¥xe X.
2. If dis a (r,1)-derivation of X , then
d isregular< d(x) =xAd(x) Vxe X.
Proof. 1. Let d bea (l,r)-derivation of X .Then
d(x)=d(x*0) = (d(x) *0) A (x *d(0)) = d(x) A (x *d(0)) = (x = d(0)) * ((x * d(0)) * d(x))

from Def 2.1.(QS-1) from Pro 2.8. 4

= (xxd(0)) * ((x *d(x)) *d(0)) = x* (x> d(x)) =d(x) A x.
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2. Let d be regular (r,l)-derivation of X . Then
d(xX) =d(x*0) =(x*d(0)) A (d(X) *0) = (x*0) Ad(X) =X Ad(X).
Conversely, let d be a (r,1)-derivation of X and d(X) =xAd(x) V xe X, then we get

d(0)=0Ad(0)=d(0)*(d(0)*0) =d(0) *d(0) =0. Hence d is regular .

Lemma 3.5 Let ( X ,*,0) be a QS-algebra and d be a (1,r)-derivation of X . Then the following
hold V x,y € X.

1. d(xxy)=d(X)*y.

2. d(0)=d(x)*x andif d isregular thend(x) <x.

Proof.Clear.

Lemma 3.6 Let (X ,*,0) be a QS- algebraand d bea (r,I)-derivation of X . Then
1. d(x*xy)=x=*d(y) VxyeX.
2. d(0)=x=*d(X) andif d isregular thenx<d(x).

Proof . Clear.

Theorem 3.7 Let (X ,*,0) be a QS-algebraand d be aregular (r,1)-derivation of X . Then the
following hold: VvV x,y e X.

1. d(x)=x.

2. d(X)*xy=x*d(y).

3. d(x*xy)=d(x)*y=xx*xd(y)=d(x)*d(y).

4. Ker(d)={xe X :d(x) =0} is asubalgebra of X .

Proof. 1. Since dis aregular (r,l)-derivation of X , we have

from Theorem 3.6. 1

—
d(x)=d(x*0)= x=*d(0) =x*x0=x.
2. Since disaregular(r,l)-derivation of X , then by Theorem 3.7. 1,we have

d(x)=xVxe X .Then d(x)*y=x*y=x*d(y).
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3. Since d isaregular(r,1)-derivation of X , then by Theorem 3.7. 1, we have
d(x) =x Vxe X .Then d(x*y)=d(X)*y=x*d(y) =d(X) *d(y) =x*V.

4. Since dis aregular, d(0) =0, then 0< Ker(d), which implies that
Ker(d) is non-empty set .Let x,y € Ker(d), then d(x) =0, d(y) =0, hence we have
d(x*y)=x*y=d(x)*d(y) =0+0=0, therefore (x*y) e Ker(d)and Ker(d) isa
subalgebra of X .

Lemma 3.8 Let ( X ,*,0) be a QS-algebra and d be a derivation on X . If
X<y Vx,ye X.Thend(x) =d(y).

Proof.We have

from Def 2.1. (QS-2) from Propostion 2.8. 1
— ——
X<y<xxy=0,thend(X)= d(x*0) =d(x=*(x*Yy))= d(y)

4. t-Derivations on QS -Algebras

Definition 4.1 Let ( X ,*,0) be a QS-algebra . Then for any t € X , we define a self map
d: X —>X by d(X)=x*tV xeX.

Definition 4.2 Let (X ,*,0) be a QS -algebra .Then forany te X , Aself map d, : X — X is
calleda t-(l,r)-derivation of X if it satisfies the condition

d,(x*y)=(d,(X)*y)A(x=*d,(y)) V x,y e X. Similarly for any t € X , A self map

d, : X —> X iscalled a t — (r,I)-derivation of X if it satisfies the condition

d, (x*y)=(x*d, (YA, (X)*y) VX, yeX .Andforany te X, Aself mapd,: X — X is

called a t —derivation of X if d, isbotha t—(l,r)-derivation and a t — (r,l)-derivation of X .

Example 4.3 Let X ={0,1,2} be a QS -algebra in which the operation * is defined as follows:
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% 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0
Defineamapd,: X — X by
X VxeX ift=0
dt(x): . _
0 VxeX ift=12

Then it is clear that d, is a derivation of X .

Definition 4.4 Let ( X ,*,0) be a QS -algebraand d,: X — X be a map of a QS -algebra X ,

then d, iscalled t-regularif d,(0)=0.

Proposition 4.5 Let ( X ,*,0) be a QS -algebra.
1. If d, is a t-(l,r)-derivation of X ,then d,(X)=d,(x)AXx Vxe X.
2. If d, is a t-(r,l)-derivation of X , then
d, is regular << d,(x) =xAd,(X) Vxe X .
Proof. 1. Let d, be at-(l,r)-derivation of X .Then

d, (x) =d; (x*0) = (d(x) *0) A (x*d(0)) = d (x) A (x*d,(0)) = (x*d, (0)) * ((x *d, (0)) * d (x))

from Def 2.1.(QS-1) from Lemma2.2. 2.
= (x*d(0)) * ((x*d,(x)) *d (0)) = x* (x*d (x)) = d, (X) A X.
2. Let d, beregular t-(r,I)-derivation of X . Then

d (x) =d,(x*0) = (x*d, (0)) A (d, (x) #0) = (x¥0) Ad, (X) = x A d(X).
Conversely, let d,be a t —(r,1)-derivation of X and satisfied d,(x) =xAd,(X) V xe X,

then we get d, (0) =0 d, (0) =d, (0) * (d, (0) *0) = d, (0) *d, (0) = 0.

Theorem 4.6 Let (X ,*,0) be a QS-algebra and d, be at-(1,r)-derivation of X . Then the

following hold : vV x,y € X.

1 d(x*xy)=d,(¥)*y .
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2. d,(0)=d.(x)*x.
3. If x<y , then d,(x)<d,(y).
Proof. 1. d (x*y)=(d,(X)*y) A(x*d. (y)) =

(ced () = ((x*d (y))*(d () *y)) = di(x)*y
2. d,(0)=d,(x*x)= dt(x)*x”

from Pro 2.8. 4

3. Let x<vy, then d,(x)*d,(y)=(x*t)*(y*t)= (x*y) =0.Thus d,(x)<d,(y)

Lemma 4.7 Let ( X ,*,0) be a QS -algebra and d, be at-(r,|)-derivation of X . Then
d(xxy)=x*d (y) VXxyeX.

Proof. Clear.

Theorem 4.8 Let ( X ,*,0) be a QS -algebra and d, be a regular t-(r,l)-derivation of X . Then
the following hold VvV x,y e X ..

1. d,(X)=x.

d () *y =x=*d(y).

d (x*y) =d, (x)*y =x*d (y) =d (x) =d, (y).

4. Ker(d,)=1{xe X :d,(x) =0} is a subalgebra of X .

w m

Proof. 1. Since d,is aregular t-(r,l)-derivation of X, V¥V x,y e X , we have

from Lemma 4.7.

d,(x)=d,(x*0) = m =x*0=X.

2. Since d, isaregular t-(r,I)-derivation of X, then by Theorem 4.8. 1, we have
d,(X)=xVxe X.Then d,(x)*y=x*y=x*d,(y).

3. Since d, is a regular t-(r,l )-derivation of X, then by Theorem4.8. 1 d,(x) =X ¥xe X,
hence we have d,(x*y)=d,(X)*y =x*d,(y) =d,(X) *d,(y) =x*Vy.

4. Since d, is aregular, d,(0)=0, thenOe Ker(d,), hence we have
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Ker(d,)is a non-empty set.
Let X,y e Ker(d,), then d,(x) =0, d,(y) =0, hence we have
d,(x*y)=x*y=d,(x)*d,(y) =0+0=0, therefore (x*y) e Ker(d,).

Then Ker(d,) is a subalgebra of X .

Lemma 4.9 Let (X ,*,0) be a QS -algebra and d, be a derivationon X . If
X<y VX ye X.Thend, (x) =d,(y).

Proof.We know

from Def 2.1. (QS-2) from Propostion 2.8. 1
— ——
x<y<>x*y=0,thend (x)= d(x*0) =d(x*(x*y))=  d(y)

5. Generalized t-Derivations of QS -Algebras

Definition 5.1 Let X be a QS- algebra. A mapping D, : X x X — X is called a generalized t-
(I,r) —derivation if there exists an t- (I, r) —derivationd, : X — X such that

D, (x*y)=(D,(X) *y) A(x*d,(y)) VX yeX.Similarlyamapping D, : X — X iscalled a
generalized t- (r,l) —derivation if there exists an t- (r,1) —derivation d, : X — X such that

D, (x*y) = (x* D, (y)) A (d, () *y) Vx,yeX.

Moreover if D, is both a generalized t- (I,r) —and (r,I) —derivation, we say that

D, is a generalized t-derivation.

Example 5.2 Let X = {0,1,2,3} be a QS -algebra in which the operation * is defined as follows:

w|l N k| O

w| N k| O] O
N| Wl O | =
= O] W N N
O P N W W
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Defineamap d,: X — Xandamap D,: X xX — X by
d(x)=xx*t and D,(x)=t=X vV xeX

Then itis clear that D, isa generalized t-derivation of X .

Definition 5.3 Let X be a QS-algebraandD,: X — X be a map of a QS-algebra X , then D, is

called t —regular if D, (0)=0.

Proposition 5.4 Let D, be a self-map of a QS-algebra X .Then
1. if D, is a generalized t- (I, r) —derivation of X ,thenD,(x)=D,(X)AX ¥Vxe X
2. if D, is a generalized t- (r,I) —derivation of X ,then
D, is t-regular < D,(X) =xAd,(x) Vxe X.
Proof. 1. if D, is ageneralized t- (r,l) —derivation of X , then there exists an t-derivation d, such

that D, (x* y) = (D, (x)* y) A (x*d, (¥)) Vx,y e X Hence, we get

from Def 2.1 (QS-2)

D, (x) = D, (x*0) = (D, (x) *0) A (x*d (0)) = D, () A (x *d(0)) =

from Def 2.1 (QS-1) from Propositon 2.8. 4

(x#d(0)) * ((x+d(0)) * D, (x)) = (x+d(0)) * (x> D, (x)) *d (0)) = x> (x*D,(x)) =D (x) A x.

2. if D, is a generalized t- (r,1) —derivation of X , then there exists an t-(r,1) —derivation d, such
that D, (x*y) =(X*D,(y)) A(d,(X)*y) VX, ye X .Hence, we get
D, (x) = D, (x*0) = (x* D, (0)) A (d; (x) *0) = (x#0) Ad, (X) = x A d, (X).

Proposition 5.5 Let X be a QS-algebra and D, is a generalized t- (I, r) —derivation of X , then the
following hold Vx,y e X:

1. D,(x*y)=d,(X)*y.

2. D,0)=D,(x)*x.

3. D,(x*D,(x))=0.

Proof.Clear.
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Proposition 5.6 Let X be a QS-algebra and D, is a generalized t- (r,1) —derivation of X , then the
following hold Vx,y e X:

1. D,(x)=d,(x).

2. Dy(x*xy)=x=*d,(y).

3. D/(D,(x)*x)=0.

Proof. Clear.

6. On t-Bi-Derivations of QS —Algebras

Definition 6.1 Let X,Y be QS - algebras. We define an operation * on the Cartesian product
XxY of XandY asfollows (X, y,)*(X,,¥,) =(X *X,, ¥, *Y,) V(X,Y;) e XxY,i1=12.
Thenitisclear (X xY ,*,(0,0)) a QS -algebra, and it is called the product of X,Y .

Lemma 6.2 If ( X,*0) isa QS -algebra, then (X xY ,*,0) isa QS —algebra.

Proof.Clear.

Definition6.3 Let X be a QS - algebra and d, : X — X be a mapping. A mapping

D, : Xx X — X isdefined by D, (X,y) = (x*y)*t.

Definition 6.4 Let ( X,*,0) is a QS-algebraand D, : X x X — X be a mapping. If D, satisfies
the identity D, (x*y,z) =(D,(x,2) *y) A(X*D,(y,z)) forall x,y,ze X, then D, is called t-
left—rightbi- derivation (briefly t- (I, r) —bi- derivation). Similarly if D, satisfies the identity
D, (x*y,z) =(Xx*D,(y,2)) A(D,(x,2) * y) forall x,y,ze X, then D, is called t- right—leftbi-
derivation (briefly t- (r,1) —bi- derivation). Moreover if D, is both an (r,¢)and (¢,r) t- bi-

derivation, it is called that D, is t- bi- derivation.
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Example 6.5 Let X ={0,1,2,3} be a QS -algebra in which the operation* is defined as follows:

w| N k| O

w| N | O O
N| W Of | =
| O] Wl N N
O | N Wl w

DefineamapD,: X x X — X by
D, (X, y) =t*(x=*y) Y X VY,zteX

Then it is clear that D, is t- bi- derivation of X .

Definition 6.6 Let X be a QS-algebraand D, : X x X — X be a mapping .If D, (0,z) =0,
Vze X, D, iscalled component wise regular. In particular if D,(0,0)=d,(0) =0, D, is called

d, —regular.

Proposition 6.7 Let X be a QS-algebraand D, : X x X — X be a mapping .Then
1. If D, is at-(l,r)—bi- derivation, then D,(X,z) =D,(x,z) AX Vx,ze X
2. If D, is at-(r,l)—bi- derivation, then
D, is component wise regular << D, (x,z) =xAD,(x,2) VX,ze X..
Proof. 1. Let D, be at-(l,r)—bi- derivation. Then W¥x,z € X
D, (x,z) = D,(x*0,z) = (D,(x,z) *0) A (x* D, (0, 2))

from Def 2.1 (QS-2)
=D, (x,2) A (x*D,(0,2))
= (x*D,(0,2)) * ((x* D, (0, 2)) * (D, (x, 2))

from Def 2.1. (QS-1) from Propositon 2.3. 4

= (x* D,(0,2)) * ((x* D, (x,2)) * D, (0,2)) = X* (x* D, (x, 2)) = D, (X, 2) A X
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2. Let D, be component wise regular t-(r,l)—bi- derivation.

Then D, (x,z) = D,(x*0,z) = (x*D, (0, 2)) A (D, (X, z) *0)=

from Def 2.1. (QS-2)
/_/%

(x*0) A (D,(x,2)*0)= xAD,(x,2) .
Conversely, let D, be at-(r,1)—bi- derivation and D, (x,z) = x A D,(x,z) Vx,ze X. Then
we get

D,(0,z) =0A D, (0,z) = D, (0, z) * (D, (0, z) *0) = D, (0, z) * D, (0, z) = 0.

Theorem 6.8 Let X be a QS-algebraand D, : X x X — X be at-(I,r) —bi- derivation. Then
1. D,(x*y,z)=x*D,(y,z) VX, y,ze X.

2. x*D,(x,2)=y=*D,(y,z) VX, y,zeX.

Proof. 1. Let D, be at-(l,r)—bi- derivation. Then V¥x,y,z € X

D, (x*y,2) = (x* D (y,2)) A (y * D (X, 2)) = (y * D (x, 2)) * ((y * Dy (X, 2)) * (x * D, (y, 2)))

from Propositon 2.3. 1
f_/%

= X*D,(y.2) .

2. Let D, beat-(I,r)—bi- derivation. Then Vvx,z e X

from Def 2.1. (QS-3)
f_/%
D,(0,z2) = D,(x*x,2) =(x*D,(X,2))A(x*D,(X, 2))
from Def 2.1. (QS-2)
f_/%

= (x# D, (x,2)) * ((x* D, (x,2) * (x* D, (x,2)) = (x* D, (x,2)) ¥0=_ x* D, (x,2).
Thus, we can write D,(0,z) =x*D,(x,z) =y*D,(y,z) Vye X.

Lemma 6.9 Let X be a QS-algebraand D, : X x X — X be a component wise regular t-
(I,r) —bi- derivation . Then D,(x,z)=X VX, ze X.

Proof. Since D, is a component wise regular, then D, (0,z) =0, Vze X .Then
from Def 2.1. (QS-2)

D,(x2)= D,(x*0,2) =(x*D,(0,2)) A (0*D,(x2)) = (x*0) A (0% D, (x,2))

= XA(0%D,(x,2)) = (0% D,(x, 2)) *(0*D,(x,2)*x) = X
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Proposition 6.10 Let X be a QS-algebraand D, : X x X — X be a t- (I, r) —bi- derivation. If
there exist a e X such that D,(x,z)*a=0 W¥x,ze X, then D,(x*a,z)=0.
Proof.Since D, is at-(I,r)—bi- derivation, we get

D,(x*a,z) =(D,(x,z) *a) A (x* D, (a,z)) =0A (x* D, (a, z))
from Def 2.1. (QS-2) from Def 2.1. (QS-3)

= (x*D,(a,2))* (x*D,(a,2))*0) = (x*D,(a,2)) * (x* D, (@, 2)) = 0

Proposition 6.11 Let X be a QS-algebraand D, : X x X — X be a t-(r,l) —bi-derivation. If
there exist a e X such that a*D,(x,z) =0 WVX,ze X, then D,(a*x,z)=0.
Proof.Since D, isat-(r,1)—bi- derivation, we get

D,(a*x,z)=(a*D,(x,2)) A (D,(a,z) *x) =0 (D, (a, z) * x)
from Def 2.1. (QS-2) from DEf,.A.Z‘l‘ (Q-3)

= (D,(,2)*x) *((D,(a,2)*x)*0) = (D,(a,2) *\) *(D,(@ ) *x) = 0

7. Conclusion

Derivation is a very interesting and important area of research in the theory of algebraic
structures in mathematics. In the present paper, The notion of (4,r)  ((r,¢))-derivations of a
QS-algebras, (¢,r)((r,?)) t-derivations of a QS-algebras, t- bi- derivations of a QS-algebras are
introduced and investigated, also some useful properties of these types derivations in QS-
algebras. In our opinion, these definitions and main results can be similarly extended to some
other algebraic systems such as BCH-algebras, Hilbert algebras, BF-algebras, J-algebras, WS-
algebras, Cl-algebras, SU-algebras, BCL-algebras, BP-algebras and BO-algebras , PU- algebras
and so forth. The main purpose of our future work is to investigate the fuzzy derivations ideals in
QS-algebras, which may have a lot of applications in different branches of theoretical physics

and computer science.
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[18] Appendix
Algorithm for QS-algebras.
Input ( X :set, *:binary operation)
Output (“ X is a QS-algebra or not”)
Begin

If X =¢ thengoto (L);

End If

If 0 X thengoto (1.);

End If

Stop: =false;

=1

While | S|X| and not (Stop) do

If X, %X, =0, X; *0=#X; then

Stop: = true;
End If

j=1k=1

While j,k <|X| and not (stop) do

1£) (X *Y)*z = (X *2,)*y; (X *Y;)*(% *2,) #Z, * Y then

Stop: = true;
EndIf
End While
End While
If Stop then
(1) Output (“ X is not a QS-algebra”)
Else
Output (“ X is a QS-algebra™)
End If
End
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