DERIVATIONS ON QS-ALGEBRAS

SAMY M. MOSTAFA*, R. A. K. OMAR AND MOSTAFA A. HASSAN

Department of mathematics -Faculty of Education -Ain Shams University Roxy, Cairo, Egypt

Copyright © 2015 Mostafa, Omar and Hassan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce the notions of \((\ell, r)\) \((r, \ell)\)-derivations of a QS-algebras, \((r, \ell)\) \((\ell, r)\)-\(t\)-derivations of a QS-algebras, \(t\)-bi-derivations of a QS-algebras and we investigate several interesting basic properties.

Keywords: QS-algebras; \((\ell, r)\) \((r, \ell)\)-derivations of a QS-algebras; \((r, \ell)\) \((\ell, r)\)-\(t\)-derivations of a QS-algebras; \(t\)-bi-derivations of a QS-algebras.

2010 AMS Subject Classification: 03G25, 06F35.

1. Introduction

In 1966, Y. Imai and K. Isèki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [10,11,16]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Neggers et al [8] introduced a notions, called Q-algebras, which is a generalization of BCH / BCI / BCK-algebras and generalized some theorems discussed in BCI-algebras. Moreover, Ahn and Kim [15] introduced the notions of QS-algebras which is a proper subclass of Q-algebras. Kondo [13] proved that, each theorem of QS-algebras is provable in the theory of Abelian groups and conversely each theorem of Abelian groups is provable in the theory of QS-algebras. Derivation is a very interesting and important area of research in the theory of algebraic structures in mathematics. Several authors [2,6,7,13,14] have studied derivations in rings and near rings. Jun and Xin [17] applied the notions of derivations in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular

*Corresponding author

Received March 5, 2015
derivations in BCI-algebras. They investigated some of its properties, defined a d-derivations ideal and gave conditions for an ideal to be d-derivations. Later, Abujabal and Al-Shehri [5], defined a left derivations in BCI-algebras and investigated a regular left derivations. Zhan and Liu [9] studied f-derivations in BCI-algebras and proved some results. Muhiuddin and Al-roqi [3,4] introduced the notions of (α, β)-derivations in a BCI-algebras and investigated related properties. They provided a condition for a (α, β)-derivations to be regular. They also introduced the concepts of a $d_{(\alpha, \beta)}$- invariant (α, β)-derivations and α-ideal, and then they investigated their relations. Furthermore, they obtained some results on regular (α, β)-derivations. Moreover, they studied the notions of t-derivations on BCI-algebras [4] and obtained some of its related properties. In this paper we introduce the notions of $\mathcal{D}_{(\alpha, \beta)}$-derivations of a QS-algebra and investigate some related properties.

2. Preliminaries

In this section, we recall some basic definitions and results that are needed for our work.

Definition 2.1 [15] A QS-algebra $(X, *, 0)$ is a non-empty set X with a constant 0 and a binary operation $*$ such that for all $x, y, z \in X$ satisfying the following axioms:

- **(QS-1)** $(x \ast y) \ast z = (x \ast z) \ast y$.
- **(QS-2)** $x \ast 0 = x$.
- **(QS-3)** $x \ast x = 0$.
- **(QS-4)** $(x \ast y) \ast (x \ast z) = z \ast y$.

Definition 2.2 [15] Let $(X, *, 0)$ be a QS-algebra, we can define a binary relation \leq on X as, $x \leq y$ if and only if $x \ast y = 0$, this makes X as a partially ordered set.

Proposition 2.3 [15] Let $(X, *, 0)$ be a QS-algebra. Then the following hold: $\forall x, y, z \in X$.

1. \(x \leq y \) implies \(z \cdot y \leq z \cdot x \).
2. \(x \leq y \) and \(y \leq z \) imply \(x \leq z \).
3. \(x \cdot y \leq z \) implies \(x \cdot z \leq y \).
4. \((x \cdot z) \cdot (y \cdot z) \leq x \cdot y \).
5. \(x \leq y \) implies \(x \cdot z \leq y \cdot z \).
6. \(0 \cdot (0 \cdot (0 \cdot x)) = 0 \cdot x \).

Lemma 2.4 Let \((X, \cdot, 0)\) be a QS-algebra. If \(x \cdot y = z \), then \(x \cdot z = y \) \(\forall x, y, z \in X \).

Lemma 2.5 Let \((X, \cdot, 0)\) be a QS-algebra. \(0 \cdot (x \cdot y) = y \cdot x \) \(\forall x, y \in X \).

Corollary 2.6 Let \((X, \cdot, 0)\) be a QS-algebra. \(0 \cdot (0 \cdot x) = x \) \(\forall x \in X \).

Lemma 2.7 Let \((X, \cdot, 0)\) be a QS-algebra. \(x \cdot (0 \cdot y) = y \cdot (0 \cdot x) \) \(\forall x, y \in X \).

Proposition 2.8 Let \((X, \cdot, 0)\) be a QS-algebra. Then the following hold: \(\forall x, y, z \in X \).

1. \(x \cdot (x \cdot y) = y \).
2. \(x \cdot (x \cdot (x \cdot y)) = x \cdot y \).
3. \((x \cdot (x \cdot y)) \cdot y = 0 \).
4. \((x \cdot z) \cdot (y \cdot z) = x \cdot y \).
5. \((x \cdot y) \cdot x = 0 \cdot y \).
6. \(x \cdot 0 = 0 \Rightarrow x = 0 \).
7. \(0 \cdot (x \cdot y) = (0 \cdot x) \cdot (0 \cdot y) \).
8. \(x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y \).

Proof.
1. \(x \cdot (x \cdot y) = (x \cdot 0) \cdot (x \cdot y) = y \cdot 0 = y \).

Proposition 2.8.1
2. \(x \cdot (x \cdot (x \cdot y)) = x \cdot y \).
3. \((x \cdot (x \cdot y)) \cdot y = y \cdot y = 0 \).
4. \((x*z)*(y*z) \leq x*y\) \textit{clear from Proposition 2.3.4}

\[
(x*y)((x*z)*(y*z)) = (x*y)((0*(z*x))*(0*(z*y))) = (x*y)((z*y)*(z*x)) = (x*y)*(x*y) = 0, \text{ then } x*y \leq (x*z)*(y*z).
\]

\textit{Hence} \((x*z)*(y*z) = x*y\).

5. \((x*y)*x = (x*x)*y = 0*y\).

6. If \(x*0 = 0\), then \(x = 0\).

7. \(0*(x*y) = (x*x)*(x*y) = y*x = (0*x)*(0*y)\).

8. \(x*y = 0 \Rightarrow x \leq y\) and \(y*x = 0 \Rightarrow y \leq x\), \textit{then} \(x = y\).

\textbf{Example 2.9} [12] Let \(X = \{0,1,2\}\) be a set in which the operation \(*\) is defined as follows:

\[
\begin{array}{ccc}
* & 0 & 1 & 2 \\
0 & 0 & 2 & 1 \\
1 & 1 & 0 & 2 \\
2 & 2 & 1 & 0 \\
\end{array}
\]

Then \((X,* ,0)\) is a QS-algebra.

\textbf{Definition 2.10} Let \((X,* ,0)\) be a QS-algebra and \(S\) be a non-empty subset of \(X\), then \(S\) is called \textit{subalgebra of} \(X\) if \(x*y \in S\) \(\forall x,y \in S\).

\textbf{Definition 2.11} \((X,* ,0)\) is a QS-algebra, \(x, y \in X\) we denote \(x \wedge y = y*(y*x)\).

\section{3. Derivations of QS-algebras}
Definition 3.1 Let \((X, *, 0)\) be a QS-algebra. A map \(d : X \to X\) is called a left-right derivation (briefly \((l, r)\)-derivation) of \(X\) if \(d(x*y) = (d(x)*y) \land (x*d(y)) \ \forall x, y \in X\).

Similarly, a map \(d : X \to X\) is called a right-left derivation (briefly \((r, l)\)-derivation) of \(X\) if \(d(x*y) = (x*d(y)) \land (d(x)*y) \ \forall x, y \in X\). A map \(d : X \to X\) is called a derivation of \(X\) if \(d\) is both a \((l, r)\)-derivation and a \((r, l)\)-derivation of \(X\).

Example 3.2 Let \(X = \{0, 1, 2\}\) be a QS-algebra, in which the operation * is defined as follows:

\[
\begin{array}{c|ccc}
* & 0 & 1 & 2 \\
\hline
0 & 0 & 2 & 1 \\
1 & 1 & 0 & 2 \\
2 & 2 & 0 & 0 \\
\end{array}
\]

Define a map \(d : X \to X\) by

\[
d(x) = \begin{cases}
0 & \text{if } x = 0 \\
1 & \text{if } x = 1 \\
2 & \text{if } x = 2
\end{cases}
\]

Then it is clear that \(d\) is a derivation of \(X\).

Definition 3.3 Let \((X, *, 0)\) be a QS-algebra and \(d : X \to X\) be a map of a QS-algebra \(X\), then \(d\) is called regular if \(d(0) = 0\).

Proposition 3.4 Let \((X, *, 0)\) be a QS-algebra

1. If \(d\) is a \((l, r)\)-derivation of \(X\), then \(d(x) = d(x) \land x \ \forall x \in X\).

2. If \(d\) is a \((r, l)\)-derivation of \(X\), then

\(d\) is regular \(\iff d(x) = x \land d(x) \ \forall x \in X\).

Proof. 1. Let \(d\) be a \((l, r)\)-derivation of \(X\). Then

\[
d(x) = d(x*0) = d(x*0) \land (x*0) = d(x) \land (x*0) = (x*d(0))*((x*d(0))*d(x))
\]

(from Def 2.1 (QS-1))

\[
= (x*d(0))*((x*d(x))*d(0)) = x*(x*d(x)) = d(x) \land x.
\]

(from Prop 2.8. 4)
2. Let \(d \) be regular \((r,l)\)-derivation of \(X \). Then
\[
d(x) = d(x*0) = (x*d(0)) \wedge (d(x)*0) = (x*0) \wedge d(x) = x \wedge d(x).
\]
Conversely, let \(d \) be a \((r,l)\)-derivation of \(X \) and \(d(x) = x \wedge d(x) \quad \forall \, x \in X \), then we get
\[
d(0) = 0 \wedge d(0) = d(0)*(d(0)*0) = d(0)*d(0) = 0.
\]
Hence \(d \) is regular.

Lemma 3.5 Let \((X,*,0)\) be a QS-algebra and \(d \) be a \((l,r)\)-derivation of \(X \). Then the following hold \(\forall \, x,y \in X \).
1. \(d(x*y) = d(x)*y \).
2. \(d(0) = d(x)*x \) and if \(d \) is regular then \(d(x) \leq x \).

Proof. Clear.

Lemma 3.6 Let \((X,*,0)\) be a QS-algebra and \(d \) be a \((r,l)\)-derivation of \(X \). Then
1. \(d(x*y) = x*d(y) \quad \forall \, x,y \in X \).
2. \(d(0) = x*d(x) \) and if \(d \) is regular then \(x \leq d(x) \).

Proof. Clear.

Theorem 3.7 Let \((X,*,0)\) be a QS-algebra and \(d \) be a regular \((r,l)\)-derivation of \(X \). Then the following hold: \(\forall \, x,y \in X \).
1. \(d(x) = x \).
2. \(d(x)*y = x*d(y) \).
3. \(d(x*y) = d(x)*y = x*d(y) = d(x)*d(y) \).
4. \(\text{Ker}(d) = \{ x \in X : d(x) = 0 \} \) is a subalgebra of \(X \).

Proof. 1. Since \(d \) is a regular \((r,l)\)-derivation of \(X \), we have
\[
d(x) = d(x*0) = (x*d(0)) = x*d(0) = x.
\]
2. Since \(d \) is a regular \((r,l)\)-derivation of \(X \), then by Theorem 3.7. 1, we have
\[
d(x) = x \quad \forall \, x \in X.
\]
Then \(d(x)*y = x*y = x*d(y) \).
3. Since \(d \) is a regular \((r,l)\)-derivation of \(X \), then by Theorem 3.7, we have
\[
d(x) = x \ \forall x \in X.
\]
Then
\[
d(x \ast y) = d(x) \ast d(y) = d(x) \ast y = x \ast y.
\]

4. Since \(d \) is a regular, \(d(0) = 0 \), then \(0 \in \text{Ker}(d) \), which implies that
\[
\text{Ker}(d) \text{ is non-empty set. Let } x, y \in \text{Ker}(d), \text{ then } d(x) = 0, \ d(y) = 0, \text{ hence we have}
\]
\[
d(x \ast y) = x \ast y = d(x) \ast d(y) = 0 \ast 0 = 0,
\]
therefore \((x \ast y) \in \text{Ker}(d)\) and \(\text{Ker}(d) \) is a subalgebra of \(X \).

Lemma 3.8 Let \((X, \ast, 0)\) be a QS-algebra and \(d \) be a derivation on \(X \). If
\[
x \leq y \ \forall x, y \in X. \text{Then } d(x) = d(y).
\]
Proof. We have
\[
\text{from Def 2.1. (QS–2)} \quad x \leq y \iff x \ast y = 0, \text{ then } d(x) = \overline{d(x \ast 0)} = d(x \ast (x \ast y)) = \overline{d(y)}.
\]

4. **\(t \)-Derivations on QS-Algebras**

Definition 4.1 Let \((X, \ast, 0)\) be a QS-algebra. Then for any \(t \in X \), we define a self map
\[
d_t : X \to X \text{ by } d_t(x) = x \ast t \ \forall x \in X.
\]

Definition 4.2 Let \((X, \ast, 0)\) be a QS-algebra. Then for any \(t \in X \), a self map \(d_t : X \to X \) is called a \((t, l)\)-derivation of \(X \) if it satisfies the condition
\[
d_t(x \ast y) = (d_t(x) \ast y) \land (x \ast d_t(y)) \ \forall x, y \in X.
\]
Similarly for any \(t \in X \), a self map \(d_t : X \to X \) is called a \(t - (t, l) \)-derivation of \(X \) if it satisfies the condition
\[
d_t(x \ast y) = (x \ast d_t(y)) \land (d_t(x) \ast y) \ \forall x, y \in X.
\]
And for any \(t \in X \), a self map \(d_t : X \to X \) is called a \(t \)-derivation of \(X \) if \(d_t \) is both a \(t-(l, r) \)-derivation and a \(t-(r, l) \)-derivation of \(X \).

Example 4.3 Let \(X = \{0, 1, 2\} \) be a QS-algebra in which the operation \(\ast \) is defined as follows:
Define a map \(d_t : X \to X \) by

\[
d_t(x) = \begin{cases}
 x & \forall x \in X \\
 0 & \forall x \in X
\end{cases}
\]

if \(t = 0 \), \(x \in X \), then \(x \in X \).

Then it is clear that \(d_t \) is a derivation of \(X \).

Definition 4.4 Let \((X, *, 0)\) be a QS-algebra and \(d_t : X \to X \) be a map of a QS-algebra \(X \), then \(d_t \) is called \(t \)-regular if \(d_t(0) = 0 \).

Proposition 4.5 Let \((X, *, 0)\) be a QS-algebra.

1. If \(d_t \) is a \(t-(l, r) \)-derivation of \(X \), then \(d_t(x) = d_t(x) \land x \forall x \in X \).
2. If \(d_t \) is a \(t-(r, l) \)-derivation of \(X \), then
 \(d_t \) regular \(\iff d_t(x) = x \land d_t(x) \forall x \in X \).

Proof.

1. Let \(d_t \) be a \(t-(l, r) \)-derivation of \(X \). Then
 \[
d_t(x) = d_t(x \ast 0) = (d_t(x) \ast 0) \land (x \ast d_t(0)) = d_t(x) \land (x \ast d_t(0)) = (x \ast d_t(0)) \ast ((x \ast d_t(0)) \ast d_t(x))
 \]
 from Def 2.1,(QS)
 \[
 = (x \ast d_t(0)) \ast ((x \ast d_t(0)) \ast d_t(x)) = x \ast (x \ast d_t(x)) = d_t(x) \land x.
 \]
2. Let \(d_t \) be regular \(t-(r, l) \)-derivation of \(X \). Then
 \[
d_t(x) = d_t(x \ast 0) = (x \ast d_t(0)) \land (d_t(x) \ast 0) = (x \ast 0) \land d_t(x) = x \land d_t(x).
 \]
 Conversely, let \(d_t \) be a \(t-(r, l) \)-derivation of \(X \) and satisfied \(d_t(x) = x \land d_t(x) \forall x \in X \), then we get \(d_t(0) = 0 \land d_t(0) = d_t(0) \ast d_t(0) = d_t(0) \ast d_t(0) = 0 \).

Theorem 4.6 Let \((X, *, 0)\) be a QS-algebra and \(d_t \) be a \(t-(l, r) \)-derivation of \(X \). Then the following hold: \(\forall x, y \in X \).

1. \(d_t(x \ast y) = d_t(x) \ast y \).
2. \(d_i(0) = d_i(x) \cdot x \).

3. If \(x \leq y \), then \(d_i(x) \leq d_i(y) \).

Proof. 1. \(d_i(x \cdot y) = (d_i(x) \cdot y) \land (x \cdot d_i(y)) = \) from Proposition 2.8. 1
\[(x \cdot d_i(y)) \cdot ((x \cdot d_i(y)) \cdot (d_i(x) \cdot y)) = d_i(x \cdot y) \).

2. \(d_i(0) = d_i(x \cdot x) = d_i(x) \cdot x \) from Prop 2.8. 4.

3. Let \(x \leq y \), then \(d_i(x) \cdot d_i(y) = (x \cdot t) \cdot (y \cdot t) = (x \cdot y) = 0 \). Thus \(d_i(x) \leq d_i(y) \).

Lemma 4.7 Let \((X, \cdot, 0)\) be a QS -algebra and \(d_i \) be a \(t\-(r,l) \)-derivation of \(X \). Then \(d_i(x \cdot y) = x \cdot d_i(y) \) \(\forall x, y \in X \).

Proof. Clear.

Theorem 4.8 Let \((X, \cdot, 0)\) be a QS -algebra and \(d_i \) be a regular \(t\-(r,l) \)-derivation of \(X \). Then the following hold \(\forall x, y \in X \).

1. \(d_i(x) = x \).

2. \(d_i(x) \cdot y = x \cdot d_i(y) \).

3. \(d_i(x \cdot y) = d_i(x) \cdot y = x \cdot d_i(y) = d_i(x) \cdot d_i(y) \).

4. \(\text{Ker}(d_i) = \{ x \in X : d_i(x) = 0 \} \) is a subalgebra of \(X \).

Proof. 1. Since \(d_i \) is a regular \(t\-(r,l) \)-derivation of \(X \), \(\forall x, y \in X \), we have \(d_i(x) = d_i(x \cdot 0) = x \cdot d_i(0) = x \cdot 0 = x \).

2. Since \(d_i \) is a regular \(t\-(r,l) \)-derivation of \(X \), then by Theorem 4.8. 1, we have \(d_i(x) = x \forall x \in X \). Then \(d_i(x) \cdot y = x \cdot y = x \cdot d_i(y) \).

3. Since \(d_i \) is a regular \(t\-(r,l) \)-derivation of \(X \), then by Theorem 4.8. 1 \(d_i(x) = x \forall x \in X \), hence we have \(d_i(x \cdot y) = d_i(x) \cdot y = x \cdot d_i(y) = d_i(x) \cdot d_i(y) = x \cdot y \).

4. Since \(d_i \) is a regular, \(d_i(0) = 0 \), then \(0 \in \text{Ker}(d_i) \), hence we have
\(\text{Ker}(d_i) \) is a non-empty set.

Let \(x, y \in \text{Ker}(d_i) \), then \(d_i(x) = 0, \ d_i(y) = 0 \), hence we have
\[
d_i(x \ast y) = x \ast y = d_i(x) \ast d_i(y) = 0 \ast 0 = 0, \text{ therefore } (x \ast y) \in \text{Ker}(d_i).
\]

Then \(\text{Ker}(d_i) \) is a subalgebra of \(X \).

Lemma 4.9 Let \((X, \ast, 0)\) be a QS-algebra and \(d_i \) be a derivation on \(X \). If \(x \leq y \ \forall x, y \in X \). Then \(d_i(x) = d_i(y) \).

Proof. We know
\[
x \leq y \iff x \ast y = 0, \text{ then } d_i(x) = d_i(x \ast 0) = d_i(x \ast (x \ast y)) = d_i(y).
\]

5. **Generalized t-Derivations of QS-Algebras**

Definition 5.1 Let \(X \) be a QS-algebra. A mapping \(D_i : X \times X \to X \) is called a generalized \(t \)-\((l, r)\)–derivation if there exists an \(t \)-\((l, r)\)–derivation \(d_i : X \to X \) such that \(D_i(x \ast y) = (D_i(x) \ast y) \land (x \ast d_i(y)) \ \forall x, y \in X \). Similarly a mapping \(D_i : X \to X \) is called a generalized \(t \)-\((r, l)\)–derivation if there exists an \(t \)-\((r, l)\)–derivation \(d_i : X \to X \) such that \(D_i(x \ast y) = (x \ast D_i(y)) \land (d_i(x) \ast y) \ \forall x, y \in X \).

Moreover if \(D_i \) is both a generalized \(t \)-\((l, r)\)– and \((r, l)\)–derivation, we say that \(D_i \) is a generalized \(t \)-derivation.

Example 5.2 Let \(X = \{0, 1, 2, 3\} \) be a QS-algebra in which the operation \(\ast \) is defined as follows:

\[
\begin{array}{cccc}
\ast & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 2 & 1 & 0 \\
\end{array}
\]
Define a map \(d_t : X \to X \) and a map \(D_t : X \times X \to X \) by
\[
d_t(x) = x * t \quad \text{and} \quad D_t(x) = t * x \quad \forall \ x \in X
\]
Then it is clear that \(D_t \) is a generalized \(t \)-derivation of \(X \).

Definition 5.3 Let \(X \) be a QS-algebra and \(D_t : X \to X \) be a map of a QS-algebra \(X \), then \(D_t \) is called \(t \)-regular if \(D_t(0)=0 \).

Proposition 5.4 Let \(D_t \) be a self-map of a QS-algebra \(X \). Then
1. if \(D_t \) is a generalized \(t \)-\((l,r) \)-derivation of \(X \), then \(D_t(x) = D_t(x) \land x \quad \forall \ x \in X \)
2. if \(D_t \) is a generalized \(t \)-\((r,l) \)-derivation of \(X \), then
 \[
 D_t \text{ is } t\text{-regular } \iff D_t(x) = x \land d_t(x) \quad \forall \ x \in X.
 \]

Proof.
1. if \(D_t \) is a generalized \(t \)-\((l,r) \)-derivation of \(X \), then there exists an \(t \)-derivation \(d_t \) such that \(D_t(x \cdot y) = (D_t(x) \cdot y) \land (x \cdot d_t(y)) \quad \forall \ x, y \in X \). Hence, we get
 \[
 D_t(x) = D_t(x \cdot 0) = (D_t(x) \cdot 0) \land (x \cdot d_t(0)) = D_t(x) \land (x \cdot d(0)) = \frac{\text{from Def 2.1 (QS-2)}}{(x \cdot d(0)) \land ((x \cdot d(0)) \land D_t(x)) = (x \cdot d(0)) \land (x \cdot D_t(x)) = x \land D_t(x) \land x.}
 \]
2. if \(D_t \) is a generalized \(t \)-\((r,l) \)-derivation of \(X \), then there exists an \(t \)-\((r,l) \)-derivation \(d_t \) such that \(D_t(x \cdot y) = (x \cdot D_t(y)) \land (d_t(x) \cdot y) \quad \forall \ x, y \in X \). Hence, we get
 \[
 D_t(x) = D_t(x \cdot 0) = (x \cdot D_t(0)) \land (d_t(x) \cdot 0) = (x \cdot 0) \land d_t(x) = x \land d_t(x).
 \]

Proposition 5.5 Let \(X \) be a QS-algebra and \(D_t \) is a generalized \(t \)-\((l,r) \)-derivation of \(X \), then the following hold \(\forall x, y \in X \):
1. \(D_t(x \cdot y) = d_t(x) \cdot y \).
2. \(D_t(0) = D_t(x) \cdot x \).
3. \(D_t(x \cdot D_t(x)) = 0 \).

Proof. Clear.
Proposition 5.6 Let X be a QS-algebra and D_t is a generalized t-(r,l)–derivation of X, then the following hold $\forall x, y \in X$:
1. $D_t(x) = d_t(x)$.
2. $D_t(x \ast y) = x \ast d_t(y)$.
3. $D_t(D_t(x \ast y) = 0$.

Proof. Clear.

6. **On t-Bi-Derivations of QS –Algebras**

Definition 6.1 Let X, Y be QS - algebras. We define an operation \ast on the Cartesian product $X \times Y$ of X and Y as follows $(x_i, y_i) \ast (x_j, y_j) = (x_i \ast x_j, y_i \ast y_j)$ $\forall (x_i, y_i) \in X \times Y, i = 1, 2$.

Then it is clear $(X \times Y, \ast, (0,0))$ a QS -algebra, and it is called the product of X, Y.

Lemma 6.2 If $(X, \ast, 0)$ is a QS -algebra, then $(X \times Y, \ast, 0)$ is a QS –algebra.

Proof. Clear.

Definition 6.3 Let X be a QS -algebra and $d_t : X \rightarrow X$ be a mapping. A mapping $D_t : X \times X \rightarrow X$ is defined by $D_t(x, y) = (x \ast y) \ast t$.

Definition 6.4 Let $(X, \ast, 0)$ is a QS-algebra and $D_t : X \times X \rightarrow X$ be a mapping. If D_t satisfies the identity $D_t(x \ast y, z) = (D_t(x, z) \ast y) \wedge (x \ast D_t(y, z))$ for all $x, y, z \in X$, then D_t is called t-left–rightbi- derivation (briefly t- (l, r)–bi- derivation). Similarly if D_t satisfies the identity $D_t(x \ast y, z) = (x \ast D_t(y, z)) \wedge (D_t(x, z) \ast y)$ for all $x, y, z \in X$, then D_t is called t-right–leftbi- derivation (briefly t- (r, l)–bi- derivation). Moreover if D_t is both an (r, ℓ) and (ℓ, r) t- bi- derivation, it is called that D_t is t- bi- derivation.
Example 6.5 Let $X = \{0, 1, 2, 3\}$ be a QS-algebra in which the operation $*$ is defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $D_t : X \times X \to X$ by

$$D_t(x, y) = t \ast (x \ast y) \quad \forall \ x, y, z, t \in X$$

Then it is clear that D_t is t-bi-derivation of X.

Definition 6.6 Let X be a QS-algebra and $D_t : X \times X \to X$ be a mapping. If $D_t(0, z) = 0$, $\forall z \in X$, D_t is called component wise regular. In particular if $D_t(0, 0) = d_t(0) = 0$, D_t is called d_t-regular.

Proposition 6.7 Let X be a QS-algebra and $D_t : X \times X \to X$ be a mapping. Then

1. If D_t is a t-(l, r)–bi-derivation, then $D_t(x, z) = D_t(x, z) \land x \quad \forall x, z \in X$
2. If D_t is a t-(r, l)–bi-derivation, then D_t is component wise regular $\iff D_t(x, z) = x \land D_t(x, z) \forall x, z \in X$.

Proof: 1. Let D_t be a t-(l, r)–bi-derivation. Then $\forall x, z \in X$

$$D_t(x, z) = D_t(x \ast 0, z) = (D_t(x, z) \ast 0) \land (x \ast D_t(0, z))$$

from Def 2.1 (QS–2)

$$= D_t(x, z) \land (x \ast D_t(0, z))$$

$$= (x \ast D_t(0, z)) \ast ((x \ast D_t(0, z)) \ast (D_t(x, z)))$$

from Def 2.1 (QS–1)

$$= (x \ast D_t(0, z)) \ast ((x \ast D_t(x, z)) \ast D_t(0, z))$$

from Proposition 2.3

$$= x \ast (x \ast D_t(x, z)) = D_t(x, z) \land x.$$
2. Let D_i be component wise regular t-(r,l)--bi- derivation.

Then $D_i(x, z) = D_i(x*0, z) = (x*D_i(0, z)) \wedge (D_i(x, z)*0) =$

\[
\text{from Def 2.1. (QS-2)} \quad (x*0) \wedge (D_i(x, z)*0) = \left(x \wedge \right. D_i(x, z) .
\]

Conversely, let D_i be a t-(r,l)--bi- derivation and $D_i(x, z) = x \wedge D_i(x, z) \quad \forall x, z \in X$. Then we get

$D_i(0, z) = 0 \wedge D_i(0, z) = D_i(0, z)* (D_i(0, z)*0) = D_i(0, z)* D_i(0, z) = 0.$

Theorem 6.8 Let X be a QS- algebra and $D_i : X \times X \to X$ be a t-(l,r)--bi- derivation. Then

1. $D_i(x*y, z) = x*D_i(y, z) \quad \forall x, y, z \in X$.
2. $x*D_i(x, z) = y*D_i(y, z) \quad \forall x, y, z \in X$.

Proof. 1. Let D_i be a t-(l,r)--bi- derivation. Then $\forall x, y, z \in X$

\[
D_i(x*y, z) = (x*D_i(y, z)) \wedge (y*D_i(x, z)) = (y*D_i(x, z))*(y*D_i(x, z))*(x*D_i(y, z))
\]

\[
= x*D_i(y, z) .
\]

2. Let D_i be a t-(l,r)--bi- derivation. Then $\forall x, z \in X$

\[
D_i(0, z) = D_i(x*x, z) = (x*D_i(x, z)) \wedge (x*D_i(x, z))
\]

\[
\text{from Def 2.1. (QS-3)} \quad D_i(0, z) = (x*D_i(x, z)) \wedge (x*D_i(x, z))
\]

\[
= (x*D_i(x, z))*(x*D_i(x, z))*(x*D_i(x, z)) = (x*D_i(x, z)) * 0 = x*D_i(x, z).
\]

Thus, we can write $D_i(0, z) = x*D_i(x, z) = y*D_i(y, z) \quad \forall y \in X$.

Lemma 6.9 Let X be a QS-algebra and $D_i : X \times X \to X$ be a component wise regular t-(l,r)--bi- derivation. Then $D_i(x, z) = x \quad \forall x, z \in X$.

Proof. Since D_i is a component wise regular, then $D_i(0, z) = 0, \ \forall z \in X$. Then

\[
D_i(x, z) = D_i(x*0, z) = (x*D_i(0, z)) \wedge (0*D_i(x, z)) = (x*0) \wedge (0*D_i(x, z))
\]

\[
= x \wedge (0*D_i(x, z)) = (0*D_i(x, z)) * ((0*D_i(x, z)) * x) = _x .
\]
Proposition 6.10 Let X be a QS-algebra and $D_r : X \times X \rightarrow X$ be a $t-(l,r)-bi$-derivation. If there exist $a \in X$ such that $D_r(x, z) \ast a = 0 \quad \forall x, z \in X$, then $D_r(x \ast a, z) = 0$.

Proof. Since D_r is a $t-(l,r)-bi$-derivation, we get

$$D_r(x \ast a, z) = (D_r(x, z) \ast a) \land (x \ast D_r(a, z)) = 0 \land (x \ast D_r(a, z))$$

$$= (x \ast D_r(a, z)) \ast ((x \ast D_r(a, z)) \ast 0) = (x \ast D_r(a, z)) \ast (x \ast D_r(a, z)) = 0.$$

Proposition 6.11 Let X be a QS-algebra and $D_r : X \times X \rightarrow X$ be a $t-(r,l)-bi$-derivation. If there exist $a \in X$ such that $a \ast D_r(x, z) = 0 \quad \forall x, z \in X$, then $D_r(a \ast x, z) = 0$.

Proof. Since D_r is a $t-(r,l)-bi$-derivation, we get

$$D_r(a \ast x, z) = (a \ast D_r(x, z)) \land (D_r(a, z) \ast x) = 0 \land (D_r(a, z) \ast x)$$

$$= (D_r(a, z) \ast x) \ast ((D_r(a, z) \ast x) \ast 0) = (D_r(a, z) \ast x) \ast (D_r(a, z) \ast x) = 0.$$

7. Conclusion

Derivation is a very interesting and important area of research in the theory of algebraic structures in mathematics. In the present paper, The notion of (ℓ, r) (r, ℓ)-derivations of a QS-algebras, (ℓ, r) (r, ℓ) t-derivations of a QS-algebras, t-bi- derivations of a QS-algebras are introduced and investigated, also some useful properties of these types derivations in QS-algebras. In our opinion, these definitions and main results can be similarly extended to some other algebraic systems such as BCH-algebras, Hilbert algebras, BF-algebras, J-algebras, WS-algebras, CI-algebras, SU-algebras, BCL-algebras, BP-algebras and BO-algebras , PU- algebras and so forth. The main purpose of our future work is to investigate the fuzzy derivations ideals in QS-algebras, which may have a lot of applications in different branches of theoretical physics and computer science.

Conflict of Interests

The author declares that there is no conflict of interests.
REFERENCES

Appendix

Algorithm for QS-algebras.

Input (\(X \): set, \(*\): binary operation)
Output (“\(X \) is a QS-algebra or not”)

Begin
If \(X = \emptyset \) then go to (1.);
End If
If \(0 \not\in X \) then go to (1.);
End If
Stop: = false;
\(i := 1; \)

While \(i \leq |X| \) and not (Stop) do
If \(x_i * x_i \neq 0 \), \(x_i * 0 \neq x_i \) then
Stop: = true;
End If
\(j := 1, k := 1 \)

While \(j, k \leq |X| \) and not (Stop) do
If \((x_i * y_j) * z_k \neq (x_i * z_k) * y_j \), \((x_i * y_j) * (x_i * z_k) \neq z_k * y_j \) then
Stop: = true;
End If
End While
End While
End If

(1.) Output (“\(X \) is not a QS-algebra”)
Else
Output (“\(X \) is a QS-algebra”)
End If
End