
_________ 

*Corresponding author 

E-mail address: u_ndubuisi@yahoo.com 

Received October 23, 2017 

 

          Available online at http://scik.org 

          J. Semigroup Theory Appl. 2018, 2018:4 

https://doi.org/10.28919/jsta/3547 

ISSN: 2051-2937 

 

 

CONGRUENCES ON *-BISIMPLE TYPE A I-SEMIGROUPS 

NDUBUISI R.U.*, ASIBONG-IBE U.I. 

Department of Mathematics & Statistics, University of Port Harcourt, Port Harcourt, Nigeria 

Copyright © 2018 Ndubuisi and Asibong-Ibe. This is an open access article distributed under the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. This paper studies congruences on a *-bisimple type A I-semigroup in the light of known results in 

the areas of inverse semigroups and type A 𝜔-semigroups. It turns out that for a *-bisimple type A I-semigroup, 

we have the idempotent-separating congruence and the minimum cancellative monoid congruence.  

Keywords: type A I-semigroups; idempotent-separating; cancellative monoid congruence; generalized Bruck-

Reilly *-extension. 

2010 Mathematics Subject Classification: 20M18. 

 

1.   Introduction and Summary 

 Let S be a semigroup and let E (S) denote the set of its idempotents. As well known, E (S) is partially 

ordered in the sense that: if  𝑒, 𝑓 𝜖 𝐸(𝑆), 𝑒 ≤ 𝑓 if and only if  𝑒𝑓 = 𝑓𝑒 = 𝑒.  Let  𝐼 denote the set of all 

integers and let  ℕ0 denote the set of nonnegative integers. A semigroup S is called an I-semigroup if 

and only if E (S) is order isomorphic to I under the reverse of the partial order. The  *-bisimple type A 

I-semigroup have been classified by Shang and Wang in [9]. The case in which  𝒟∗ = �̃�  was shown 

to be the generalized Bruck-Reilly *-extension of a cancellative monoid. 

The main purpose of this paper is to present an explicit description of the congruences on *-bisimple 

type A I-semigroups. 

This work is divided into 5 sections; section 2 contains some preliminaries and results concerning *-

bisimple type A I-semigroups. The content of section 3 is the characterization of the idempotent- 

separating congruences on *-bisimple type A I-semigroups. A description of the minimum 

cancellative monoid congruence on *-bisimple type A I-semigroup is the subject of section 4 while 

the maximum idempotent-separating congruence is treated in section 5. 

Now we recall some definitions which will be useful in the study. Terms not given here can be found 

in [4], [6] and [9], for more detailed knowledge. 
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   A semigroup S is said to be 

• regular if all its elements are regular. Let S be a semigroup. An element  𝑥 𝜖 𝑆  is said to be regular if 

there exists 𝑦 𝜖 𝑆  such that  𝑥𝑦𝑥 = 𝑥. 

• unit regular if for each  𝑥 𝜖 𝑆 there exists a unit  𝑦 of 𝑆  for which  𝑥 = 𝑥𝑦𝑥. 

• An element 𝑥 𝜖 𝑆 is said to be coregular and y its coinverse if   𝑥 = 𝑥𝑦𝑥 = 𝑦𝑥𝑦. S is coregular if all 

its elements are coregular.  

• orthodox if it is regular and the set  𝐸(𝑆) of idempotent elements of the semigroup 𝑆 forms a 

subsemigroup. 

   Let  𝑆 be a semigroup and 𝑎, 𝑏 𝜖 𝑆.  The elements 𝑎 and 𝑏 in S are said to be ℛ∗-related written 

 𝑎 ℛ∗ 𝑏 if and only if  𝑎 and 𝑏 are related in ℛ in some oversemigroup of  𝑆. Dually, we can define the 

relation  ℒ∗. The following Lemma gives an alternative characterization of ℛ∗, the dual for the relation 

ℒ∗. 

Lemma 1.1 [4]. Let 𝑆 be a semigroup and 𝑎, 𝑏 𝜖 𝑆. Then 𝑎 ℛ∗ 𝑏 if and only if for all 𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 =

𝑦𝑎 if and only if  𝑥𝑏 = 𝑦𝑏. 

As an easy but useful consequence of Lemma 1.1, we have 

Lemma 1.2 [4]. Let 𝑆 be a semigroup and 𝑎, 𝑒2 = 𝑒 𝜖 𝑆. Then 𝑎 ℛ∗ 𝑒 if and only if  for any 𝑥, 𝑦 𝜖 𝑆1,

𝑥𝑎 = 𝑦𝑎 implies  𝑥𝑒 = 𝑦𝑒. 

  The join of the equivalence relations ℛ∗ and ℒ∗ is denoted by 𝒟∗ and their intersection by ℋ∗. Thus 

𝑎 ℋ∗𝑏 if and only if  𝑎 ℛ∗𝑏 and 𝑎 ℒ∗𝑏. In general  ℛ∗ ∘ ℒ∗ ≠ ℛ∗ ∘ ℒ∗ (see [4]). Basically, 𝑎 𝒟∗𝑏 if 

and only if there exist elements  𝑥1, 𝑥2, … , 𝑥2𝑛−1 in  𝑆 such that 𝑎 ℒ∗𝑥1ℛ∗𝑥2 … 𝑥2𝑛−1ℛ∗ 𝑏. 

Following Fountain [5] a semigroup is an abundant semigroup if every ℒ∗-class and every ℛ∗-class in 

S contain idempotents. An abundant semigroup S is an adequate [5] if E(S) forms a semilattice. In an 

adequate semigroup every ℒ∗-class ℛ∗-class contains a unique idempotent. 

Let a be an element of an adequate semigroup S, and 𝑎∗ (𝑎†) denotes the unique idempotent in the 

ℒ∗-class  𝐿𝑎
∗  ( ℛ∗-class  𝑅𝑎

∗  ) containing a. 

Fountain in [3] introduced the concept of right  type A semigroup as special type of right PP monoids 

which is e-cancellable for an idempotent. He followed it in [4] with introduction of type a as an 

adequate semigroup satisfying certain internal conditions. An adequate semigroup S is a type A 

semigroup if  𝑒𝑎 = 𝑎(𝑒𝑎)∗  and 𝑎𝑒 = (𝑎𝑒)†𝑎   for all 𝑎 𝜖 𝑆 and 𝑒 𝜖 𝐸(𝑆). If a type A semigroup S 

contain precisely one 𝒟∗-class it is said to be a *-bisimple type A semigroup.  *-bisimple type A 

semigroup has been studied in [1]. 

 

2.   The *-Bisimple Type A I-Semigroup 
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In [9], Yu Shang and Limin Wang considered a similar construction of the one given earlier by Warne 

[10]. They used this construction to give the structure theorem for *-bisimple type A I-semigroups. 

We now introduce the construction. 

Let  𝑀 be a monoid with  ℋ1
∗ as the ℋ∗-class which contain the identity element  1 of 𝑀. Let 𝑆 =

𝑀 × 𝐼 × 𝐼  ( where  𝐼 denotes the set of all integers)  with multiplication defined by the rule 

 

       (𝑥, 𝑚, 𝑛)(𝑦, 𝑝, 𝑞) = {
(𝑥. 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝜃𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)                  if  𝑛 ≥ 𝑝
                                                                                                          
(𝑓𝑝−𝑛,𝑚

−1 . 𝑥𝜃𝑝−𝑛. 𝑓𝑝−𝑛,𝑛. 𝑦, 𝑚 + 𝑝 − 𝑛, 𝑞)                if  𝑛 ≤ 𝑝
                

 

where  𝜃 is an endomorphism of  𝑀 with images in ℋ1
∗.  𝜃0 denotes the identity automorphism of  𝑀, 

and for  𝑚 𝜖 ℕ0, 𝑛 𝜖 𝐼, 𝑓0,𝑛 = 1, the identity of 𝑀, and for  𝑚 > 0, 𝑓𝑚,𝑛 = 𝑢𝑛+1𝜃𝑚−1. 𝑢𝑛+2𝜃𝑚−2 … 

𝑢𝑛+(𝑚−1)𝜃. 𝑢𝑛+𝑚  and  𝑓𝑚,𝑛
−1 = 𝑢𝑛+𝑚

−1 . 𝑢𝑛+(𝑚−1)
−1 𝜃 … 𝑢𝑛+2

−1 𝜃𝑚−2. 𝑢𝑛+1
−1 𝜃𝑚−1,  where { 𝑢𝑛   𝑛 𝜖 𝐼 } is a 

collection of elements of  𝐻1 with  𝑢𝑛 = 1  if  𝑛 > 0.  

Under the above multiplication, 𝑆 = 𝑀 × 𝐼 × 𝐼 is a semigroup (see [9]) and this semigroup is called 

the generalized Bruck-Reilly *-extensions of M determined by 𝜃 and it is usually denoted by  𝑆 =

𝐺𝐵𝑅∗(𝑀, 𝜃). 

The following results are proved in [9]. We give a sketch proof of (i), (iii) and (v) 

Lemma 2.1. Let  (𝑥, 𝑚, 𝑛), (𝑦, 𝑝, 𝑞) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃). Then 

(i)   (𝑥, 𝑚, 𝑛) ℒ∗ (𝑦, 𝑝, 𝑞) if and only if   𝑛 = 𝑞 and 𝑥 ℒ∗(𝑀) 𝑦. 

(ii)  (𝑥, 𝑚, 𝑛) ℛ∗ (𝑦, 𝑝, 𝑞) if and only if   𝑚 = 𝑝 and 𝑥 ℛ∗(𝑀) 𝑦. 

(iii) (𝑥, 𝑚, 𝑛) 𝜖 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)) if and only if  𝑚 = 𝑛 and 𝑥 𝜖 𝐸(𝑀). 

(iv) (𝑥, 𝑚, 𝑛) has an inverse  (𝑦, 𝑝, 𝑞) 𝜖 𝑆 if and only if 𝑝 = 𝑛, 𝑞 = 𝑚 and x is the inverse of  y 𝜖 𝑀. 

(v)  𝐺𝐵𝑅∗(𝑀, 𝜃) is a type A semigroup if and only if M  is a type A semigroup. 

Proof. (i) Let (𝑥, 𝑚, 𝑛) ℒ∗ (𝑦, 𝑝, 𝑞). For  (𝑒, 0,0), (𝑒, 𝑛, 𝑛) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃) we have 

                           (𝑥, 𝑚, 𝑛)(𝑒, 0,0) = (𝑥, 𝑚, 𝑛)(𝑒, 𝑛, 𝑛), 

                           (𝑦, 𝑝, 𝑞)(𝑒, 0,0) = (𝑦, 𝑝, 𝑞)(𝑒, 𝑛, 𝑛). 

Consequently, 

            (𝑦, 𝑝, 𝑞) = (𝑦, 𝑝, 𝑞)(𝑒, 𝑛, 𝑛).  If  𝑞 < 𝑛, this gives 

             (𝑦, 𝑝, 𝑞) = (𝑓𝑛−𝑞,𝑝
−1 . 𝑦𝜃𝑛−𝑞 . 𝑓𝑛−𝑞,𝑞 . 𝑒, 𝑝 + 𝑛 − 𝑞, 𝑛). 

Comparing the third coordinates gives  𝑞 = 𝑛, which is a contradiction. Thus 𝑞 ≥ 𝑛. 

Similarly, using the idempotent (𝑒, 𝑞, 𝑞) we have  
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(𝑥, 𝑚, 𝑛)(𝑒, 𝑞, 𝑞) = {
(𝑥. 𝑓𝑛−𝑞,𝑞 

−1 . 𝑒𝜃𝑛−𝑞 . 𝑓𝑛−𝑞,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑞)                        if  𝑛 ≥ 𝑞
                                                                                                          

(𝑓𝑞−𝑛,𝑚 
−1 . 𝑥𝜃𝑞−𝑛. 𝑓𝑞−𝑛,𝑛 . 𝑒, 𝑚 + 𝑞 − 𝑛, 𝑞)                       if  𝑛 ≤ 𝑞

          

 

So we deduce that  𝑞 ≤ 𝑛 and so 𝑞 = 𝑛.   

Conversely, let  𝑛 = 𝑞. For any arbitrary elements (𝑣, 𝑖, 𝑗), (𝑤, 𝑙, 𝑘) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃), 

                  (𝑥, 𝑚, 𝑛)(𝑣, 𝑖, 𝑗) = (𝑥, 𝑚, 𝑛)(𝑤, 𝑙, 𝑘). 

Suppose  𝑛 ≥ 𝑖 and  𝑛 ≥ 𝑙 . Then 

       (𝑥. 𝑓𝑛−𝑖,𝑖 
−1 . 𝑣𝜃𝑛−𝑖. 𝑓𝑛−𝑖,𝑗 , 𝑚, 𝑛 + 𝑗 − 𝑖) = (𝑥. 𝑓𝑛−𝑙,𝑙 

−1 . 𝑤𝜃𝑛−𝑙 . 𝑓𝑛−𝑙,𝑘 , 𝑚, 𝑛 + 𝑘 − 𝑙). 

Comparing the first and the third coordinates gives 

𝑥. 𝑓𝑛−𝑖,𝑖 
−1 . 𝑣𝜃𝑛−𝑖. 𝑓𝑛−𝑖,𝑗 =  𝑥. 𝑓𝑛−𝑙,𝑙 

−1 . 𝑤𝜃𝑛−𝑙 . 𝑓𝑛−𝑙,𝑘   and  𝑛 + 𝑗 − 𝑖 = 𝑛 + 𝑘 − 𝑙. 

This implies 

    𝑦. 𝑓𝑛−𝑖,𝑖 
−1 . 𝑣𝜃𝑛−𝑖. 𝑓𝑛−𝑖,𝑗 =  𝑦.  𝑓𝑛−𝑙,𝑙 

−1 . 𝑤𝜃𝑛−𝑙 . 𝑓𝑛−𝑙,𝑘   and  𝑛 + 𝑗 − 𝑖 = 𝑛 + 𝑘 − 𝑙. 

Hence,   (𝑦, 𝑝, 𝑛)(𝑣, 𝑖, 𝑗) = (𝑦, 𝑝, 𝑛)(𝑤, 𝑙, 𝑘). 

(ii) The proof is similar to the proof of (i). 

(iii) Let  (𝑥, 𝑚, 𝑛) 𝜖 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)). Then  

            (𝑥, 𝑚, 𝑛) = (𝑥, 𝑚, 𝑛)(𝑥, 𝑚, 𝑛)                                           =

{
(𝑥. 𝑓𝑛−𝑚,𝑚

−1 . 𝑥𝜃𝑛−𝑚. 𝑓𝑛−𝑚,𝑛, 𝑚, 𝑛 + 𝑛 − 𝑚)                           if  𝑛 ≥ 𝑚
                                                                                                          

(𝑓𝑚−𝑛,𝑚
−1 . 𝑥𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛. 𝑥, 𝑚 + 𝑚 − 𝑛, 𝑛)                           if  𝑛 ≤ 𝑚

 

thus  𝑚 = 𝑛 and 𝑥2 = 𝑥. 

Conversely, let 𝑚 = 𝑛 and 𝑥 𝜖 𝐸(𝑀).  Then certainly  (𝑥, 𝑚, 𝑛)(𝑥, 𝑚, 𝑛) = (𝑥, 𝑚, 𝑛). From which it 

follows that  (𝑥, 𝑚, 𝑛) 𝜖 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)).  

(iv) The proof is clear. 

(v) We only prove that 𝐺𝐵𝑅∗(𝑀, 𝜃) is right type A, as the proof that 𝐺𝐵𝑅∗(𝑀, 𝜃) is left type A is 

dual. 

Let  (𝑒, 𝑚, 𝑚), (𝑒, 𝑛, 𝑛) 𝜖 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)). Suppose that  𝑚 > 𝑛. Then  

             (𝑒, 𝑚, 𝑚), (𝑒, 𝑛, 𝑛) = (𝑒. 𝑓𝑚−𝑛,𝑛
−1 𝑒𝜃𝑚−𝑛𝑓𝑚−𝑛,𝑛, 𝑚) 

                                           = (𝑓𝑚−𝑛,𝑛
−1 . 𝑒𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛. 𝑒, 𝑚, 𝑚) 

                                           = (𝑒, 𝑛, 𝑛)(𝑒, 𝑚, 𝑚). 

Thus the idempotents of 𝐺𝐵𝑅∗(𝑀, 𝜃)  commute. So every ℒ∗ -class of 𝐺𝐵𝑅∗(𝑀, 𝜃)  contain an 

idempotent.  
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Let (𝑥, 𝑝, 𝑞) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃). Suppose  𝑚 ≥ 𝑝. Then 

   (𝑥, 𝑝, 𝑞)[(𝑒, 𝑚, 𝑚)(𝑥, 𝑝, 𝑞)]∗ = (𝑥, 𝑝, 𝑞)(𝑒. 𝑓𝑚−𝑝,𝑝
−1 . 𝑥𝜃𝑚−𝑝. 𝑓𝑚−𝑝,𝑞 , 𝑚, 𝑚 + 𝑞 − 𝑝)∗ 

                                                = (𝑥, 𝑝, 𝑞)(𝑒. 𝑓𝑚−𝑝,𝑝
−1 . 𝑥𝜃𝑚−𝑝𝑓𝑚−𝑝,𝑞 , 𝑚 + 𝑞 − 𝑝, 𝑚 + 𝑞 − 𝑝)  

                                               = (𝑒, 𝑚, 𝑚)(𝑥, 𝑝, 𝑞). 

 

Theorem 2.2 (Structure theorem) 

Let 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) be the generalized Bruck-Reilly *-extensions of M determined by 𝜃. Then S is a 

*-bisimple type A I-semigroup. Conversely, every *-bisimple type A I-semigroup is isomorphic to 

𝐺𝐵𝑅∗(𝑀, 𝜃). 

Proof.  It is known that  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) is a type A semigroup. That S is  *-bisimple follows from 

Lemma 2.1 (i) & (ii).  

Next, let  𝑒𝑚 = (𝑒, 𝑚, 𝑚)  and  𝑒𝑛 = (𝑒, 𝑛, 𝑛) 𝜖 𝐸(𝑆). Then for  𝑚 ≥ 𝑛. 

                           𝑒𝑚𝑒𝑛 = (𝑒, 𝑚, 𝑚)(𝑒, 𝑛, 𝑛) = (𝑒. 𝑓𝑚−𝑛,𝑛
−1 . 𝑒𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛, 𝑚, 𝑚 + 𝑛 − 𝑛) 

                                     = (𝑒, 𝑚, 𝑚) = 𝑒𝑚 

                                    = (𝑒, 𝑛, 𝑛)(𝑒, 𝑚, 𝑚) = 𝑒𝑛𝑒𝑚 

Thus  𝑒𝑚 ≤ 𝑒𝑛 if and only if  𝑚 ≥ 𝑛, which shows that  𝐸(𝑆) is a chain 

           . . . > (𝑒, −2, −2) > (𝑒, −1, −1) > (𝑒, 0,0) > (𝑒, 1,1) > (𝑒, 2,2) > ⋯ 

Hence S is a *-bisimple type A I-semigroup. The converse of the proof is a routine check. 

     From Lemma 2.1(iv), we have the following result 

Corollary 2.3.  Let M  be a monoid. Then 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) is regular if and only if M is regular. 

The following results show some other properties of 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). 

Proposition 2.4. Let  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). Then S is unit regular if and only if  𝑀 is unit regular. 

Proof.  Let  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) be unit regular. Then for any (𝑥, 𝑚, 𝑛) 𝜖 𝑆, there exists an element 

 (𝑦, 𝑛, 𝑚) 𝜖 𝐺  (where  𝐺 is the group of units of  𝐺𝐵𝑅∗(𝑀, 𝜃) ) such that   

                                        (𝑥, 𝑚, 𝑛)(𝑦, 𝑛, 𝑚)(𝑥, 𝑚, 𝑛) = (𝑥, 𝑚, 𝑛). 

By considering left-hand side of the equation, we get 

          (𝑥, 𝑚, 𝑛)(𝑦, 𝑛, 𝑚)(𝑥, 𝑚, 𝑛) = ((𝑥, 𝑚, 𝑛)(𝑦, 𝑛, 𝑚))(𝑥, 𝑚, 𝑛)  

                                                      = (𝑥. 𝑓𝑛−𝑛,𝑛
−1 . 𝑦𝜃𝑛−𝑛. 𝑓𝑛−𝑛,𝑚, 𝑚, 𝑛 + 𝑚 − 𝑛)(𝑥, 𝑚, 𝑛)  

                                                             = (𝑥𝑦, 𝑚, 𝑚)(𝑥, 𝑚, 𝑛) = (𝑥𝑦𝑥, 𝑚, 𝑛).  

Therefore we obtain  𝑥 = 𝑥𝑦𝑥. Consequently, 𝑀 is unit regular. 

Conversely, let us suppose that  𝑀 is unit regular.  Then for 𝑥 𝜖 𝑀,  there exists an element 

 𝑥 𝜖 𝐺𝑀 (where 𝐺𝑀  is the group of units of 𝑀) such that obtain  𝑥 = 𝑥𝑦𝑥. Now we need to show that 

for any (𝑥, 𝑚, 𝑛) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃), there exist an element (𝑦, 𝑝, 𝑞) 𝜖 𝐺𝑀  such that  

                                 (𝑥, 𝑚, 𝑛) = (𝑥, 𝑚, 𝑛)(𝑦, 𝑝, 𝑞) (𝑥, 𝑚, 𝑛).  
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Here we take  𝑝 = 𝑛, 𝑞 = 𝑚, then we have (𝑥, 𝑚, 𝑛) (𝑦, 𝑛, 𝑚)(𝑥, 𝑚, 𝑛) = (𝑥𝑦𝑥, 𝑚, 𝑛). Since we have 

 𝑥 = 𝑥𝑦𝑥,  for any  𝑥 𝜖 𝑀, 𝑦 𝜖 𝐺𝑀 , we obtain  (𝑥, 𝑚, 𝑛)(𝑦, 𝑝, 𝑞)(𝑥, 𝑚, 𝑛) = (𝑥, 𝑚, 𝑛).  Thus 𝑆  is unit 

regular. 

Proposition 2.5 Let 𝑀  be a monoid. Then 𝑀′ = {(𝑥, 𝑚, 𝑚)    𝑥 𝜖 𝑀, 𝑚 𝜖 ℕ0 } ≤ 𝐺𝐵𝑅∗(𝑀, 𝜃)  is 

coregular if and only if  𝑀 is coregular. 

Proof.  Let 𝑀′ ≤  𝐺𝐵𝑅∗(𝑀, 𝜃) be coregular. Then for (𝑥, 0,0) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃), there exists an element 

(𝑦, 𝑛, 𝑛) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃) such that   

                         ((𝑥, 0,0)(𝑦, 𝑛, 𝑛))(𝑥, 0,0) = (𝑥𝑦𝑥, 𝑛, 𝑛) = (𝑥, 0,0)                                   (1)                                           

                         ((𝑦, 𝑛, 𝑛)(𝑥, 0,0))(𝑦, 𝑛, 𝑛) = (𝑦𝑥𝑦, 𝑛, 𝑛) = (𝑥, 0,0)                                  (2)                                                                            

From (1) and (2), we have that  𝑛 = 0, 𝑥𝑦𝑥 = 𝑥 and 𝑦𝑥𝑦 = 𝑥. Thus 𝑀 is coregular. 

Conversely, let M be coregular. Then there exists   𝑦 𝜖 𝑀,  with 𝑥𝑦𝑥 = 𝑥 and 𝑦𝑥𝑦 = 𝑥.  Thus for 

(𝑥, 𝑚, 𝑛) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃), we have 

              ((𝑥, 𝑚, 𝑛)(𝑦, 𝑚, 𝑚))(𝑥, 𝑚, 𝑚) = (𝑥𝑦, 𝑚, 𝑚)(𝑥, 𝑚, 𝑚) 

                                                                 = (𝑥𝑦𝑥, 𝑚, 𝑚) 

                                                                 = (𝑥, 𝑚, 𝑚). 

              ((𝑦, 𝑚, 𝑚)(𝑥, 𝑚, 𝑚))(𝑦, 𝑚, 𝑚) = (𝑦𝑥, 𝑚, 𝑚)(𝑦, 𝑚, 𝑚) 

                                                                  = (𝑦𝑥𝑦, 𝑚, 𝑚) 

                                                                  = (𝑥, 𝑚, 𝑚). 

Therefore,  𝑀′ = {(𝑥, 𝑚, 𝑚)  𝑥 𝜖 𝑀, 𝑚 𝜖 ℕ0 } ≤ 𝐺𝐵𝑅∗(𝑀, 𝜃) is coregular. 

    It is important to note that not all regular semigroups are coregular. This is shown in the example 

below. 

Example 2.6. Let  𝑋 and  𝑌 be non-empty sets and set  𝑇 = 𝑋 × 𝑌 with the binary operation 

                           (𝑥, 𝑦)(𝑢, 𝑣) = (𝑥, 𝑣), for all  𝑥, 𝑢 𝜖 𝑋, 𝑦, 𝑣 𝜖 𝑌. 

It can be easily seen that T is a semigroup. This semigroup is called a rectangular band. T is also 

regular, since for (𝑥, 𝑦), (𝑢, 𝑣) 𝜖 𝑇 we have  (𝑥, 𝑦)(𝑢, 𝑣)(𝑥, 𝑦) = (𝑥, 𝑦). 

   To show that T is not coregular, let  (𝑥, 𝑦), (𝑢, 𝑣) 𝜖 𝑇, then we have 

                                      (𝑥, 𝑦)(𝑢, 𝑣)(𝑥, 𝑦) = (𝑥, 𝑦),  

                                        (𝑢, 𝑣)(𝑥, 𝑦)(𝑢, 𝑣) = (𝑢, 𝑣).     

So  (𝑥, 𝑦) ≠ (𝑢, 𝑣).  Thus T is not coregular.                          

       In the next theorem, we consider the orthodox property of 𝐺𝐵𝑅∗(𝑀, 𝜃)                       

Theorem 2.7.  Let 𝑆 =  𝐺𝐵𝑅∗(𝑀, 𝜃). Then 𝑆 is orthodox if and only if  𝑀 is orthodox. 

Proof.  Let 𝐺𝐵𝑅∗(𝑀, 𝜃) be orthodox. By Corollary 2.3, we know that 𝑀 is regular. Then it remains to 

show that 𝐸(𝑀) is a subsemigroup of  𝑀. In particular for each  𝑒, 𝑒′ 𝜖 𝐸(𝑀), 
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                   (𝑒, 𝑚, 𝑚)(𝑒′, 𝑚, 𝑚) = (𝑒. 𝑓𝑚−𝑚,𝑚 
−1 . 𝑒′𝜃𝑚−𝑚. 𝑓𝑚−𝑚,𝑚, 𝑚, 𝑚 + 𝑚 − 𝑚) 

                                                           = (𝑒𝑒′, 𝑚, 𝑚) 

is an idempotent of 𝐺𝐵𝑅∗(𝑀, 𝜃) and so  (𝑒𝑒′)2 = 𝑒𝑒′. Hence 𝑀 is orthodox. 

Conversely, let 𝑀 be orthodox. Then 𝑀 is regular, and 𝐸(𝑀) is a subsemigroup of 𝑀. By Corollary 

2.3, we know that 𝐺𝐵𝑅∗(𝑀, 𝜃) is regular. 

Next, we show that (𝑒, 𝑚, 𝑚)(𝑒′, 𝑛, 𝑛) 𝜖 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)). From the multiplication (𝑒, 𝑚, 𝑚)(𝑒′, 𝑛, 𝑛), 

we have the following cases: 

Case (1):  If  𝑚 ≥ 𝑛, we have 

             (𝑒, 𝑚, 𝑚)(𝑒′, 𝑛, 𝑛) =  ((𝑒. 𝑓𝑚−𝑛,𝑛 
−1 ). (𝑒′𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛), 𝑚, 𝑚 + 𝑛 − 𝑛) 

                                            = ((𝑒. 𝑓𝑚−𝑛,𝑛 
−1 ). (𝑒′𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛), 𝑚, 𝑚). 

Since 𝑒, 𝑒′ 𝜖 𝐸(𝑀), we deduce that  𝑒. 𝑓𝑚−𝑛,𝑛 
−1 , 𝑒′𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛 𝜖 𝐸(𝑀). But the idempotents in 𝑀 are 

commutative, consequently 

               (𝑒. 𝑓𝑚−𝑛,𝑛 
−1 ). (𝑒′𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛) = (𝑒′𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛). (𝑒. 𝑓𝑚−𝑛,𝑛 

−1 ). 

So (𝑒′𝜃𝑚−𝑛. 𝑓𝑚−𝑛,𝑛), (𝑒. 𝑓𝑚−𝑛,𝑛 
−1 ) 𝜖 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)). Therefore 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)) is a subsemigroup of  

𝐺𝐵𝑅∗(𝑀, 𝜃). 

Case (2):  If  𝑚 ≤ 𝑛, we have 

          (𝑒, 𝑚, 𝑚)(𝑒′, 𝑛, 𝑛) =  ((𝑓𝑛−𝑚,𝑛 
−1 . 𝑒𝜃𝑛−𝑚). (𝑓𝑛−𝑚,𝑚. 𝑒′), 𝑚 + 𝑛 − 𝑚, 𝑛) 

                                         = ((𝑓𝑛−𝑚,𝑚 
−1 . 𝑒𝜃𝑛−𝑚). (𝑓𝑛−𝑚,𝑚. 𝑒′), 𝑛, 𝑛). 

From here, since (𝑓𝑛−𝑚,𝑚 
−1 . 𝑒𝜃𝑛−𝑚), (𝑓𝑛−𝑚,𝑚. 𝑒′) 𝜖 𝐸(𝑀) and the idempotents in 𝑀 are commutative, 

we deduce that 𝐸(𝐺𝐵𝑅∗(𝑀, 𝜃)) is a subsemigroup of  𝐺𝐵𝑅∗(𝑀, 𝜃).  

    The connection between the Green’s *-relations and congruences lies on the fact that ℒ∗ is a right 

congruence and  ℛ∗ is a left congruence. It can be easily verified that  ℋ∗ is a congruence on 𝑆 =

𝐺𝐵𝑅∗(𝑀, 𝜃). In our next section, we shall characterize the congruences on 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). 

3.  Idempotent-separating congruences 

The following terms adopted from [8] will be used in the description of congruences on *-bisimple  

type A I-semigroups. 

Definition 3.1.  Let 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) be a *-bisimple type A I-semigroup where  𝜃 ∶ 𝑀 → ℋ1
∗. Let 

ℋ∗ = 𝜌  be a congruence on S. Let us use 𝜌(𝑀) to denote the congruence on M induced by 𝜌, via the 

restriction of 𝜌 to the monoid  {(𝑥, 0,0) ∶ 𝑥 𝜖 𝑀}. 

Definition 3.2. A congruence 𝛾  on 𝑀  is said to be  𝜃 -admissible if 𝑥 𝛾 𝑦  implies 𝑥𝜃 𝛾 𝑦𝜃,

for any 𝑥, 𝑦 𝜖 𝑀. 
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  A typical idempotent-separating congruence on 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) is characterized as follows: 

Theorem 3.3. Let  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) be a *-bisimple type A I-semigroup and let  𝜌 be a congruence 

on 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). Then  𝜌(𝑀) is  𝜃-admissible. Conversely, if  𝛾 is any 𝜃-admissible congruence 

on M, then the relation on S defined by 

                   [(𝑥, 𝑚, 𝑛)(𝑦, 𝑝, 𝑞)]  𝜖 𝛾(𝑆) if and only if  𝑚 = 𝑝, 𝑛 = 𝑞 and  (𝑥, 𝑦) 𝜖 𝛾 

is an idempotent-separating congruence. 

Proof.  Suppose  𝑥 𝜌(𝑀) 𝑦. Then we have that  (𝑥, 0,0) 𝜌 (𝑦, 0,0). 

Consequently, 

                                (𝑥, 0,0)(𝑒, 1,1)𝜌 (𝑦, 0,0)(𝑒, 1,1). 

But   (𝑥, 0,0)(𝑒, 1,1) = (𝑓1,0
−1 . 𝑥𝜃𝑓1,0 . 𝑒, 1,1) and  (𝑦, 0,0)(𝑒, 1,1) = (𝑓1,0

−1 . 𝑦𝜃𝑓1,0 . 𝑒, 1,1). 

Thus  (𝑓1,0
−1 . 𝑥𝜃𝑓1,0 . 𝑒, 1,1) 𝜌 (𝑓1,0

−1 . 𝑦𝜃𝑓1,0 . 𝑒, 1,1) = (𝑥𝜃, 1,1) 𝜌 (𝑦𝜃, 1,1). 

Since (𝑥𝜃, 1,1) 𝜌 (𝑦𝜃, 1,1), then  (𝑥𝜃, 1,1) = (𝑦𝜃, 1,1). 

Also we have   (𝑒, 0,1)(𝑥𝜃, 1,1)(𝑒, 1,0) 𝜌 (𝑒, 0,1)(𝑦𝜃, 1,1)(𝑒, 1,0). 

But  (𝑒, 0,1)(𝑥𝜃, 1,1)(𝑒, 1,0) = (𝑥𝜃, 0,0) and  (𝑒, 0,1)(𝑦𝜃, 1,1)(𝑒, 1,0) = (𝑦𝜃, 0,0).  

Thus  (𝑥𝜃, 0,0) 𝜌 (𝑦𝜃, 0,0). Since (𝑥𝜃, 0,0) 𝜌 (𝑦𝜃, 0,0), then  𝑥𝜃 𝜌(𝑀) 𝑦𝜃. 

Conversely, let  𝛾 be a 𝜃-admissible congruence on M. We first show that  𝛾(𝑆) is an equivalence 

relation. 

[(𝑥, 𝑚, 𝑛)(𝑥, 𝑚, 𝑛)] 𝜖 𝛾(𝑆) since  (𝑥, 𝑥) 𝜖 𝛾. Thus  𝛾(𝑆) is reflexive. By definition, 𝛾(𝑆) is symmetric. 

To show transitivity, let  (𝑥, 𝑚, 𝑛) 𝛾(𝑆) (𝑦, 𝑝, 𝑞) and  (𝑦, 𝑝, 𝑞) 𝛾(𝑆) (𝑧, 𝑖, 𝑗) for all  (𝑥, 𝑚, 𝑛), (𝑦, 𝑝, 𝑞), 

(𝑧, 𝑖, 𝑗) 𝜖 𝑆. Then we have  𝑚 = 𝑝, 𝑛 = 𝑞, (𝑥, 𝑦) 𝜖 𝛾  and 𝑝 = 𝑖, 𝑞 = 𝑗, (𝑦, 𝑧) 𝜖 𝛾. 

Consequently, 𝑚 = 𝑖, 𝑛 = 𝑗. Hence (𝑥, 𝑧) 𝜖 𝛾, which means that  𝛾(𝑆) is transitive. 

Next is to show that  𝛾(𝑆) is a congruence. Now let  𝑎 = (𝑥, 𝑚, 𝑛), 𝑏 = (𝑦, 𝑝, 𝑞). That  𝛾(𝑆) is a 

congruence entails showing that 

                                 𝑎  𝛾(𝑆) 𝑏 implies  𝑎𝑥  𝛾(𝑆) 𝑏𝑥      (for right congruence) 

                               𝑎  𝛾(𝑆) 𝑏 implies  𝑥𝑎  𝛾(𝑆) 𝑥𝑏       (for left congruence) 

∀  𝑥 = (𝑧, 𝑘, 𝑙) 𝜖 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). 

    Consequently, 

          𝑎𝑥 =  (𝑥, 𝑚, 𝑛)(𝑧, 𝑘, 𝑙) = {
(𝑥. 𝑓𝑛−𝑘,𝑘

−1 . 𝑧𝜃𝑛−𝑘. 𝑓𝑛−𝑘,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑘)                  if  𝑛 ≥ 𝑘
                                                                                                          
(𝑓𝑘−𝑛,𝑚

−1 . 𝑥𝜃𝑘−𝑛. 𝑓𝑘−𝑛,𝑛. 𝑧, 𝑚 + 𝑘 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑘
 

          𝑏𝑥 =  (𝑦, 𝑝, 𝑞)(𝑧, 𝑘, 𝑙) = {
(𝑦. 𝑓𝑞−𝑘,𝑘

−1 . 𝑧𝜃𝑞−𝑘 . 𝑓𝑞−𝑘,𝑙 , 𝑝, 𝑞 + 𝑙 − 𝑘)                    if  𝑞 ≥ 𝑘
                                                                                                          
(𝑓𝑘−𝑞,𝑝

−1 . 𝑦𝜃𝑘−𝑞 . 𝑓𝑘−𝑞,𝑞 . 𝑧, 𝑝 + 𝑘 − 𝑞, 𝑙)                  if  𝑞 ≤ 𝑘
 

So if  (𝑥, 𝑚, 𝑛) 𝛾(𝑆) (𝑦, 𝑝, 𝑞), then 

           (𝑥, 𝑚, 𝑛)(𝑧, 𝑘, 𝑙) 𝛾(𝑆) (𝑦, 𝑝, 𝑞)(𝑧, 𝑘, 𝑙) = 



9 

CONGRUENCES ON *-BISIMPLE TYPE A I-SEMIGROUPS 

                                {
(𝑥. 𝑓𝑛−𝑘,𝑘

−1 . 𝑧𝜃𝑛−𝑘 . 𝑓𝑛−𝑘,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑘)                  if  𝑛 ≥ 𝑘
                                                                                                          
(𝑓𝑘−𝑛,𝑚

−1 . 𝑥𝜃𝑘−𝑛. 𝑓𝑘−𝑛,𝑛. 𝑧, 𝑚 + 𝑘 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑘
       

 

                    𝛾(𝑆)  {
(𝑦. 𝑓𝑞−𝑘,𝑘

−1 . 𝑧𝜃𝑞−𝑘. 𝑓𝑞−𝑘,𝑙 , 𝑝, 𝑞 + 𝑙 − 𝑘)                  if  𝑞 ≥ 𝑘
                                                                                                          

(𝑓𝑘−𝑞,𝑝
−1 . 𝑦𝜃𝑘−𝑞 . 𝑓𝑘−𝑞,𝑞 . 𝑧, 𝑝 + 𝑘 − 𝑞, 𝑙)                if  𝑞 ≤ 𝑘

 

But  (𝑥, 𝑚, 𝑛) 𝛾(𝑆) (𝑦, 𝑝, 𝑞)  if and only if   𝑚 = 𝑝, 𝑛 = 𝑞  and  𝑥 𝛾 𝑦. 

Thus, we have that                     

                        

                                  {
(𝑥. 𝑓𝑛−𝑘,𝑘

−1 . 𝑧𝜃𝑛−𝑘. 𝑓𝑛−𝑘,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑘)                  if  𝑛 ≥ 𝑘
                                                                                                          
(𝑓𝑘−𝑛,𝑚

−1 . 𝑥𝜃𝑘−𝑛. 𝑓𝑘−𝑛,𝑛. 𝑧, 𝑚 + 𝑘 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑘
       

 

                    𝛾(𝑆)  {
(𝑦. 𝑓𝑛−𝑘,𝑘

−1 . 𝑧𝜃𝑛−𝑘 . 𝑓𝑛−𝑘,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑘)                  if  𝑛 ≥ 𝑘
                                                                                                          
(𝑓𝑘−𝑛,𝑚

−1 . 𝑦𝜃𝑘−𝑛. 𝑓𝑘−𝑛,𝑛. 𝑧, 𝑚 + 𝑘 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑘
 

Hence  𝛾(𝑆) is a right congruence. 

That  𝛾(𝑆) is a left congruence follows similarly. Thus  𝛾(𝑆) is a congruence. 

Futhermore,  (𝑒, 𝑚, 𝑚) 𝛾(𝑆) (𝑒, 𝑛, 𝑛) ⟹ 𝑚 = 𝑛  which implies that  (𝑒, 𝑚, 𝑚) = (𝑒, 𝑛, 𝑛).  Thus 𝛾(𝑆) 

is an idempotent-separating congruence. 

Remark 3.4.   ℋ∗ is an idempotent-separating congruence on  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) and 𝛾(𝑆) ⊆  ℋ∗. 

4.  Minimum cancellative monoid congruence 

The idea of the minimum cancellative monoid congruence is to obtain a congruence  𝜎  on 𝑆, a type A 

semigroup with respect to which  𝑆/𝜎 is cancellative. 

Here we will determine the minimum cancellative monoid congruence on 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃),  as 

follows: 

  Now let  (ℎ, 𝑚, 𝑛), (𝑥, 𝑖, 𝑗) 𝜖 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃).Define a relation  𝜎  on  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) by the rule  

                      (ℎ, 𝑚, 𝑛) 𝜎 (𝑥, 𝑖, 𝑗)  if and only if  𝑚 − 𝑛 = 𝑖 − 𝑗, ℎ𝜃𝑖 = 𝑥𝜃𝑚  and 𝑥𝜃𝑖 = ℎ𝜃𝑚. 

Lemma 4.1.   𝜎  is a congruence on  𝑆. 

Proof. That 𝜎  is symmetric and reflexive is known. To show that 𝜎  is transitive, let  

(ℎ, 𝑚, 𝑛) 𝜎 (𝑥, 𝑖, 𝑗) and (𝑥, 𝑖, 𝑗) 𝜎 (𝑦, 𝑝, 𝑞) for (ℎ, 𝑚, 𝑛), (𝑥, 𝑖, 𝑗), (𝑦, 𝑝, 𝑞) 𝜖 𝑆. Then  𝑚 − 𝑛 = 𝑖 − 𝑗 and  

𝑖 − 𝑗 = 𝑝 − 𝑞 and so 𝑚 − 𝑛 = 𝑝 − 𝑞. 

Consequently, 𝑥𝜃𝑖 = ℎ𝜃𝑚 and  𝑦𝜃𝑝 = 𝑥𝜃𝑖  implies  𝑦𝜃𝑝 = ℎ𝜃𝑚. 
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Also  ℎ𝜃𝑖 = 𝑥𝜃𝑚  and 𝑥𝜃𝑝 = 𝑦𝜃𝑖  implies that   ℎ𝜃𝑖 = (𝑦𝜃𝑖−𝑝)𝜃𝑚 = 𝑦𝜃𝑖−𝑝+𝑚.  Then ℎ𝜃𝑖+𝑝 =

𝑦𝜃𝑖−𝑝+𝑚+𝑝 = 𝑦𝜃𝑖+𝑚.  Hence ℎ𝜃𝑝 = 𝑦𝜃𝑚  which shows that  𝜎 is transitive. 

Next we show that  𝜎  is a congruence. Now let  𝑢 = (ℎ, 𝑚, 𝑛), 𝑣 = (𝑥, 𝑖, 𝑗). That 𝜎 is a congruence 

we show that  𝜎 is both a left and right congruence. That is  

              ∀  𝑧 𝜖 𝑆,                     𝑢 𝜎 𝑣 ⟹ 𝑢𝑧 𝜎 𝑣𝑧     (for right congruence) 

    and    

                 ∀  𝑧 𝜖 𝑆       𝑢 𝜎 𝑣 ⟹ 𝑧𝑢 𝜎 𝑧𝑣      (for left congruence). 

Let  𝑧 = (𝑦, 𝑝, 𝑞) 𝜖 𝑆. Then  

              𝑢𝑧 = (ℎ, 𝑚, 𝑛)(𝑦, 𝑝, 𝑞) = {
(ℎ. 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝜃𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)                  if  𝑛 ≥ 𝑝
                                                                                                          
(𝑓𝑝−𝑛,𝑛

−1 . ℎ𝜃𝑝−𝑛. 𝑓𝑝−𝑛,𝑛. 𝑦, 𝑚 + 𝑝 − 𝑛, 𝑞)                if  𝑛 ≤ 𝑝
 

     and     

              𝑣𝑧 = (𝑥, 𝑖, 𝑗)(𝑦, 𝑝, 𝑞) = {
(𝑥. 𝑓𝑗−𝑝,𝑝

−1 . 𝑦𝜃𝑗−𝑝. 𝑓𝑗−𝑝,𝑞 , 𝑖, 𝑗 + 𝑞 − 𝑝)                       if  𝑗 ≥ 𝑝
                                                                                                          
(𝑓𝑝−𝑗,𝑗

−1 . 𝑥𝜃𝑝−𝑗. 𝑓𝑝−𝑗,𝑗. 𝑦, 𝑖 + 𝑝 − 𝑗, 𝑞)                      if  𝑗 ≤ 𝑝
 

Evidently if   (ℎ, 𝑚, 𝑛) 𝜎 (𝑥, 𝑖, 𝑗), we have 

            𝑚 − (𝑛 + 𝑞 − 𝑝) = (𝑚 − 𝑛) + (𝑝 − 𝑞)   and    𝑖 − (𝑗 + 𝑞 − 𝑝) = (𝑖 − 𝑗) + (𝑝 − 𝑞) 

           𝑚 + 𝑝 − 𝑛 − 𝑞 = (𝑚 − 𝑛) + (𝑝 − 𝑞)       and    𝑖 + 𝑝 − 𝑗 − 𝑞 = (𝑖 − 𝑗) + (𝑝 − 𝑞). 

But  𝑚 − 𝑛 = 𝑖 − 𝑗 and so  (𝑚 − 𝑛) + (𝑝 − 𝑞) = (𝑖 − 𝑗) + (𝑝 − 𝑞). 

For the first outer part, we know from definition that  ℎ𝜃𝑖 = 𝑥𝜃𝑚  and  ℎ𝜃𝑛 = 𝑥𝜃𝑗.  It suffices to 

show that    (ℎ𝜃𝑝−𝑛. 𝑦)𝜃𝑖+𝑝−𝑗 = (𝑥𝜃𝑝−𝑗. 𝑦)𝜃𝑚+𝑝−𝑛. 

Considering the left hand side of the equation we have 

                               (ℎ𝜃𝑝−𝑛. 𝑦)𝜃𝑖+𝑝−𝑗 = ℎ𝜃𝑝+𝑝+𝑖−𝑛−𝑗. 𝑦𝜃𝑝−𝑗+𝑖 

                                                              = ℎ𝜃𝑖+(𝑝+𝑝)−𝑗−𝑛. 𝑦𝜃𝑖+𝑝−𝑗 

                                                              = (ℎ𝜃𝑖)𝜃𝑝−𝑗−𝑛+𝑝. 𝑦𝜃𝑝+(𝑖−𝑗) 

But  𝑖 − 𝑗 = 𝑚 − 𝑛  and  ℎ𝜃𝑖 = 𝑥𝜃𝑚. 

Therefore,     (ℎ𝜃𝑖)𝜃𝑝−𝑗−𝑛+𝑝. 𝑦𝜃𝑝+(𝑖−𝑗) = (𝑥𝜃𝑚)𝜃𝑝−𝑗−𝑛+𝑝. 𝑦𝜃𝑝+(𝑚−𝑛) 

                                                                  = 𝑥𝜃𝑚+𝑝+𝑝−𝑗−𝑛. 𝑦𝜃𝑝+𝑚−𝑛 

                                                                  = (𝑥𝜃𝑝−𝑗. 𝑦)𝜃𝑚+𝑝−𝑛 

as required. 

Hence  𝜎 is a right congruence. That  𝜎 is a left congruence follows similarly. Consequently 𝜎 is a 

congruence. 

Lemma 4.2.  𝜎 is a cancellative monoid. 
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Proof. Since (𝑒, 𝑚, 𝑚) 𝜎 (𝑒, 𝑛, 𝑛) for  𝑚, 𝑛 𝜖 𝐼,  it follows that the class of  𝜎  containing the 

idempotents is the identity element for  𝑆/𝜎. Thus  (1, 𝑚, 𝑛)𝜎 (𝑦, 𝑝, 𝑞)𝜎 = (𝑦, 𝑝, 𝑞)𝜎  and hence  𝑆/𝜎 

is a monoid.  

Next is to show that  𝑆/𝜎 is cancellative. Now let  𝑢 = (ℎ, 𝑚, 𝑛), 𝑣 = (𝑥, 𝑖, 𝑗).  

That  𝑆/𝜎 is cancellative entails showing that for all  𝑧 𝜖 𝑆, 

                         𝑢𝜎 𝑧𝜎 = 𝑣𝜎 𝑧𝜎 ⟹ 𝑢𝜎 = 𝑣𝜎          (for right cancellative) 

  and     

                            𝑧𝜎 𝑢𝜎 = 𝑧𝜎 𝑣𝜎 ⟹ 𝑢𝜎 = 𝑣𝜎          (for left cancellative). 

Let  𝑧 = (𝑦, 𝑝, 𝑞) 𝜖 𝑆. Then 

                         𝑢𝜎 𝑧𝜎 = (ℎ, 𝑚, 𝑛)𝜎 (𝑦, 𝑝, 𝑞)𝜎 = (𝑥, 𝑖, 𝑗)𝜎 (𝑦, 𝑝, 𝑞)𝜎 

                                    = 𝑣𝜎 𝑧𝜎 . 

Consequently, 

                (ℎ, 𝑚, 𝑛)𝜎 (𝑦, 𝑝, 𝑞)𝜎 = (𝑥, 𝑖, 𝑗)𝜎 (𝑦, 𝑝, 𝑞)𝜎 

             ⟺ [(ℎ, 𝑚, 𝑛)(𝑦, 𝑝, 𝑞)]𝜎 = [(𝑥, 𝑖, 𝑗)(𝑦, 𝑝, 𝑞)]𝜎 

             ⟺ {
(ℎ. 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝜃𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)                  if  𝑛 ≥ 𝑝
                                                                                                          
(𝑓𝑝−𝑛,𝑛

−1 . ℎ𝜃𝑝−𝑛. 𝑓𝑝−𝑛,𝑛. 𝑦, 𝑚 + 𝑝 − 𝑛, 𝑞)                if  𝑛 ≤ 𝑝
    × 𝜎 

              = {
(𝑥. 𝑓𝑗−𝑝,𝑝

−1 . 𝑦𝜃𝑗−𝑝. 𝑓𝑗−𝑝,𝑞 , 𝑖, 𝑗 + 𝑞 − 𝑝)                  if  𝑗 ≥ 𝑝
                                                                                                          

(𝑓𝑝−𝑗,𝑖
−1 . 𝑥𝜃𝑝−𝑗 . 𝑓𝑝−𝑗,𝑗. 𝑦, 𝑖 + 𝑝 − 𝑗, 𝑞)                if  𝑗 ≤ 𝑝

    × 𝜎 

              ⟺  𝑚 − (𝑛 + 𝑞 − 𝑝) = 𝑖 − (𝑦 + 𝑞 − 𝑝), (𝑚 + 𝑝 − 𝑛) − 𝑞 = (𝑖 + 𝑝 − 𝑗) − 𝑞 

and                 

               (ℎ𝜃𝑝−𝑛. 𝑦)𝜃𝑖+𝑝−𝑗 = (𝑥𝜃𝑝−𝑗. 𝑦)𝜃𝑚+𝑝−𝑛 

              ⟺  (𝑚 − 𝑛) + (𝑝 − 𝑞) = (𝑖 − 𝑗) + (𝑝 − 𝑞) 

and                

                ℎ𝜃𝑝−𝑛+(𝑖−𝑗)+𝑝. 𝑦𝜃𝑝+(𝑖−𝑗) = 𝑥𝜃𝑝−𝑗+(𝑚−𝑛)+𝑝. 𝑦𝜃𝑝+(𝑚−𝑛) 

             ⟺    𝑚 − 𝑛 = 𝑖 − 𝑗  and  (ℎ𝜃𝑖)𝑝+𝑝−𝑛−𝑗 = (𝑥𝜃𝑚)𝜃𝑝+𝑝−𝑛−𝑗 

             ⟺    𝑚 − 𝑛 = 𝑖 − 𝑗  and   ℎ𝜃𝑖 =  𝑥𝜃𝑚 

             ⟺    (ℎ, 𝑚, 𝑛) 𝜎 (𝑥, 𝑖, 𝑗)          

which shows that  𝑆/𝜎 is right cancellative. That  𝑆/𝜎 is left cancellative follows similarly, and we 

conclude that  𝑆/𝜎 is cancellative. 

Lemma 4.3  𝜎 is a minimum congruence. 

Proof.  Let  Γ be any other cancellative monoid congruence. Then  (1, 𝑛, 𝑛) Γ (1,0,0) for all  𝑛 𝜖 𝐼. 

Suppose  (ℎ, 𝑚, 𝑛) 𝜎 (𝑥, 𝑖, 𝑗). Then we have from  (ℎ, 𝑚, 𝑛)(1, 𝑝, 𝑝) = (𝑥, 𝑖, 𝑗)(1, 𝑝, 𝑝) for some  𝑝 𝜖 𝐼, 
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                          ⟹ {
(ℎ. 𝑓𝑛−𝑝,𝑝

−1 . 1𝜃𝑛−𝑝. 𝑓𝑛−𝑝,𝑝, 𝑚, 𝑛 + 𝑝 − 𝑝)                  if  𝑛 ≥ 𝑝
                                                                                                          
(𝑓𝑝−𝑛,𝑚

−1 . ℎ𝜃𝑝−𝑛. 𝑓𝑝−𝑛,𝑛. 1, 𝑚 + 𝑝 − 𝑛, 𝑝)                if  𝑛 ≤ 𝑝
 

                             = {
(𝑥. 𝑓𝑗−𝑝,𝑝

−1 . 1𝜃𝑗−𝑝. 𝑓𝑗−𝑝,𝑝, 𝑖, 𝑗 + 𝑝 − 𝑝)                      if  𝑗 ≥ 𝑝
                                                                                                          
(𝑓𝑝−𝑗,𝑖

−1 . 𝑥𝜃𝑝−𝑗. 𝑓𝑝−𝑗,𝑗. 1, 𝑖 + 𝑝 − 𝑗, 𝑝)                      if  𝑗 ≤ 𝑝
 

                 ⟹ {
(ℎ, 𝑚, 𝑛)                           if  𝑛 ≥ 𝑝
                                                        

(ℎ𝜃𝑝−𝑛, 𝑚 + 𝑝 − 𝑛, 𝑝)  if  𝑛 ≤ 𝑝
   =    {

(𝑥, 𝑖, 𝑗)                            if  𝑗 ≥ 𝑝
                                                        
(𝑥𝜃𝑝−𝑗, 𝑖 + 𝑝 − 𝑗, 𝑝)  if  𝑗 ≤ 𝑝

 

But   (1, 𝑛, 𝑛) Γ (1,0,0), so (ℎ, 𝑚, 𝑛)(1, 𝑝, 𝑝) Γ (ℎ, 𝑚, 𝑛). 

Also, (𝑥, 𝑖, 𝑗)(1, 𝑝, 𝑝) Γ (𝑥, 𝑖, 𝑗). Therefore  (ℎ, 𝑚, 𝑛) Γ (𝑥, 𝑖, 𝑗). Thus  𝜎 ⊆  Γ. 

Combining  Lemma  4.1 to Lemma  4.3, we have proved the following theorem: 

Theorem 4.4.  Let 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) be a *-bisimple type A I-semigroup and let 𝜎 be defined on S by 

the rule that  (ℎ, 𝑚, 𝑛) 𝜎 (𝑥, 𝑖, 𝑗) if and only if  𝑚 − 𝑛 = 𝑖 − 𝑗, ℎ𝜃𝑖 = 𝑥𝜃𝑚 and 𝑥𝜃𝑖 = ℎ𝜃𝑚. Then  𝜎 

is the minimum cancellative monoid congruence on S. 

 

5.  The congruence  𝝁  

     Here we will determine the maximum congruence 𝜇  on 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃)  contained in ℋ∗  by 

utilizing the approach of El-Qallali and Fountain [2]. 

     Now let (𝑒, 𝑚, 𝑚) and (𝑒, 𝑛, 𝑛) be the idempotents in the ℛ∗-class and ℒ∗-class respectively. We 

define the relations  𝜇𝑅 and  𝜇𝐿 on  𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃) as follows: 

      (𝑥, 𝑚, 𝑛) 𝜇𝐿 (𝑦, 𝑝, 𝑞) if and only if  (𝑒, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) ℒ∗ (𝑒, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞), 𝑚 − 𝑛 = 𝑝 − 𝑞, 

          𝑥𝜃𝑛−𝑚 = 𝑦𝜃𝑛−𝑝 and  𝑒𝜃𝑚−𝑛. 𝑥 = 𝑒𝜃𝑝−𝑛. 𝑦 . 

       (𝑥, 𝑚, 𝑛) 𝜇𝑅 (𝑦, 𝑝, 𝑞) if and only if  (𝑥, 𝑚, 𝑛)(𝑒, 𝑚, 𝑚) ℛ∗ (𝑦, 𝑝, 𝑞)(𝑒, 𝑚, 𝑚), 𝑚 − 𝑛 = 𝑝 − 𝑞, 

          𝑥𝜃𝑚−𝑛 = 𝑦𝜃𝑚−𝑞 and  𝑥. 𝑒𝜃𝑛−𝑚 = 𝑦. 𝑒𝜃𝑞−𝑚. 

Consequently,  

                                           𝜇 =  𝜇𝐿 ∩ 𝜇𝑅 . 

       With the above relation, we obtain the following results 

Proposition 5.1. Let 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). Then 𝜇𝐿 is the maximum congruence on S contained in ℒ∗. 

Proof. Obviously, 𝜇𝐿  is an equivalence on S. Since ℒ∗  is a right congruence on S, 𝜇𝐿  is right 

compatible under the semigroup multiplication. 

Next is to show that 𝜇𝐿  is also left compatible under the semigroup multiplication. Now let 

 (𝑥, 𝑚, 𝑛), (𝑦, 𝑝, 𝑞), (𝑒, 0,0) 𝜖 𝑆. That  𝜇𝐿 is left compatible entails showing that  

    (𝑒, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) ℒ∗ (𝑒, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞) implies  (𝑒, 0,0)(𝑒, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) ℒ∗ (𝑒, 0,0)(𝑒, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞). 
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     Thus we have   

                                 (𝑒, 0,0)(𝑒, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) = (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛),  

   and                          

                                  (𝑒, 0,0)(𝑒, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞) = (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞). 

Consequently, 

                  (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) = {
(𝑒𝜃𝑛. 𝑥𝜃𝑛−𝑚, 𝑛, 𝑛 + 𝑛 − 𝑚)                  if  𝑛 ≥ 𝑚
                                                                                         
 (𝑒𝜃𝑚. 𝑥, 𝑚, 𝑛)                                            if  𝑛 ≤ 𝑚

 

                  (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞) = {
(𝑒𝜃𝑛. 𝑦𝜃𝑛−𝑝, 𝑛, 𝑛 + 𝑞 − 𝑝)                      if  𝑛 ≥ 𝑝
                                                                                         
 (𝑒𝜃𝑚. 𝑦, 𝑝, 𝑞)                                              if  𝑛 ≤ 𝑝

 

 From (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) and (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞), it follows that   

           𝑛 − (𝑛 + 𝑛 − 𝑚) = 𝑚 − 𝑛  and  𝑛 − (𝑛 + 𝑞 − 𝑝) = 𝑝 − 𝑞. 

It follows from definition that 𝑚 − 𝑛 = 𝑝 − 𝑞. 

For the first outer part of (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) and (𝑒𝜃𝑛, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞), we have 

                      𝑒𝜃𝑛. 𝑥𝜃𝑛−𝑚 = 𝑒𝜃𝑛. 𝑦𝜃𝑛−𝑝    (since from definition,  𝑥𝜃𝑛−𝑚 = 𝑦𝜃𝑛−𝑝) 

                       𝑒𝜃𝑚. 𝑥 = 𝑒𝜃𝑝. 𝑦                    (since from definition, 𝑒𝜃𝑚−𝑛. 𝑥 = 𝑒𝜃𝑝−𝑛. 𝑦). 

Thus  (𝑥, 𝑚, 𝑛) 𝜇𝐿  (𝑦, 𝑝, 𝑞)  implies  (𝑒, 0,0)(𝑥, 𝑚, 𝑛) 𝜇𝐿  (𝑒, 0,0)(𝑦, 𝑝, 𝑞). 

To show that  𝜇 ⊆ ℒ∗,  we now consider the elements   (𝑥, 𝑚, 𝑛), (𝑦, 𝑝, 𝑞) 𝜖 𝐺𝐵𝑅∗(𝑀, 𝜃)  such that 

(𝑥, 𝑚, 𝑛) 𝜇𝐿  (𝑦, 𝑝, 𝑞). But  (𝑥, 𝑚, 𝑛)∗ = (𝑦, 𝑝, 𝑞)∗ which implies that  (𝑥, 𝑚, 𝑛) ℒ∗ (𝑦, 𝑝, 𝑞). 

Now let  𝜌 be a congruence on 𝐺𝐵𝑅∗(𝑀, 𝜃) such that 𝜌 ⊆ ℒ∗. If  (𝑥, 𝑚, 𝑛) 𝜌 (𝑦, 𝑝, 𝑞), then for any 

(𝑒, 𝑛, 𝑛) 𝜖 𝑆, (𝑒, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) 𝜌 (𝑒, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞) so that  (𝑒, 𝑛, 𝑛)(𝑥, 𝑚, 𝑛) ℒ∗ (𝑒, 𝑛, 𝑛)(𝑦, 𝑝, 𝑞), that is 

(𝑥, 𝑚, 𝑛) 𝜇𝐿  (𝑦, 𝑝, 𝑞) and whence 𝜌 ⊆  𝜇𝐿 . 

Proposition 5.2.  Let 𝑆 = 𝐺𝐵𝑅∗(𝑀, 𝜃). Then 𝜇𝑅 is the maximum congruence on S contained in ℛ∗. 

Proof. The proof is similar to the proof of Proposition 3.1. 

      An immediate consequence of Proposition 3.1 and Proposition 3.2 is the following 

Theorem 5.3. Let S be a *-bisimple type A I-semigroup. Then 𝜇 is the maximum congruence on S 

contained in ℋ∗. 
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