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Abstract. Any transformation on a set S is called a Cayley function on S if there exists a semigroup operation on

S such that β is an inner-translation. In this paper we describe a method to generate a semigroup with k number of

idempotents, study some properties of such semigroups like greens relations and bi-ordered sets.
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1. Introduction

Let α be a transformation on a set S. Following [4] we say that α is a Cayley function on S

if there is a semigroup with universe S such that α is an inner translation of the semigroup S. A

section of group theory has developed historically through the characterisation of inner transla-

tions as regular permutations. The problem of characterising inner translations of semigroups

was raised by Schein [7] and solved by Goralcik and Hedrlin [6].In 1972 Zupnik characterised
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all Cayley functions algebraically(in powers of β ) [4]. In 2016, Araoujo et all characterised the

Cayley functions using functional digraphs[5]. In this paper we use a Cayley permutation to

generate a semigroup with n elements and k≤ n idempotents and discuss some of its properties.

In the sequel β will denote a function mapping a non-empty set S onto itself. For any positive

integer n, β n denotes the nth iterate of β . By β 0 we mean the identity function on S, so β 0(x) =

x. Let S be a set, then T (S) denotes the set of all transformations from S to S.

2. Preliminaries

A semigroup is a non empty set S along with a binary operation ∗ on S such that (S,∗) is

associative. An idempotent element ε in S is an element such that ε2 = ε ∗ ε = ε . The set of all

idempotents in S is denoted by E(S)

If a is an element of a semigroup S, the smallest left ideal containing a is Sa∪{a} or S1a the

principal left ideal generated by a. The equivalence relation L on S is defined on S by a L b

if and only if S1a = S1b. Similarly we say that a R b if and only if aS1 = bS1. The following is

due to J.A. Green.

Lemma 2.1. Let a, b be elements of a semigroup S. Then

• a L b if and only if ∃ x,y ∈ S1 such that xa = b and yb = a

• a R b if and only if ∃ x,y ∈ S1 such that ax = b and by = a

The following lemma is lemma 2.1 of [3]

Lemma 2.2. The relations L and R commute and so the relation D = L ◦R = R ◦L is the

smallest equivalence relation L ∨R containing both L and R. We define H = L ∩R

Let S be a semigroup. For a fixed a ∈ S, the mapping λa : S→ S [ρa : S→ S] defined by

λa(x) = ax [ρa(x) = xa] is called a left [right] inner translation of S.

Definition 2.1. Let β be a transformation on a set S. We say that β is a Cayley function on S

if there is a semigroup with universe S such that β is an inner translation of the semigroup S.
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Note that β is a left inner translation of a semigroup (S,∗) if and only if β is a right inner

translation of the semigroup (S, .), where for all a,b ∈ S, a∗b = b.a.

Definition 2.2. The stabilizer of β ∈ T (S) is the smallest integer s ≥ 0 such that img(β s) =

img(β s+1). If such an s does not exist, we say that β has no stabilizer.

The following definition though originally by Zupnik was modified by Araujo in [5]

Definition 2.3. Suppose β ∈ T (S) has the stabilizer s. If s > 0, we define the subset Ωβ of S

by:

Ωβ = {a ∈ S : β
n(a) ∈ Ran(β s) if and only if n≥ s−1}

If s = 0, we define Ωβ to be S.

Theorem 2.1. [4] Let β ∈ T (S). Then β is a Cayley function if and only if exactly one of the

following conditions holds:

a: has no stabilizer and there exists a ∈ S such that β n(a) /∈ img(β n+1) for every n≥ 0;

b: has the stabilizer s such that β |img(β s) is one-to-one and there exists a ∈Ωβ such that

β m(a) = β n(a) implies β m = β n for all m,n≥ 0; or

c: has the stabilizer s such that β |img(β s) is not one-to-one and there exists a ∈Ωβ such

that:

(1) β m(a) = β n(a) implies m = n for all m,n≥ 0 ;and

(2) For every n > s, there are pairwise distinct elements y1,y2, ...of S such that β (y1) =

β n(a), β (yk) = yk−1 for every k ≥ 2, and if n > 0 then y1 6= β n−1(a).

A Cayley function that is also a permutation is called a Cayley permutation. Similarly a

Cayley function that also an idempotent is called a Cayley Idempotent.

3. Some Class of Semigroup from Cayley Functions

In this section we construct a semigroup Sβ from a Cayley permutation β on a finite set and

study some of its properties. Let S be a set with n elements, and a ∈ S be a fixed element. For

any a1, in S we consider set {r : β r(a) = a1} of all non-negative integers such that β r(a) = a1

in case the set is non empty we define δai = min{r : β r(a) = ai} .
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Theorem 3.1. Let S be a set with n elements for 0 < k ≤ n then it is possible to construct a

semigroup with k idempotents using a Cayley permutation.

Proof. Let 0 < k < n , and a1 be a fixed element of S. Let β be the permutation that such that

β = (a1a2a3.......an−kan−k+1) an n− k+ 1 cycle in Sn that permutes n− k+ 1 terms and fixes

the rest of the k−1 terms, it is a Cayley function by theorem 1 above. Now consider the binary

operation on S given by

ai ∗a j =


β

δai+1(a j) if ai is not a fixed element of β

ai if ai is a fixed element of β

.

where δai = min{r : β r(a1) = ai}. For k = n consider the identity permutation with the same

construction. We can see that ∗ is well defined binary operation and that ∗ is associative. So

(S,∗) is a semigroup. By the choice of the permutation β and the definition of ∗, we can see

that an−k+1 is an idempotent as

an−k+1 ∗an−k+1 = β
n−k+1(an−k+1) = an−k+1

and all the k−1 fixed elements of β are also idempotents. �

Example 1.1. Let S = {abcde} and let k = 3 then we chose β =

(
a b c d e

b c a d e

)
now

following the construction as in the above theorem we have the following Cayley table on S

* a b c d e

a b c a d e

b c a b d e

c a b c d e

d d d d d d

e e e e e e

For the rest of the paper we denote the semigroup generated in the above theorem as Sβ .

Lemma1.1. Let a, b ∈ Sβ then
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(1) If a,b are both non-fixed elements of β , then a R b. If a is a fixed element of β , then a

is R related only to itself.

(2) If a,b are both non-fixed elements of β , then a L b . If a,b are both fixed elements of

β then a L b

(3) Sβ contains two Dclasses.

(4) Sβ contains k number of H classes.

Proof. (1) If a is not a fixed element of β then aSβ = Sβ , if a is a fixed element of β then

aSβ = {a}. Hence (1). In correspondence to lemma1 we have for non-fixed elements ai

, a j of Sβ aq ∗ai = a j where q+ i = jmod(n− k+1) for fixed elements ai ∗ai = ai

(2) If a is not a fixed element of β then Sβ a = Sβ , if a is a fixed element of β then Sβ a =

{b : b is a fixed element of } . And in correspondence to lemma1

(3) from lemma 2 D = L ◦R = R ◦L . Hence from 1 and 2 we get two Dclasses

(4) from lemma 2 H = L ∩R and hence k H classes

�

Generally the egg box picture of the semigroup Sβ is as follows.

a1, a2 ,......

.....an−k+1

an−k+2

an−k+3

an−k+4

.

.

.

.

an
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Remark 3.1. Let β be an n− k+ 1 cycle (a Cayley Permutation) and Sβ be the semigroup

constructed as in theorem 3.1, then it is easy to observe the following properties.

• {a1,a2, ....an−k+1} forms a subgroup of Sβ .

• an−k+1 is the identity element of Sβ .

• k-1 idempotents act as left zeros ( absorbing elements ).

• Idempotents do not commute.

• Sβ is a regular semigroup.

• In fact Sβ is a completely regular semigroup

• Sβ is a not an inverse semigroup.

• Sβ is a union of a group and a band.

• E(Sβ ) forms a sub-semigroup of Sβ ( i. e, Sβ is an orthodox semigroup.)
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