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Abstract. In this paper we study the fractional power series solution around the regular singular point x = 0 of the

conformable fractional hyper geometric differential equation. Then, we compare such solutions with that of the

corresponding ordinary differential equation.
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1. Introduction

The subject of fractional derivative is as old as calculus. In 1659, L’Hospital asked if the ex-

pression d0.5

dt0.5 f has any meaning. Since then, many researchers have been trying to generalize

the concept of the usual derivative to fractional derivatives. Various definitions of non-integer

order integral or derivative was given by many mathematicians. Most of these definitions use

an integral form. The most popular definitions are:

1. Dα
a ( f )(t) = 1

Γ(n−α)
dn

dtn

∫ t
a

f (x)
(t−x)(a−n+1) dx

2. Dα
a ( f )(t) = 1

Γ(n−α)

∫ t
a

f (n)(x)
(t−x)(a−n+1) dx
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Now, all these definitions are attempted to satisfy the usual properties of the standard de-

rivative. The only property inherited by all definitions of fractional derivative is the linearity

property. However, the following are the setbacks of one definition or another:

(1) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 ( Dα

a (1) = 0 ) for the

Caputo derivative), if α is not a natural number.

(2) All fractional derivatives don’t satisfy the known product rule: Dα
a ( f g) = f Dα

a (g)+

gDα
a ( f )

(3) All fractional derivatives don’t satisfy the known quotient rule: Dα
a (

f
g ) =

gDα
a ( f )− f Dα

a (g)
g2

(4) All fractional derivatives don’t satisfy the chain rule: Dα
a ( f ◦g) = f αg(t)gα(t)

(5) All fractional derivatives don’t satisfy: DαDβ f = Dα+β f in general

(6) Caputo definition assumes that the function f is differentiable.

In [2], a new definition called conformable fractional derivative was introduced. Let 0 < α ≤

1. Then,

Dα( f )(t) = lim
ε→0

f (t+εt1−α )− f (t)
ε

Dα( f )(t) is called conformable fractional derivative of f of order α . We shall write f α(t)

for Dα( f )(t).

The new definition satisfies:

(1) Dα(a f +bg) = aDα( f )+bDα(g),for all a,b ∈ R.

(2) Dα(λ ) = 0, for all constant functions f (t) = λ .

(3) Dα( f g) = f Dα(g)+gDα( f ).

Further, for α ∈ (0,1] and f ,g be αdifferentiable at a point t , with g(t) 6= 0, then

4. Dα( f
g ) =

gDα ( f )− f Dα (g)
g2

We list here the fractional derivatives of certain functions, for the purpose of comparing the

results of the new definition with the usual definition of the derivative:

(1) Dα(t p) = pt p−1

(2) Dα(sin 1
α

tα) = cos 1
α

tα

(3) Dα(cos 1
α

tα) =−sin 1
α

tα

(4) Dα(e
1
α

tα

) = e
1
α

tα
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On letting α = 1 in these derivatives, we get the corresponding ordinary derivatives. Recent-

ly, [1], used the conformable definition of fractional derivative to introduce fractional Laplace

transform, and fractional Taylor expansion. For more on fractional derivative and fractional

differential We refer to [4],[5],[6],[7] and [8].

In this paper we solve the well known fractional hyper geometric equation using fractional

power series solutions developed in [8]

Throughout this paper, we let Dαy denoted the conformable fractional derivative of y, where

α ∈ (0,1]. The second αderivative of y will be denoted by D2αy .

2. The main result

The classical hyper geometric equation is:

x(1− x)y
′′
+[c− (a+b+1)x]y

′
−aby = 0

The point x = 0 is a regular singular point for the equation. The corresponding fractional

hyper geometric equation is

xα(1− xα)D2αy+α[c− (a+b+1)xα ]Dαy−α
2aby = 0

We will solve this equation around x = 0 which is a regular singular point.

Definition 1. A series is called a fractional Frobenius series if it can be written in the

form ∑
∞
n=0 anx(n+r)α ,for α ∈ (0,1].

Now let us start the procedure of solving

xα(1− xα)D2αy+α[c− (a+b+1)xα ]Dαy−α
2aby = 0 (∗)

where α ∈ (0,1], a,b and c are constants. Clearly, if α = 1, then equation (∗) is just the

classical hyper geometric equation.

Now, x = 0 is a regular singular point for the equation. Using the fractional Frobenius series

expansion, and x > 0 , we let
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y = ∑
∞
n=0 anx(n+r)α ,a0 6= 0

Then

Dαy = ∑
∞
n=0 α(n+ r)anx(n+r−1)α

D2αy = ∑
∞
n=0 α2(n+ r)(n+ r−1)anx(n+r−2)α

Substitute these in equation (∗) we get

xα
∑

∞
n=0 α2(n+ r)(n+ r−1)anx(n+r−2)α

−x2α
∑

∞
n=0 α2(n+ r)(n+ r−1)anx(n+r−2)α +αc∑

∞
n=0 α(n+ r)anx(n+r−1)α

−α(a+b+1)xα
∑

∞
n=0 α(n+ r)anx(n+r−1)α −α2ab∑

∞
n=0 anx(n+r)α = 0

This can be rewritten as:

∑
∞
n=0 α2[(n+ r)(n+ r−1)+ c(n+ r)]anx(n+r−1)α

−∑
∞
n=0 α2[(n+ r)(n+ r−1)+(a+b+1)(n+ r)+ab]anx(n+r)α = 0 (1)

After simplification we get the following equation:

∞

∑
n=0

α
2(n+ r)(n+ r−1+ c)anx(n+r−1)α −

∞

∑
n=0

α
2(n+ r+a)(n+ r+b)anx(n+r)α = 0 (2)

In the second term in (2), replace n by n−1 the term becomes

−
∞

∑
n=1

α
2(n+ r+a−1)(n+ r+b−1)an−1x(n+r−1)α

Now, unifying all summation to start from n = 1 and put them in one summation to get:

α2r(r−1+ c)a0x(r−1)α

+∑
∞
n=1[α

2(n+r)(n+r−1+c)an−α2(n+r+a−1)(n+r+b−1)an−1]x(n+r−1)α = 0 (3)

We now equate to zero the coefficient of the smallest power of x , namely, (r− 1)α , to get

the indicial equation as

r(r−1+ c) = 0,(a0 6= 0) which gives r = 0 and r = 1− c (4)

We equate to zero the coefficient of x(n+r−1)α (for recurrence relation) to get
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α
2(n+ r)(n+ r−1+ c)an−α

2(n+ r+a−1)(n+ r+b−1)an−1 = 0

which gives

an =
(n+ r+a−1)(n+ r+b−1)

(n+ r)(n+ r−1+ c)
an−1 (5)

When r = 0, substituting n = 1,2,3, ... successively in (5) , that is, in

an =
(n+a−1)(n+b−1)

n(n−1+c) an−1 (6)

We obtain

a1 =
ab
1.ca0

a2 =
(a+1)(b+1)

2.(c+1) a1 =
a(a+1)b(b+1)

1.2c(c+1) a0

a3 =
(a+2)(b+2)

3.(c+2) a2 =
a(a+1)(a+2)b(b+1)(b+2)

1.2.3c(c+1)(c+2) a0
...

an =
a(a+1)...(a+n−1)b(b+1)...(b+n−1)

nl·c(c+1) . . .(c+n−1)
a0 (7)

Putting the ai’s in y = ∑
∞
n=0 anx(n+r)α with r = 0, we get

y = a0 +
∞

∑
n=1

a(a+1)...(a+n−1)b(b+1)...(b+n−1)
n!c(c+1) . . .(c+n−1)

a0xnα (8)

y = a0[1+
∞

∑
n=1

a(a+1)...(a+n−1)b(b+1)...(b+n−1)
n!c(c+1) . . .(c+n−1)

xnα ] = a0Y1 (9)

When r = 1− c, (5) reduces to to

bn =
(n− c+a)(n− c+b)

(n− c+1)n
bn−1 (10)

Substituting n = 1,2,3, . . .successively in (9), we obtain

b1 =
(1+a−c)(1+b−c)

1.(2−c) b0

b2 =
(2+a−c)(2+b−c)

2.(3−c) b1 =
(1+a−c)(2+a−c)(1+b−c)(2+b−c)

1.2.(2−c)(3−c) b0

b3 =
(3+a−c)(3+b−c)

3.(4−c) b2 =
(1+a−c)(2+a−c)(3+a−c)(1+b−c)(2+b−c)(3+b−c)

1.2.3.(2−c)(3−c)(4−c) b0
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...

bn =
(1+a− c) . . .(n+a− c)(1+b− c) . . .(n+b− c)

n!(2− c) . . .(n− c)
b0 (11)

Putting the bi’s in y = ∑
∞
n=0 bnx(n+r)α with r = 1− c, we get

y = b0 +
∞

∑
n=1

(1+a− c) . . .(n+a− c)(1+b− c) . . .(n+b− c)
n!(2− c) . . .(n− c)

b0x(n+1−c)α (12)

y = b0[1+
∞

∑
n=1

(1+a− c) . . .(n+a− c)(1+b− c) . . .(n+b− c)
n!(2− c) . . .(n− c)

x(n+1−c)α ] = b0Y2 (13)

Where Y2 is another independent solution of (∗). Therefore, The general series solution of

(∗) can be written as

y = a0Y1 +b0Y2 (14)

Where a0 and b0 are constants.

3. Some Applications

Example 1. Let us consider the following example:

Let r = 0, α = 0.5,a = 1,b = 2,c = 0.5,n = 30 and a0 = 1 then figure (1) represents y =

a0Y1,0≤ x≤ 5

Example 2. Let us consider the following example:

Let r = 0.5, α = 0.5,a = 1,b = 2,c = 0.5,n = 30 and b0 = 2 then figure (2) represents

y = b0Y2,0≤ x≤ 5
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y = a0Y1

y = b0Y2
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