ON SOME SATURATED NUMERICAL SEMIGROUPS WITH MULTIPLICITY EIGHT

AHMET ÇELİK* AND SEDAT İLHAN

University of Dicle, Department of Mathematics, 21280 Diyarbakır / TURKEY

Copyright © 2018 Çelik and İlhan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this paper, we will investigate saturated numerical semigroups with multiplicity 8 and conductor C. Also, we will give formulas for Frobenius number, determiner number and genus of these semigroups.

Keywords: saturated numerical semigroups; Frobenius number; genus.

2010 AMS Subject Classification: 11D07.

1. Introduction

We consider that $\mathbb{N} = \{0, 1, 2, \ldots, n, \ldots\}$. Let \mathbb{Z} be integer set. The subset $S \subseteq \mathbb{N}$ is a numerical semigroup if

i. $x + y \in S$, for $x, y \in S$

ii. $\gcd(S) = 1$

iii. $0 \in S$

*Corresponding author
E-mail address: celk_ahmet@hotmail.com
Received February 23, 2018
(Here, $\gcd(S)$ = greatest common divisor the elements of S).

A numerical semigroup S can be written that

$$S = \langle x_1, x_2, ..., x_n \rangle = \left\{ \sum_{i=1}^{n} a_i x_i : a_i \in \mathbb{N} \right\}.$$

$T \subseteq \mathbb{N}$ is minimal system of generators of S if $\langle T \rangle = S$ and there isn’t any subset $M \subseteq T$ such that $\langle M \rangle = S$. Also, $\mu(S) = \min \{x \in S : x > 0\}$ is called as multiplicity of S (see [3]).

Let S be a numerical semigroup, then $F(S) = \max (\mathbb{Z} \setminus S)$ is called as Frobenius number of S.

Also, C is conductor of S if $C = F(S) + 1$, and $n(S) = \text{Card} \left(\{0,1,2,...,F(S)\} \cap S \right)$ is called as the determiner number of S.

If S is a numerical semigroup such that $S = \langle x_1, x_2, ..., x_n \rangle$, then we observe that

$$S = \langle x_1, x_2, ..., x_n \rangle = \left\{ s_0 = 0, s_1, s_2, ..., s_{n-1}, s_n = F(S) + 1, \rightarrow \right\},$$

where $s_i < s_{i+1}$, $n = n(S)$ and the arrow means that every integer greater than $F(S) + 1$ belongs to S for $i = 1, 2, ..., n = n(S)$.

If $y \in \mathbb{N}$ and $y \not\in S$, then y is called gap of S. We denote the set of gaps of S, by $H(S)$, i.e, $H(S) = \mathbb{N} \setminus S$. The $G(S) = \#(H(S))$ is called the genus of S. It known that $G(S) = F(S) + 1 - n(S)$ (see [3]).

A numerical semigroup S is Arf if $x_1 + x_2 - x_3 \in S$, for all $x_1, x_2, x_3 \in S$ such that $x_1 \geq x_2 \geq x_3$. Also, a numerical semigroup S is saturated if $s + d_1 s_1 + d_2 s_2 + ... + d_m s_m \in S$, where $s, s_i \in S$ and $d_i \in \mathbb{Z}$ such that $d_1 s_1 + d_2 s_2 + ... + d_m s_m \geq 0$ and $s_i \leq s$ for $i = 1, 2, ..., m$. A saturated numerical is Arf, but an Arf numerical semigroup need not be saturated. For example, $S = \{8,13,17,18,19,20,22,23\} = \{0,8,13,16,\rightarrow \}$ is Arf numerical semigroup but it is not saturated. Many researchs have studied on saturated numerical semigroups.
Especially, saturated numerical semigroups with multiplicity 3, 4, 5, 6 and 7 have studied by Ilhan et al. (for details, see [1], [4], [5], [6], [7], [8]). In this paper, we will give some saturated numerical semigroups multiplicity 8 and conductor C. Also, we will obtain formulas for Frobenius number, determiner number and genus of these saturated numerical semigroups.

2. Main results

Proposition 2.1. ([3]) Let S be a numerical semigroup. Then following conditions are equivalent:

1) S is a saturated numerical semigroup.

2) $y + d_S(y) \in S$ for all $y \in S$, $y > 0$ where $d_S(y) = \gcd\{x \in S : x \leq y\}$.

3) $y + md_S(y) \in S$ for all $y \in S$, $y > 0$ and $m \in \mathbb{N}$.

Now, we give our first result in the following theorem.

Theorem 2.2. Let $C \neq 8q + 1$ ($q \in \mathbb{N}$, $q \geq 1$) be an integer and S a numerical semigroup with multiplicity 8 and conductor $C \geq 8$. Then

1) The semigroup $S = \langle 8, C + 1, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 0 \pmod{8}$,

2) The semigroup $S = \langle 8, C, C + 1, C + 2, C + 3, C + 4, C + 5, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 2 \pmod{8}$,

3) The semigroup $S = \langle 8, C, C + 1, C + 2, C + 3, C + 4, C + 6, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 3 \pmod{8}$,

4) The semigroup $S = \langle 8, C, C + 1, C + 2, C + 3, C + 5, C + 6, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 4 \pmod{8}$,
5) The semigroup $S = \langle 8, C + 1, C + 2, C + 4, C + 5, C + 6, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 5 \pmod{8}$.

6) The semigroup $S = \langle 8, C + 1, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 6 \pmod{8}$.

7) The semigroup $S = \langle 8, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle$ is saturated numerical semigroup, where $C \equiv 7 \pmod{8}$.

Proof. We will prove only one case. Other cases can be proved in a similar way.

Let prove case (1).

Let $C = 8q \ (q \in \mathbb{N}, \ q \geq 1)$ be an integer. Then we have

$$S = \langle 8, C + 1, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle = \langle 8q + 1, 8q + 2, 8q + 3, 8q + 4, 8q + 5, 8q + 6, 8q + 7 \rangle .$$

$$= \{0, 8, 16, 24, \ldots, 8(q - 1), 8q, \ldots \}.$$

In this case,

i. if $s > C$ then $s + d_\delta(s) = s + 1 \in S$, since $d_\delta(s) = 1$ and $s \in S, s > 0$. Thus, we obtain that S is saturated numerical semigroup by Proposition 2.1.

ii. if $s \leq C$ then $s + d_\delta(s) = s + 8 \in S$, since $d_\delta(s) = 8$ and $s \in S, s > 0$. Thus, we obtain that S is saturated numerical semigroup by Proposition 2.1.

Theorem 2.3. Let $C = 8q \ (q \in \mathbb{N}, \ q \geq 1)$ be an integer and $S = \langle 8, C + 1, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle$ is saturated numerical semigroup with multiplicity 8 and conductor C. Then, we have

a) $F(S) = 8q - 1$,

b) $n(S) = q$,

c) $G(S) = 7q$.
SATURATED NUMERICAL SEMIGROUPS WITH MULTIPLICITY EIGHT

Proof. Let \(C = 8q \ (q \in \mathbb{N}, \ q \geq 1) \) be an integer and
\[S = \langle 8, C + 1, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle \]
is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then we write that

a) \(F(S) = 8q - 1 \) since \(C = F(S) + 1 = 8q \).

b) Since \(C = 8q \ (q \in \mathbb{N}, \ q \geq 1) \), \(S \) is
\[S = \langle 8, C + 1, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle = \langle 8q + 1, 8q + 2, 8q + 3, 8q + 4, 8q + 5, 8q + 6, 8q + 7 \rangle = \{0, 8, 16, 24, \ldots, 8(q - 1), 8q, \ldots\}. \]
So, we have
\[n(S) = \#(\{0, 1, 2, \ldots, 8q - 8, \ldots, 8q - 2, 8q - 1\} \cap S) = \#(\{0, 8, 16, 24, \ldots, 8(q - 1)\}) = q. \]

c) \(G(S) = F(S) + 1 - n(S) = 8q - 1 + 1 - q = 7q. \)

Theorem 2.4. Let \(C = 8q + 2 \ (q \in \mathbb{N}, \ q \geq 1) \) be an integer and
\[S = \langle 8, C, C + 1, C + 2, C + 3, C + 4, C + 5, C + 7 \rangle \]
is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then, we have

a) \(F(S) = 8q + 1, \)

b) \(n(S) = q + 1, \)

c) \(G(S) = 7q + 1. \)

Proof. Let \(C = 8q + 2 \ (q \in \mathbb{N}, \ q \geq 1) \) be an integer and
\[S = \langle 8, C, C + 1, C + 2, C + 3, C + 4, C + 5, C + 7 \rangle \]
is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then,

a) It is trivial \(F(S) = 8q + 1 \) from \(C = F(S) + 1. \)

b) If \(S = \langle 8, C, C + 1, C + 2, C + 3, C + 4, C + 5, C + 7 \rangle \) is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then we write
AHMET ÇELİK AND SEDAT İLHAN

\[S = \langle 8, C, C+1, C+2, C+3, C+4, C+5, C+7 \rangle \]
\[= \langle 8,8q+2,8q+3,8q+4,8q+5,8q+6,8q+7,8q+9 \rangle \]
\[= \{0,8,16,24,\ldots,8(q-1),8q,8q+2,\ldots\}. \]

In this case, \(n(S) = \#(\{0,1,2,\ldots,8q-8,\ldots,8q-2,8q-1,8q,8q+1,8q+2\} \cap S) \]
\[= \#(\{0,8,16,24,\ldots,8(q-1),8q\}) = q+1. \]

c) \(G(S) = F(S) + 1 - n(S) = 8q + 1 + 1 - (q + 1) = 7q + 1. \)

The following theorems will be given without their proofs. Anyone can be proved by similar ways in Theorem 2.3 and Theorem 2.4.

Theorem 2.5. Let \(C = 8q + 3 (q \in \mathbb{N}, q \geq 1) \) be an integer and \(S = \langle 8, C, C+1, C+2, C+3, C+4, C+6, C+7 \rangle \) is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then, we have

a) \(F(S) = 8q + 2, \)

b) \(n(S) = q + 1, \)

c) \(G(S) = 7q + 2. \)

Theorem 2.6. Let \(C = 8q + 4 (q \in \mathbb{N}, q \geq 1) \) be an integer and \(S = \langle 8, C, C+1, C+2, C+3, C+5, C+6, C+7 \rangle \) is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then, we have

a) \(F(S) = 8q + 3, \)

b) \(n(S) = q + 1, \)

c) \(G(S) = 7q + 3. \)

Theorem 2.7. Let \(C = 8q + 5 (q \in \mathbb{N}, q \geq 1) \) be an integer and \(S = \langle 8, C, C+1, C+2, C+4, C+5, C+6, C+7 \rangle \) is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then, we have
SATURATED NUMERICAL SEMIGROUPS WITH MULTIPLICITY EIGHT

\[a) \quad F(S) = 8q + 4, \]
\[b) \quad n(S) = q + 1, \]
\[c) \quad G(S) = 7q + 4. \]

Theorem 2.8. Let \(C = 8q + 6 (q \in \mathbb{N}, q \geq 1) \) be an integer and \(S = \langle 8, C, C + 1, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle \) is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then, we have

\[a) \quad F(S) = 8q + 5, \]
\[b) \quad n(S) = q + 1, \]
\[c) \quad G(S) = 7q + 5. \]

Theorem 2.9. Let \(C = 8q + 7 (q \in \mathbb{N}, q \geq 1) \) be an integer and \(S = \langle 8, C, C + 1, C + 2, C + 3, C + 4, C + 5, C + 6, C + 7 \rangle \) is saturated numerical semigroup with multiplicity 8 and conductor \(C \). Then, we have

\[a) \quad F(S) = 8q + 6, \]
\[b) \quad n(S) = q + 1, \]
\[c) \quad G(S) = 7q + 6. \]

Example 2.10. If we take \(C = 15 \) (for \(q = 1 \)) in Theorem 2.9, then we write

\[S = \langle 8, 15, 16, 17, 18, 19, 20, 21, 22 \rangle = \{ 0, 8, 15, \ldots \}. \]

In this case, we find that \(F(S) = 8q + 6 = 14 \), \(n(S) = q + 1 = 2 \) and \(G(S) = 7q + 6 = 13 \).

Acknowledgements

This study is supported by the project FEN.17.003 in Dicle University, DUBAP. We thank to DUBAP for its support.
Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

