ON PAIRWISE C-CLOSED SPACE IN BITOPOLOGICAL SPACE

NOSAIBA M. OMER*, HASAN Z. HDEIB

Department of Mathematics, University of Jordan, Amman, Jordan

Copyright © 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we will obtain several results concerning the properties of pairwise C-closed spaces and to study the relations of pairwise C-closed spaces with some related pairwise topological properties like pairwise compactness, sequential spaces, pairwise quasi-k spaces and pairwise C-sequential spaces.

Keywords: pairwise C-closed spaces; pairwice k-spaces; pairwise quasi-k-spaces; pairwise tightness; sequential; pairwise C-sequential.

2010 AMS Subject Classification: 54A05.

1. INTRODUCTION

The study of bitopological spaces was first initiated by J. C. Kelly [1] in 1963 and thereafter a large number of papers have been done to generalize the topological concepts to bitopological setting. In this paper, we study the notion of pairwise C-closed spaces in bitopological spaces and their relation with other bitopological concepts. we will show that pairwise countably compact C-closed space has countable tightness and we will introduce characterization of pairwise sequential compact hausdorff spaces . We use R to denote the set of all real and P- to denote pairwise, Cl to denote the closure of a set, and $t(X)$ to denote the tightness of X.

*Corresponding author

E-mail address: nosaiba1984@gmail.com

Received July 27, 2018
2. Pairwise C-Closed Space

Definition 2.1: [6] A cover V of the bitopological space (X, τ_1, τ_2) is called pairwise open cover if $V \in \tau_1 \lor \tau_2$.

Definition 2.2: A bitopological space (x, τ_1, τ_2) is said to be pairwise countably compact if every countably pairwise open cover of X has finite subcover.

Definition 2.3: [1] A bitopological space (x, τ_1, τ_2) is called pairwise hausdorff if for any tow distinct points $x, y \in X$, there exist disjoint $V_1 \in \tau_1$ and $V_2 \in \tau_2$ with $x \in V_1$ and $y \in V_2$.

Definition 2.4: [4] In a space (x, τ_1, τ_2), τ_1 is said to be regular with respect to τ_2 if, for each point $x \in X$ and each τ_1-closed subset F s.t $x \notin F$, there are τ_1-open set U and τ_2-open set V s.t $x \in U$ and $F \subset V$ and $U \cap V = \emptyset$. (x, τ_1, τ_2) is p- regular if τ_1 regular with respect to τ_2 and vise versa.

Reilly [5] proves the following proposition:

Proposition 2.5: If (X, τ_1, τ_2) is a bitopological space, the following are equivalent:

a) τ_1 is regular with respect to τ_2

b) For each point $x \in X$ and τ_1-open set U containing X, there is a τ_1-open set V such that $X \in V \subset \tau_2$-cl $V \subset U$

Definition 2.6: A bitopological space (x, τ_1, τ_2) is called pairwise C- closed if every τ_1- countably compact subset of X is τ_2- closed in X and every τ_2- countably compact subset of X is τ_1- closed in X.

Definition 2.7: Let (x, τ_1, τ_2) be bitopological space, $A \subset X$, we say that $x \in X$ is a τ_i- cluster point for A, if for every τ_i-open set U containing x, $U \cap A / \{x\} \neq \emptyset$ i=1,2.

Definition 2.8: A bitopological space (X, τ_1, τ_2) is called pairwise C-closed if every non τ_1- closed subset A of X contains a sequence which has no τ_2-cluster point in A, and every non τ_2-closed subset B of X contains a sequence which has no τ_1-cluster point in B.

From definition of pairwise C-closed we have:

Corollary 2.9: Every subspace of pairwise c-closed is pairwise C-closed.

Definition 2.10: A bitopological space (x, τ_1, τ_2) is said to be sequential if both (x, τ_1) and (x, τ_2) sequential, i.e every non τ_1- closed subset A of X contains a sequence converting to a
point in $X \setminus A$ and every non τ_2-closed subset B of X contains a sequence converting to a point in $X \setminus B$.

Theorem 2.11: Let (X, τ_1, τ_2) be pairwise Hausdorff space, let (x_n) be a convergent sequence in X, then (x_n) has exactly one limit point.

Proof: Suppose the contrary. Then $X_n \to x$ and $X_n \to y$ for some $x \neq y$, there exist disjoint $U \in \tau_1$ and $V \in \tau_2$ with $x \in U$ and $y \in V$. Therefore, there exist $N_U \in \mathbb{N}$ such that $x_n \in U$ for every $n > N_U$ and $N_V \in \mathbb{N}$ such that $x_n \in V$ for every $n > N_V$. Choose $N = \max\{N_U, N_V\}$. Thus, there exist $N \in \mathbb{N}$ such that $x_n \in U, x_n \in V$ for every $n > N$.

But $U \cap V = \emptyset$, which is the contradiction.

Proposition 2.12: Every pairwise Hausdorff sequential space is pairwise C-closed.

Proof: let A be non τ_1-closed subset of X, since X is sequential, there exist a sequence (x_n) converting to a point in $X \setminus A$ say x. By uniqueness of limit point of the sequence in pairwise hausdorff space, we conclude that (X_n) has no τ_2-cluster point in A, similarly we can proof that every non τ_2-closed subset B of X contain sequence has no τ_1-cluster point in B.

Hence the result.

Proposition 2.13: If X is pairwise Hausdorff and every pairwise countably compact subset of X is sequential then X is pairwise C-closed.

Proof: let A be τ_1-countably compact subset of X and suppose that A is not τ_2-closed in X, then there exist $x \in \tau_2$-$Cl A \setminus A$, let $B = A \cup \{x\}$, then B is also τ_1-countably compact, now A is not τ_2-closed in B, Since B is sequential then there exist sequence x_n in A s.t $x_n \to B \setminus A = \{x\}$. Therefore there exist seq x_n in A has no τ_1-cluster point in A, this is contradiction.

Note that every pairwise countably compact subset of a bitopological space X may be sequential and X may still be not sequential, such is, the following example:

Example 2.14: The space of all continuous real valued function on the interval $[0,1]$ and generalize example [7] by letting $\tau_1 = \tau_2 =$ the point wise convergence topology.

Definition 2.15: [2] A map $f : X \to Y$ from bitopological space (X, τ_1, τ_2) to another bitopological space (Y, σ_1, σ_2) is called pairwise continous if f is continous both as a map from (X, τ_1) to (Y, σ_1) and as a map from (X, τ_2) to (Y, σ_2).
Proposition 2.16: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a pairwise continuous one-to-one function, if \((X, \tau_1, \tau_2) \) is pairwise Hausdorff space and \((Y, \sigma_1, \sigma_2) \) is pairwise C-closed, then \((X, \tau_1, \tau_2) \) is pairwise C-closed.

Proof: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be pairwise continuous and one-to-one map, then \(f: (X, \tau_1) \rightarrow (Y, \sigma_1) \) and \(f: (X, \tau_2) \rightarrow (Y, \sigma_2) \) are both continuous, let \(A \) be \(\tau_1 \)-countably compact subset of \(X \), then \(f(A) \) is \(\sigma_1 \)-countably compact subset of \(Y \), but \(Y \) is pairwise C-closed, thus \(f(A) \) is \(\sigma_2 \)-closed subset of \(Y \), since \(f \) is pairwise continuous and one-to-one map, we get \(f^{-1}(f(A)) = A \) is \(\tau_2 \)-closed subset of \(X \). Similarly we can prove that if \(A \) is \(\tau_2 \)-countably compact subset of \(X \) then \(A \) is \(\tau_1 \)-closed subset of \(X \), this completes the proof.

Corollary 2.17: In a bitopological space \((x, \tau_1, \tau_2) \), if \(X \) has a weaker bitopological space which is pairwise C-closed, then \(X \) is is pairwise C-closed.

Proposition 2.18: Let \(X \) be a pairwise regular space and every point has a pairwise C-closed neighbourhood, then \(X \) is pairwise C-closed.

Proof: Let \(A \) be \(\tau_1 \)-countably cooompact subset of \(X \) and \(x \in \tau_2\text{-cl}(A) \), want to show that \(x \in A \), let \(U \) be a \(\tau_2 \)-open set containing \(x \) and \(U \) is pairwise C-closed, then by \(p \)-regularity there is a \(\tau_2 \)-open set \(V \) such that \(x \in V \subset \tau_1\text{-cl}(V) \subset U \). Since \(A \) is \(\tau_1 \)-countably compact, then \(\tau_1\text{-cl}(V) \cap A \) is also \(\tau_1 \)-countably compact subset of \(U \), hence it is \(\tau_2 \)-closed subset of \(U \). But \(x \in \tau_2\text{-cl}(\tau_1\text{-cl}(V) \cap A) = \tau_1\text{-cl}(V) \cap A \), hence \(x \in A \), therefore \(A \) is \(\tau_2 \)-closed subset of \(X \). Similarly, we can prove that if \(A \) is \(\tau_2 \)-countably compact subset of \(X \), then \(A \) is \(\tau_1 \)-closed subset of \(A \), this completes the proof.

Definition 2.18: [3] The tightness of \(x \) \(\text{t}(X) \) denoted by the smallest cardinal numbers \(\Gamma \)'s, that whenever \(A \subset X \) and \(x \in \overline{A} \), then there is a subset \(B \) of \(A \) so that \(|B| \leq \Gamma \) and \(x \in \overline{B} \).

Definition 2.19: A bitopological space \((x, \tau_1, \tau_2) \) is said to have a pairwise countable tightness property if it has \(\tau_1 \)-countable tightness and \(\tau_2 \)-countable tightness property.

Definition 2.20: A subset \(A \) of bitopological space \((x, \tau_1, \tau_2) \) is called pairwise \(k \)-closed if for every pairwise compact subset \(K \) of \(X \), \(A \cap K \) is \(\tau_1 \)-closed \((\tau_2 \)-closed) in \(K \).

Definition 2.21: A subset \(A \) of bitopological space is called pairwise quasi \(k \)-closed if for every pairwise countably compact subset \(K \) of \(X \), \(A \cap K \) is \(\tau_1 \)-closed \((\tau_2 \)-closed) in \(K \).
Definition 2.22: A bitopological space \((x, \tau_1, \tau_2)\) is said to be pairwise k-space if every \(\tau_1\)-\(k\)-closed (\(\tau_2\)-\(k\)-closed) subset of \(X\) is \(\tau_1\)-closed (\(\tau_2\)-closed) in \(X\).

Example 2.23: Consider \((R, \tau_1, \tau_2)\) where \(\tau_1\) is the discrete topology and \(\tau_2 = \{U \subset R : 0 \notin R\} \cup \{R\}\), then \((R, \tau_1, \tau_2)\) is a a pairwise-k space.

Definition 2.24: A bitopological space \((x, \tau_1, \tau_2)\) is said to be pairwise quasi-k-space if every \(\tau_1\)-quasi-\(k\)-closed (\(\tau_2\)-quasi-\(k\)-closed) subset of \(X\) is \(\tau_1\)-closed (\(\tau_2\)-closed) in \(X\).

Proposition 2.25: If \(X\) is a pairwise hausdorff, pairwise quasi-\(k\) and (in particular pairwise countably compact or pairwise \(k\)) and pairwise C-closed space, then \(t(X) \leq \omega_0\).

Proof: Let \(A \subset X\), \(Y = \bigcup \{\tau_1\text{-cl}(B) : B \subset A \text{ and } |B| \leq \omega_0\}\) and \(Z = \bigcup \{\tau_2\text{-cl}(F) : F \subset A \text{ and } |F| \leq \omega_0\}\). We need to show that \(\tau_1\text{-cl}(A) = Y\) and \(\tau_2\text{-cl}(B) = Z\). Now \(A \subset Y \subset \tau_1\text{-cl}(A)\) and \(A \subset Z \subset \tau_2\text{-cl}(A)\), we need to show that \(Y\) is \(\tau_1\)-closed in \(X\) and \(Z\) is \(\tau_2\)-closed in \(X\). Assume the contrary that \(Y\) is not \(\tau_1\)-closed in \(X\) or \(Z\) is not \(\tau_2\)-closed in \(X\). If \(Y\) is not \(\tau_1\)-closed in \(X\), then \(Y\) is not quasi-\(k\)-closed in \(X\), i.e. there is a pairwise countably compact subset \(K\) of \(X\) s.t. \(K \cap Y\) is not \(\tau_1\)-closed in \(K\). Since \(K\) is pairwise C-closed, then \(K \cap Y\) is not \(\tau_2\)-countably compact, i.e. there is a sequence \(x_n\) in \(K \cap Y\) which has no cluster point in \(K \cap Y\), but \(K\) is pairwise countably compact, hence \(x_n\) must have a cluster point in \(K\) say \(x\), therefore \(x \notin Y\). Now for every \(n\) choose \(B_n \subset A\) s.t. \(B_n\) is countable and \(x_n \in \tau_1\text{-cl}(B_n)\) and let \(B = \bigcup_{n=1}^{\infty} B_n\), then \(x \in \tau_1\text{-cl}(B)\), but \(\tau_1\text{-cl}(B) \subset Y\), thus \(x \in Y\), this is a contradiction.

The assumption of quasi-\(k\) space in the above proposition is very important to get the result, the following example shows this:

Example 2.26: Let \((X, \tau_1, \tau_2)\) be topological space, where \(X = Y \cup \{x\}\), where \(\tau_1\) consist of \(Y\) which is discrete space of cardinality \(\omega_1\) and \(x\) has countable neighborhoods and \(\tau_2\) has discrete topology, then every \(\tau_1\)-countably compact subset of \(X\) is finite, therefore it is \(\tau_2\)-closed, and every \(\tau_2\)-countably compact subset of \(X\) is finite and hence it is \(\tau_1\)-closed subset of \(X\), therefore \(X\) is pairwise C-closed space, but \(t(X) = \omega_1\).

Definition 2.27: Let \((x, \tau_1, \tau_2)\) be a bitopological space, let \(A \subset X\), then \(x\) is called \(\tau_i\)-isolated point of \(A\) if there exist open set \(U \in \tau_i\) s.t. \(U \cap A = \{x\}\), \(i = 1, 2\).
Definition 2.28: A bitopological space \((x, \tau_1, \tau_2)\) is said to be \((C\text{-sequential})\) if for every \(\tau_1\)-closed \((\tau_2\text{-closed})\) subset \(A\) of \(X\) and for every non \(\tau_1\)-isolated \((\text{non } \tau_2\text{-isolated})\) point \(x\) of \(A\), there is a sequence \(x_n\) in \(A \setminus \{x\}\) converging to \(x\).

Proposition 2.29: If \(X\) is pairwise Hausdorff, pairwise quasi-\(k\) and pairwise \(C\)-closed, then \(X\) is pairwise \(C\)-sequential.

Proof: since every \(P\)-closed subset of \(X\) is pairwise quasi-\(K\) and pairwise \(C\)-closed, it is enough to show that if \(x\) is not \(\tau_1\)-isolated \((\text{not } \tau_2\text{-isolated})\) point in \(X\), then there is a sequence \(x_n\) in \(X \setminus \{x\}\) converging to \(x\). if \(x\) is not \(\tau_1\)-isolated point of \(X\), then \(U \cap A \neq \{x\}\) for every \(U \in \tau_1\) and hence \(X \setminus \{x\}\) is not \(\tau_1\)-closed in \(X\). Similarly, if \(x\) is not \(\tau_2\)-isolated point in \(X\), then \(V \cap A \neq \{x\}\) for every \(V \in \tau_2\) and hence \(X \setminus \{x\}\) is not \(\tau_2\)-closed in \(X\). If \(X \setminus \{x\}\) is not \(\tau_1\)-closed in \(X\), then there is \(\tau_1\)-countably compact subset \(K\) of \(X\) that \(K \setminus \{x\}\) is not \(\tau_1\)-closed in \(K\). Since \(K\) is \(C\)-closed, \(K \setminus \{x\}\) is not \(\tau_1\)-closed in \(K\), then there is a sequence \(x_n\) in \(K \setminus \{x\}\) which has no \(\tau_2\)-cluster point in \(K \setminus \{x\}\). Therefore \(x_n \to x\). Similarly, if \(X \setminus \{x\}\) is not \(\tau_2\)-closed in \(X\), we get \(x_n \to x\). This completes the proof.

Definition 2.30: A bitopological space \((x, \tau_1, \tau_2)\) is said to be sequentially compact with respect to \(\tau_i\) if every infinite sequence has convergent subsequence with respect to \(\tau_i\), i.e., for every sequence \(\{x_n: n \in \mathbb{N}\}\) and for every \(\tau_i\)-open neighborhood \(U\) of \(x\) such that \(x_n \in U\) whenever \(n \geq m\) for some \(m\), there exists a subsequence \(\{x_{n_k}: k \in \mathbb{N}\}\) of \(x_n\) such that \(x_{n_k} \in U\) whenever \(k \geq m\). \(i=1,2\).

Definition 2.31: A bitopological space space \((x, \tau_1, \tau_2)\) is said to be pairwise sequentially compact if it is sequentially compact with respect to \(\tau_1\) and sequentially compact with respect to \(\tau_2\).

Proposition 2.32: A pairwise sequentially compact Hausdorff space \(X\) is pairwise sequential iff it is pairwise \(C\)-closed.

Proof: \((\Rightarrow)\) it is obvious from Corollary 2.12 \((\Leftarrow)\) let \(A\) be non \(\tau_1\)-closed subset of \(X\), then there is a sequence \(x_n\) in \(A\) which has no \(\tau_2\)-cluster point in \(A\), but \(X\) is pairwise sequentially compact, thus \(x_n\) has convergent subsequence \(x_{n_k}\) with respect to \(\tau_2\) say to \(x \in X\), since \(x_{n_k}\) has no \(\tau_2\)-cluster point in \(A\), then \(x \in X \setminus A\), therefore there is a sequence in \(A\) converging to a point in \(X/A\). We get \((X, \tau_1)\) is sequential. \((1)\) similarly, if \(B\) is non \(\tau_2\)-closed subset of \(X\), then there is a sequence \(x_m\) in \(B\) which has no \(\tau_1\)-cluster point in \(B\), since \(X\) is pairwise sequentially compact, thus \(x_m\) has convergent subsequence \(x_{m_k}\) with respect to \(\tau_1\) say to \(x \in X\), since \(x_{m_k}\) has no \(\tau_1\)-cluster point in \(B\), then \(x \in X \setminus B\), therefore there is a sequence in \(B\) converging to a point in \(X/B\). We get \((X, \tau_2)\) is sequential.
compact, x_m has convergent subsequence x_m^L with respect to τ_1 say to $y \in X$, but x_m^L has no τ_1-cluster point in A, hence $y \in X /B$ and (X, τ_2) is sequential. (2) from 1 and 2, we get X is pairwise sequential.

Conflict of Interests

The authors declare that there is no conflict of interests.

References