

Available online at http://scik.org J. Semigroup Theory Appl. 2013, 2013:4 ISSN 2051-2937

A NOTE ON TOPOLOGICAL SEMIGROUP-GROUPOID MOHAMMAD QASIM MANN'A

Department of Mathematics, College of Science, Al-Qassim University

P.O. Box: 6644-Buraidah: 51452, Saudi Arabia

Abstract: In this paper we prove that the set of homotopy classes of paths in topological semigroup is a semigroup-groupoid. Further, we define the category TSGCov/X of topological semigroup coverings of X and prove that its equivalent to the category SGpGpdCov/ $\pi_1 X$ of covering groupoids of the semigroup-groupoid $\pi_1 X$. We also prove that the topological semigroup structure of a topological semigroup-groupoid lifts to a universal topological covering groupoid.

Keywords: Fundamental groupoid, covering space, topological semigroup, groupoid, topological groupoid.

2000 AMS Subject Classification: 14H30, 57M10, 22A15, 20L05, 22A22.

1. Introduction

A groupoid ([1], [2])G is small category consists of two sets G and O_G , called respectively the set of elements (or arrows) and the set of objects (or vertices) of the groupoid, together with, two maps $\alpha, \beta: G \rightarrow O_G$, called respectively the source and target maps, the map $\varepsilon: O_G \rightarrow G$, written as $\varepsilon(x) = 1_x$, where 1_x is called the identity element at x in O_G , and ε is called the object map and the partial

Received February 24, 2013

multiplication map,

$$\gamma: G \underset{\alpha=\beta}{\times} G \to G \quad \text{written } \gamma(g,h) = g \circ h \text{, on the set}$$
$$G \underset{\alpha=\beta}{\times} G = \{(g,h) \in G \times G : \alpha(g) = \beta(h)\}$$

These terms must satisfy the followings axioms:

$$\alpha(g \circ h) = \alpha(h) \text{ and } \beta(g \circ h) = \beta(g),$$

$$(g \circ h) \circ k = g \circ (h \circ k),$$

$$\alpha(1_x) = \beta(1_x) = x,$$

$$g \circ 1_{\alpha(g)} = g \text{ and } 1_{\beta(g)} \circ g = g,$$
For all g, h, $k \in G$ and $x \in O_G$.

For a groupoid *G*, we will denote to the inverse map by:

 $\sigma: G \to G$, such that $g \to g^{-1}$,

Further, for we write G(x, y) as the set of all morphisms $g \in G$ such that $\alpha(g) = x$ and $\beta(g) = x$. each $x, y \in O_G$ We will write $st_G(x) = \alpha^{-1}(x)$ and $\cos t_G(x) = \alpha^{-1}(x)$. The vertex group at x is $G(x) = G(x, x) = st_G(x) \cap \cos t_G(x)$. We say G is transitive (resp. 1-transitive, simply transitive) if for each $x, y \in O_G$, G(x, y) is non-empty (resp. a singleton, has no more than one element). A morphism of groupoids H and G is a functor, that is, it consists of a pair of functions $f: H \to G$ and $O_f: O_H \to O_G$ such that:

$$f(g \circ h) = f(g) \circ f(h), \ f(g^{-1}) = f(g)^{-1}, \ \beta_G \cdot f = O_f \cdot \beta_H, \quad \alpha_G \cdot f = O_f \cdot \alpha_H$$

and $f \cdot \varepsilon_H = \varepsilon_G \cdot O_f \cdot W$ here $g \circ h$ is defined.

A topological groupoid is a groupoid G together with topologies on G and O_G such that all the structure maps of G are continuous, that is: the source map α , the target map β , the object map ε , the inversion σ and the partial multiplication map γ are all continuous. A morphism of topological groupoids is a pair of maps $f: G \to H$ and $O_f: O_G \to O_H$ such that f and O_f are continuous. Covering morphism of groupoids are defined in [2] as: A morphism $f: G \to H$ of groupoids is called a *covering morphism* if each $x \in O_H$ then the restriction of mapping $f_x: st_G(x) \to st_H(O_f(x))$ is bijective. Let $f: G \to H$ be a morphism of groupoids. Then for an object $x \in O_G$ the subgroup f[G(x)] of $H(O_f(x))$ is called the characteristic group of f at x. So if f is the covering morphism then f maps G(x) isomorphically to f[G(x)]. We say that a covering morphism $f: G \to H$ of transitive groupoids is a universal covering morphism if G is 1-transitive.Let G be a topological space then $\pi_1(G)$ is a groupoid which is the set of all relative to end points homotopy classes of paths in topological space.

2. Preliminaries

We recall first from [5]. A *semigroup-groupoid* G is a groupoid endowed with a semigroup structure such that the semigroup multiplication $m: G \times G \to G$, $(g,h) \mapsto gh$, is a morphism of groupoids. For $g, h \in G$, the groupoid composition is denoted by $g \circ h$, where $\alpha(g) = \beta(h)$.

A morphism $f: G \to H$ of semigroup-groupoids is a morphism of underlying groupoids preserving the semigroup structure i.e. f(gh) = f(g)f(h), for all $g, h \in G$.

In semigroup-groupoid. The *source, target* and *object maps are* morphisms (homomorphisms) of semigroup and the *inversion map* σ is an isomorphism of semigroups. Also, the interchange law holds, i.e. $(b \circ a)(g \circ h) = (bg) \circ (ah)$. A *topological semigroup-groupoid* G is semigroup-groupoid with the following two properties:

Tsg1. G is a topological groupoid,

Tsg2. the morphism of groupoids $m: G \times G \rightarrow G$ is continuous.

A morphism of topological semigroup-groupoids $f: G \to H$ is a morphism of the underlying topological groupoids preserving the topological semigroup structure. In topological semigroup-groupoid. The set of arrows G and the set of objects O_G are topological semigroups.

3. Main Results

Its well known from [2] that, if X is topological space then $\pi_1(X)$ is a groupoid by using this fact we have the following result.

Proposition 3.1 Let X be a topological semigroup. Then the fundamental groupoid $\pi_1(X)$ is semigroup-groupoid.

Proof. Since X is topological semigroup, then the group multiplication $m: X \times X \to X$, defined by $(g,h) \mapsto gh$, is continuous. And since $\pi_1(X \times X)$

isomorphic to $\pi_1(X) \times \pi_1(X)$ then we have induced map,

$$\pi_1(m):\pi_1(X)\times\pi_1(X)\longrightarrow\pi_1(X),\qquad ([g],[h])\mapsto [gh])$$

From [2] we have $\pi_1(X)$ is a groupoid. So, to prove that $\pi_1(X)$ is semigroupgroupoid, we have to show associative law as follows:

$$[g]([h][r]) = [g][hr] = [g(hr)] = [(gh)r] = ([gh])[r] = ([g][h])[r].$$

We recall from [3] a subset U of the space X liftable if it is open, path connected and the inclusion $U \to X$ maps each fundamental group $\pi_1(U,x)$, $x \in X$, to the trivial subgroup of $\pi_1(X,x)$. Further, if X has a universal covering (path connected, locally path connected and semilocally simply connected space) then each point $x \in X$ has a liftable subset of X. **Proposition 3.1** Let X be a topological semigroup whose underlying space has a universal covering. Then the fundamental groupoid $\pi_1(X)$ becomes a topological semigroup-groupoid.

Proof. Since $\pi_1(X)$ is a topological groupoid and $m: X \times X \to X$ is a continuous map then its enough to show that the induced map,

$$\pi_1(m):\pi_1(X)\times\pi_1(X)\to\pi_1(X),\qquad ([g],[h])\mapsto [gh]$$

Is continuous. By assuming that X has a universal covering, each $x \in X$ has a liftable neighbourhood. Let U consist of such sets. Then $\pi_1(X)$ has a lifted topology [2]. So the set \tilde{W} , consisting of all liftings of the sets in U, forms a basis for the topology on $\pi_1(X)$. Let \tilde{U} be an open neighbourhood of [gh] and a lifting of U in U. Since the multiplication $m: X \times X \to X$ is continuous, there is a neighborhood $V \times H$ of (g,h) such that $m(V \times H) \subseteq U$. Using the condition on X and choosing $V \times H$ small enough we can assume that $V \times H$ has a liftable neighbourhood. Let $\tilde{V} \times \tilde{H}$ be the lifting of $V \times H$. Then we have $\pi_1 m(\tilde{V} \times \tilde{H}) \subseteq \tilde{U}$. So, the map $\pi_1 m$ is continuous which implies that $\pi_1(X)$ is a topological semigroup-groupoid.

Proposition3.2 Let $f: X \to Y$ be continuous morphism of topological semigroup, then $\pi_1(f)$ is a morphism of semigroup-groupoid.

Proof. Its Known that from [2] $\pi_1(f)$ is morphism of groupoids. It remain that to show that $\pi_1(f)$ is a morphism of semigroup: $\pi_1(f)([g][h]) = \pi_1(f)([gh]) = [f(gh)] = [f(gh)] = [f(g)][f(h)] = \pi_1(f)([g])\pi_1(f)([h]).$

4. Covering

Let X be a topological space. Then we have a category denoted by TCov/X whose

objects are covering maps $p: \tilde{X} \to X$ and a morphism from $p: \tilde{X} \to X$ to $q: \tilde{Y} \to X$ is a map $f: \tilde{X} \to \tilde{Y}$ (*f* is a covering map) such that p = qf. Further for *X* we have a groupoid called a *fundamental groupoid* [2] and have a category denoted by GpdCov/ $\pi_1 X$ whose objects are the groupoid coverings $p: \tilde{G} \to \pi_1 X$ of $\pi_1 X$ and a morphism from $p: \tilde{G} \to \pi_1 X$ to $q: \tilde{H} \to \pi_1 X$ is a morphism of $f: \tilde{G} \to \tilde{H}$ groupoids (*f* is a covering morphism)such that p = qf. We recall the following result from Brown[2].

Proposition 4.1 Let X be a space which has a universal covering. Then the category TCov/X of topological covering of X is equivalent to the category of GpdCov/ $\pi_1 X$ of the fundamental groupoid of $\pi_1 X$.

Let X and \tilde{X} are topological semigroups. A map $p: \tilde{X} \to X$ is called a covering morphism of topological semigroups if p is a morphism of semigroups and p is a covering map on the underlying spaces. For a topological semigroup X, we have the category denoted by TSGCov/X whose objects are topological semigroup coverings $p: \tilde{X} \to X$ and a morphism from $p: \tilde{X} \to X$ to $q: \tilde{Y} \to X$ is a map $f: \tilde{X} \to \tilde{Y}$ such that p = qf. For a topological semigroup X, the fundamental groupoid $\pi_1 X$ is a semigroup-groupoid and so we have a category denoted by SGpGpdCov/ $\pi_1 X$ whose objects are semigroup-groupoid coverings $p: \tilde{G} \to \pi_1 X$ of $\pi_1 X$ and a morphism from $p: \tilde{G} \to \pi_1 X$ to $q: \tilde{H} \to \pi_1 X$ is a morphism of $f: \tilde{G} \to \tilde{H}$ semigroup-groupoids such that p = qf.

Proposition 4.2 Let X be a topological semigroup whose underlying space has a universal covering. Then the category TSGCov/X of topological semigroup coverings of X is equivalent to the category SGpGpdCov/ π_1 X of covering groupoids of the semigroup-groupoid π_1 X.

Proof. Define a functor π_1 : *TSGpCov*/ $X \rightarrow SGpCov/\pi_1 X$ as follows:

Let $p: \tilde{X} \to X$ be a covering morphism of topological semigroups. Then the induced morphism $\pi_1 p: \pi_1 \tilde{X} \to \pi_1 X$ is a covering morphism of groupoids [2]. Moreover, the morphism $\pi_1 p$ preserves the semigroup structures as:

$$\pi_1 p(\left[\widetilde{g}\widetilde{h}\right]) = \left[p(\widetilde{g}\widetilde{h})\right] = \left[p(\widetilde{g})p(\widetilde{h})\right] = \left[p(\widetilde{g})\right] \left[p(\widetilde{h})\right] = \pi_1 p(\left[\widetilde{g}\right])\pi_1 p(\left[\widetilde{h}\right])$$

So, $\pi_1 p$ becomes a covering morphism of semigroup-groupoids. We define a functor $\Psi: SGpCov/\pi_1 X \to TSGpCov/X$ as follows: If $q: \tilde{G} \to \pi_1 X$ is a covering morphism of semigroup-groupoid, then we have a covering map $p: \tilde{X} \to X$, where $p = O_q$ and $\tilde{X} = O_G$. Further, we shall show that the semigroup multiplication $\tilde{m}: \tilde{X} \times \tilde{X} \to \tilde{X}$, $(\tilde{g}, \tilde{h}) \mapsto \tilde{g}\tilde{h}$ is continuous. Since X has a universal covering, we can choose a cover U of liftable subsets of X. Since the topology on \tilde{X} is lifted topology [2] the set consisting of all liftings of the sets in U forms a basis for the topology on \tilde{X} . Let \tilde{U} be an open set of $\tilde{g}\tilde{h}$ and a lifting of U in U. Since the multiplication,

$$m: X \times X \to X, (g,h) \mapsto gh$$

Is continuous, there is a basic open set $H \times T$ of (g,h) in $X \times X$ such that $m(H \times T) \subseteq U$. Assume that H and T are liftable subsets. Let \tilde{H} and \tilde{T} be a lifting of H and T respectively. Then $p\tilde{m}(\tilde{H} \times \tilde{T}) = m(H \times T) \subseteq U$ and so we have $\tilde{m}(\tilde{H} \times \tilde{T}) \subseteq \tilde{U}$. So, \tilde{m} is continuous. Further, since p is continuous, and $m(p \times p) = p\tilde{m}$ then p is a morphism of topological semigroups. Since by Proposition (4.1) the category of topological space covering is equivalent to the category of groupoid coverings, the proof is completed by the following digram:

$$TSGCov/X \xrightarrow{\pi_1} SGGpd/\pi_1X$$

$$\downarrow TCov/X \xrightarrow{\pi_1} Gpd/\pi_1X.$$

Definition 4.3 Let be $p: \tilde{G} \to G$ a covering morphism of groupoids and $q: H \to G$ a morphism of groupoids. If there exists a unique morphism $\tilde{q}: H \to \tilde{G}$ such that $q = p\tilde{q}$ we say q lifts to \tilde{q} by p [2].

We recall the following theorem from [2] which is an important result to have the lifting maps on covering groupoids.

Theorem 4.4 Let $p: \tilde{G} \to G$ be a covering morphism of groupoids, $x \in O_G$. and $\tilde{x} \in \tilde{O}_G$. such that $O_p(\tilde{x}) = x$. Let $q: H \to G$ be a morphism of groupoids such that H is transitive and such that $O_q(\tilde{y}) = x$. Then the morphism $q: H \to G$ uniquely lifts to a morphism $\tilde{q}: H \to \tilde{G}$ such that $O_{\tilde{q}}(\tilde{y}) = \tilde{x}$ if and only if $q[H(\tilde{y})]$ $\subseteq p[\tilde{G}(\tilde{x})]$, where $H(\tilde{y})$ and $G(\tilde{x})$ are the object groups.

Let *G* be a semigroup-groupoid, $x \in O_G$, and let \tilde{G} be just a groupoid, $\tilde{x} \in \tilde{O}_G$. Let $p: \tilde{G} \to G$ be a covering morphism of groupoids such that $p(\tilde{x}) = x$. We say the semigroup structure of *G* lifts to \tilde{G} if there exists a semigroup structure on \tilde{G} such that \tilde{G} is a groupoid and $p: \tilde{G} \to G$ is a morphism of semigroup-groupoids. Further, from [4] an element *g* of *G* is *idempotent* if gg = g.

Theorem 4.5 Let G be a semigroup-groupoid and \tilde{G} be a groupoid. Let $p: \tilde{G} \to G$ be a universal covering on the underlying groupoids such that G and \tilde{G} are transitive groupoids. Let $x \in O_G$ and idempotent, $\tilde{x} \in O_{\tilde{G}}$ such that $O_P(\tilde{x}) = x$. Then the semigroup structure of G lifts to \tilde{G} and \tilde{x} is an idempotent. **Proof.** Since *G* is a semigroup-groupoid then it has the following map,

$$m: G \times G \to G, m(g,h) = gh.$$

Since \tilde{G} is universal covering, the object group $\tilde{G}(\tilde{x})$ has one element at most. So, by Theorem(4.4) the map *m* lift to the map

$$\widetilde{m}: \widetilde{G} \times \widetilde{G} \to \widetilde{G}, \ \widetilde{m}(\widetilde{g}, \widetilde{h}) = \widetilde{g}\widetilde{h}$$

by $p: \tilde{G} \to G$ such that $p(\tilde{g}\tilde{h}) = p(\tilde{g})p(\tilde{h})$. Since the multiplication *m* is associative then we have $m(m \times I) = m(I \times m)$, where *I* denotes to the identity map. Then by (4.4) these maps $m(m \times I)$ and $m(I \times m)$ respectively lift to $\tilde{m}(\tilde{m} \times I)$ and $\tilde{m}(I \times \tilde{m})$ which coincide on $(\tilde{x}, \tilde{x}, \tilde{x})$. So, by the uniqueness of the lifting we have $\tilde{m}(\tilde{m} \times I) = \tilde{m}(I \times \tilde{m})$ this means that \tilde{m} is associative. Further, since $O_{\tilde{m}}(\tilde{x}, \tilde{x}) = \tilde{x}$ then $\tilde{x}\tilde{x} = \tilde{x}$ which means that \tilde{x} is an idempotent.

Result 4.6 Let G be a topological semigroup-groupoid and \tilde{G} be a topological groupoid. Let $p: \tilde{G} \to G$ be a universal covering on the underlying groupoids such that G and \tilde{G} are transitive groupoids. Let $x \in O_G$ and idempotent, $\tilde{x} \in \tilde{O}_G$ such that $O_p(\tilde{x}) = x$. Then the semigroup structure of G lifts to \tilde{G} .

Proof. Since *G* is semigroup-groupoid and since \tilde{G} is universal covering then by Theorem(4.5) the map *m* left to the map \tilde{m} by $p:\tilde{G} \to G$, $p(\tilde{g}\tilde{h}) = p(\tilde{g})p(\tilde{h})$ and \tilde{m} is associative $(\tilde{m}(\tilde{m} \times I) = \tilde{m}(I \times \tilde{m}))$. Further, by Theorem (4.4), we have \tilde{m} is continuous. So, \tilde{G} becomes a topological semigroup-groupoid.

REFERENCES

- M.E.-S.A.-F. Aof, Topological Aspects of Holonomy Groupoids. Ph.D. thesis, University of Wales, Bangor, 1988.
- [2] R. Brown, Topology and groupoid. BookSurge LLC, U.K 2006.

- [3] Fatih Ozcan, I. Icen and M. Habil Gursoy, Topological Ring Groupoids and liftings, Iranian journals of science and technology, transaction A, 30 (2006),355-362
- [4] J. M. Howie, Fundamentals of semigroup theory. Oxford :Oxford University Press,1995
- [5] M. Manna and M A. Abdulkadir, Topological semigroup-groupoid. Second Conference on Research and Education in Mathematics (ICREM 2). Institute for Mathematical research (INSPEM). 25-27 May 2005.