Available online at http://scik.org J. Semigroup Theory Appl. 2013, 2013:2 ISSN 2051-2937

REGULAR PROPER *-EMBEDDING OF PROPER *-SEMIGROUPS AND RINGS

ADEL A. ABDELKARIM

Department of Mathematics, Jerash University, Jerash, Jordan

Abstract. In this paper, it is shown that a cancellative semigroup is embeddable in an inverse semigroup. It is shown that finite proper *-semigroup is regular and any finite commutative proper *-semigroup is a union of groups. Also it is shown that a finite cyclic proper * semigroup is a group while an infinite one is *-embedded in a proper*-group, and any finite maximal proper*- semigroup has a proper *-extension ring. It is shown that there is a nonregular proper *-ring that cannot be *-embedded in any regular proper *-ring. Also it is shown that an Artinian proper *-ring is a finite direct product of matrix rings over skew fields. It is shown that a commutative proper * and cancellative semigroup is *-embeddable in a regular proper *-semigroup.

Keywords: proper * semigroups and proper *rings, mp*–semigroups, strongly regular proper *-semigroup, *-embedding and *-extension, regular semigroups and rings, formally complex *-rings, union of groups.

2000 AMS Subject Classification: Primary 05C38, 15A15; Secondary 05A15, 15A18

1. Introduction

Let (S, *) be a *-semigroup with involution *. Then (S, *) is called a *proper *-semigroup* (p*-semigroup) if for every a, b in $S, aa^* = ab^* = bb^*$ implies that a = b. A proper*-semigroup which is a union of groups each of which is closed under the involution * is called a *strongly proper* *-semigroup (sp*-semigroup). A ring with involution (*-ring)

Received March 23, 2013

(R, *) is called a proper *-ring (p^*-ring) if for a in R, $aa^* = 0$ implies that a = 0. Let (R, *) be a *-ring and n be a positive integer. We say that (R, *) is *n*-formally complex if for every $r_1, ..., r_n$ in R, $\sum r_i r_i^* = 0$ implies that all r_i are 0. Let (S, *) be a proper*-semigroup and let s, t, u be elements in S such that $tss^* = uss^*$. Thus $ss^*t^* = ss^*u^*$. Then ts = us. This is called the *-cancellation law and can be seen by noticing that, under the hypothesis, $(ts)(ts)^* = t.ss^*t^* = t.ss^*u^* = (ts)(us)^* = t.ss^*.u^* = (us)(us)^*$. Then by using properness of * we get ts = us.

A *-semigroup (S, *) is called a maximal proper *-semigroup $(mp^*-semigroup)$ if for every distinct elements $s_1, ..., s_n$ in S, there exists an s_i such that $s_i s_i^* \neq s_i s_j^*, j \neq i$, and such that if $s_i s_i^* = s_k s_l^*$ then $s_i^* s_k = s_i^* s_l; k, l = 1, ..., n$. For example an inverse semigroup is an mp^{*}-semigroup under the inverse involution. The converse need not be true, see [6]. Let (S, *) be a p*-semigroup and (R, *) be a p*-ring. We say that (S, *) is *-embeddable in (R, *), or (R, *) *-embeds (S, *) if there is a semigroup *-embedding $f : S \to R$. Thus f is injective and for every x, y in $S, f(xy) = f(x)f(y), f(x^*) = (f(x))^*$. Let (S, *)be a p*-semigroup and let x be an element of S. We denote by $S_x = \langle xx^* \rangle$ the set $\{(xx^*)^n : n \in N\}$. In general if x is an element in a semigroup S then $\langle x \rangle$ denotes the set of all positive exponents of x. A semigroup S is cyclic if there is an element $a \in S$ such that $S = \langle a \rangle$. Let S be a semigroup. An element x in a semigroup S is called regular if there is y in S such that xyx = x. If x is regular for all elements x in S we say that S is regular. Let S be a regular semigroup and $x \in S$. Thus there is $y \in S$ such that xyx = x. Then we notice that x.yxy.x = x, yxy.x.yxy = yxy. Denoting yxyby z we see that x has an inverse z such that xzx = x, zxz = z. A semigroup S is called a *0-group* if there is an element x such that $(S \setminus \{x\}, .)$ is a group and xg = gx = xfor all g in S. Let (S, *) be a semigroup. with involution. A *-congruence on S is an equivalence relation $\tilde{}$ which is a *-congruence in the sense that whenever $a\tilde{}b$ in S then $a^* b^*$. Thus once a^b then $a^* b^*$ for all $a, b \in S$. Then S is partitioned into equivalence classes $S/\tilde{} = \{[a] : a \in S\}$. We define multiplication on $S/\tilde{}$ by setting [a][b] = [ab] for all $a, b \in S$. We define an involution on $S/\tilde{}$ by setting $[x]^* = [x^*]$. If (S, *) is a semigroup with involution then a similar proof to that given in ([2]) can be constructed to show that $S/\tilde{}$ is a semigroup with involution which is a *-homomorphic to (S, *) under the *-homomorphism $f: (S, *) \to (S/\tilde{}, *), f(a) = [a]$. Thus $f(a^*) = (f(a))^* = ([a])^* = [a^*]$ for all $a \in S$.

It was proved in [4] that there is a proper *-semigroup that cannot be *-embedded in any p*-ring. The next question is: Given a p*-semigroup (S, *) does there exist a regular p*-semigroup (T, *) that *-embeds (S, *)?. A related question is that given a p*-ring (R, *) does there exist a regular p*-ring (T, *) that *-embeds (R, *)?

Malcev(see [3], p. 10) has exhibited a cancellative semigroup S which cannot be embedded in any group. We will show that a left cancellative semigroup S can be embedded in an inverse semigroup.

Remark 1. Let S be a regular left cancellative semigroup. Then S is a group.

For, let $a \in S$. There is $a' \in S$, aa'a = a. Then aa'.aa' = aa'. Now let $c \in S$. Then aa'.aa'c = aa'c. Cancelling aa' we get aa'.c = aa' for all $c \in S$. Thus S has a left identity which can be any aa' for any $a \in S$. Thus for every $a \in S$ there is $a \in S$ and aa' is a left identity. It follows that S is a group.

Proposition 1. (1) Let S be a left cancellative semigroup. Then S can be embedded in an inverse semigroup.

(2) If (S,*) is a left cancellative p^* -semigroup then it can be *-embedded in a regular p^* -semigroup.

Proof. (1) If S is finite then it is a group and we are done. In general for every element $x \in S$ let l_x be the mapping from S to S given by $l_x(s) = xs$ for every elements $\in S$. Then l_x is an injective mapping on S. The family $L(S) = \{l_x : x \in S\}$ is a semigroup under composition. For if $x, y \in S$ then $l_x \circ l_y(s) = l_x(l_y(s)) = l_x(ys) = xy(s) = l_{xy}(s)$ for all $s \in S$. The mapping $f : x \to l_x$ is injective. For if $l_x = l_y$ then $l_x(y) = l_y(y)$ and so $xy = y^2$ which implies that x = y since S is cancellative. The set T(S) of all partial injective transformations on a subset of S under composition of mappings is an inverse

ADEL A. ABDELKARIM

semigroup. T(S) contains all l_x such that $x \in S$. Thus the mapping f is a semigroup embedding of S into the inverse semigroup T(S). (See [2]).

(2) If S has a proper involution * then L(S) is again a semigroup with involution defined by $(l_x)^* = l_{x^*}$. This involution is proper for if $(l_x)(l_y)^* = (l_x)(l_x)^* = (l_y)(l_y)^*$ then $xy^* = xx^* = yy^*$ and so x = y. This implies that $l_x = l_y$. Thus (S, *) is *-embeddable in a regular proper *-semigroup. This completes the proof.

There is a *finite regular* p*-semigroup (S, *) that cannot be *-embedded in any p*ring(regular or not). (see [4]). We use this to show that there is a *non-regular infinite* p*semigroup (S, *) that cannot be *-embedded in any regular p*-ring.

Example 1. Let N be the commutative semigroup of positive integers under multiplication. Consider a finite regular proper *-semigroup (S,*) that cannot be *-embedded in any p^* -ring and let * be the identity involution. Then (N,*) is a non-regular p^* -semigroup. Let $T = S \oplus N$ and define multiplication on T by (s,n).(s',n') = (ss',nn') for all $s,s' \in S$ and for all n,n' in N. Define * on T by $(s,n)^* = (s^*,n)$ for all $s \in S$ and for all $n \in N$. Then (T,*) is a non-regular p^* -semigroup. We will show that (T,*) cannot be *-embedded in any regular p^* -ring (R,*). For, if there is such a proper *-ring (R,*)then the p^* -ring (R,*) would contain an isomorphic copy of (S,*), namely $(S \oplus \{1\},*)$ and we know that there is no p^* -ring containing (S,*). This is a contradiction.

We prove below some properties of regular p*-semigroups and regular p*-rings.

Proposition 2. Let (S, *) be a finite p^* -semigroup. Then

- (1) S is a regular p^* -semigroup.
- (2) If x is a non-zero element in S then $S_x = \langle xx^* \rangle$ is a group.
- (3) If S is cyclic p^* -semigroup then S is a cyclic group.

Proof. (1) If x is a zero element of S then x is regular and $S_x = \{0\}$ is a group. Let x be a non zero element in S. Then xx^* and all of its powers are different from zero by properness of * and by *-cancellation. Then S_x , being the set of all positive powers of xx^* , is a finite cyclic subsemigroup. Let n be the first positive integer such that

 $(xx^*)^n = (xx^*)^k, 1 \le k < n$. The pair (k, n) must exist since $xx^* \ne 0$ and by properness of *. Then $(xx^*)^{n-k}(xx^*)^k = (xx^*)^k$. If we use the *-cancellation law repeatedly, we get $(xx^*)^{n-k+1} = (xx^*)$. If k > 1, we have a contradiction with the minimality of n and so k = 1. Thus $(xx^*)^n = (xx^*)$. Let $a = xx^*$. Then a^{n-1} acts as an identity e in S_x and $S_x = \{e, a, a^2, ..., a^{n-2}\}$ and so S_x is a cyclic group generated by a.

(2) Let x be an element in S. If x = 0 then 0.0.0 = 0 and so x is regular. If x is a non-zero element in S then as shown above $\langle xx^* \rangle$ is a finite group and so there is a positive integer n > 1 such that $(xx^*)^n = xx^*$. By *-cancellation $(xx^*)^{n-1} \cdot x = x$ and so x is regular for all $x \in S$ and so S is regular.

(3) Let $S = \langle x \rangle$ and let m be the number of elements in S. If m = 1 then S is a trivial group. Let m > 1. We will show that $x^{m+1} = x$. Since S is finite there is a pair $(n,k), 1 \le k < n \le m+1$ such that $x^n = x^k$, and let this (n,k) be the first such pair. It follows that k = m + 1 for otherwise the number of elements in S would be less than n. Thus (m+1,k) is the first pair. Assume k > 1. Now x is the only generator for S since k > 1. Thus $x^* = x$ because x^* is a generator for S and $S = \langle x \rangle = S^* = \langle x^* \rangle$. Now $x^m \cdot x^m = x^{m+1} \cdot x^{m-1} = x^k \cdot x^{m-1} = x^{m+k-1} = x^{m+1} \cdot x^{k-2}$

 $= x^k . x^{k-2} = x^{k-1} . x^{k-1}$. Also

 $x^{m} \cdot x^{k-1} = x^{m+1} \cdot x^{k-2} = x^{k} \cdot x^{k-2} = x^{k-1} \cdot x^{k-1}$. Since $x = x^{*}$, it follows by properness of * that $x^{m} = x^{k-1}$. This is a contradiction with the choice of (m+1, k) as a first pair rather than (m, k). Thus k = 1. Since m > 1, then x is not a zero element. Thus S is a finite cyclic group.

Here is another proof: Let m > 1. Then $x^* = x$, otherwise * is not surjective. Since $x^n = x^k, n > k$ we can verify easily that $x^{k-1}(x^{k-1})^* = x^{k-1}(x^{n-1})^* = x^{n-1}.(x^{n-1})^*$. Thus if * is proper then $x^{k-1} = x^{n-1}$ contrary to the choice of the pair (n, k) as a first pair with $x^n = x^k, n > k$. This completes the proof.

Remark 2. If $S = \langle x \rangle$ is a finite cyclic group of order n with involution *. Let $x^* = x^m$. From $x^{**} = x$ we have $m^2 = 1 \mod n$. Thus m is a unit in the ring Z_n whose square is 1.

Remark 3. Not every regular p^* -semigroup is a strongly p^* -semigroup(i.e. a union of groups). For this to hold, it is necessary and sufficient that $\forall x \text{ in } S, \exists n_x, x^{n_x} = x$.

We give below some counter examples.

Example 2. Let (R, t) be the *-ring of 2×2 matrices over the ring Z_7 with the transpose involution t. Since $a^2 + b^2 = 0$ implies that $a = 0 = b, \forall a, b$ in R, it is easily checked that (R, t) is a p*-ring, and hence it is regular by Proposition 2. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. It is easily checked that $A^4 = A^2 \neq I$ and that this is the first equality of two positive powers of A. Thus A cannot belong to a subgroup inside R. This example gives a finite regular p*-semigroup which is not strongly proper. This semigroup is not an inverse semigroup. To see this we take $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. We notice that BCB = B, CBC = C, BDB = B, DBD = D. Thus B has two inverses

C, D. Thus this example serves as an example of a finite regular proper *-semigroup which is neither an inverse semigroup nor an sp^* - semigroup.

-		sider the follou	ving matric	es in M	$I_3(Z)$		
					$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$		
x =	0 0 0	$,y=x^{t},z=$	0 0 0	, u =	0 1 0	, w =	000.
	$0 \ 0 \ 1$		0 0 1		0 0 1		$0 \ 0 \ 1$
Let S	$\overline{S} = \{x, y, z\}$	$\{u, v\}$. Then S	s is a semi	group u	nder multi	olication	. In fact it has the

following multiplication table

	x	y	z	u	w
x	z	w	z	x	z
y	u	z	z	z	y
z	z	z	z	z	z
u	z	y	z	u	z
w	x	z	z	z	w

We notice that the only idempotents are z, u, and w and that these elements commute;

thus S is an inverse semigroup. We notice that $x \neq x^2 = x^3$, and hence x cannot belong to a subgroup inside S. This serves as an example of a finite inverse (and hence a p^* -semigroup) which is not a strongly proper *-semigroup under its inverse involution.

We now prove the following.

Proposition 3. Let (S, *) be a finite mp^* -commutative semigroup. Then (S, *) is a strongly p^* -semigroup.

Proof. Let $x \neq 0$ be an element of S. Then $\langle x, x^* \rangle$ is finite. Let (k, n) be a pair of positive integers such that $1 \leq k < n$ and $x^k = x^n, x^{*k} = x^{*n}$. Such a pair must exists since S is finite. Let $a = xx^*$. Then from properness of * and commutativity $a \neq 0, a^k = a^n$. Then as in the proof of proposition 2, k = 1. Thus for every x in S there is a positive integer n such that $x^n = x$. Thus S is strongly proper. This completes the proof.

Proposition 4. (1) Let (R, *) be an Artinean proper *-ring. Then R is a finite direct product of matrix rings over skew fields and so it is regular.

(2) If (R, *) is finite then R is a finite direct product of matrix rings each of which is over a field. (3) If (R, *) is a finite commutative proper *-ring then it is a finite direct product of finite fields.

Proof. (1) R is nil-semisimple. For let A be an element in a nilpotent ideal I in R. Then AA^* is in I and so it is nilpotent. Thus there is a positive integer n such that $(AA^*)^n = 0$. By *-cancellation then A = 0. Thus R is nil-semisimple. Since it is Artinean then by Wedderburn's theorem it is a finite direct product of matrix rings each over a skew field and so R is regular.

(2) If R is finite then each matrix ring is over a finite skew field and hence a field.

(3) If (R, *) is a finite commutative p*-ring then the corresponding matrix rings are all of size 1 by 1 owing to commutativity of R. This completes the proof.

2. Regular *embedding of Some Proper *-Semigroup

Proposition 5. Let (S, *) be a finite mp^{*} - semigroup of order m and let (R, *) be an n-formally complex *-ring with $m \leq n$. Then (R[S], *) is a p^{*} -ring. If R is finite then (R[S], *) is a regular p^{*} -ring embedding of (S, *).

Proof. : Since $A = \sum_{i=1}^{k} r_i s_i$ in (R[S], *) implies that $k \leq n$, the proof that (R[S], *) is proper^{*} is the same as the proof given in [7]. This completes the proof.

Let (S, *) be a finite semigroup with involution *. By Maschke's theorem we can choose a field F such that F[S] is regular, see for example Clifford and Preston book [1]. Let * be any involution on F. Define an involution * on F[S] by $(\sum a_i s_i)^* = \sum a_i^* s_i^*$. Then (F[S], *) is a regular *-ring which *-embeds (S, *). But this involution, although extends that on S, may not be proper.

In spite of this, there is a finite p*-semigroup not *-embeddable in any p*-ring (regular or not). See [4]. Also refer to examples 4 and 6.

Proposition 6. . Let (S, *) be a proper-*cyclic semigroup. Then (S, *) is *-embeddable in a regular p*-semigroup.

Proof. If S is finite then it is regular as has been shown in 3 of proposition 2. Let S be infinite and let x be an element in S. Let $x^* = x^m, m > 0$. If m > 1. Let $y = xx^*$. Then $y = y^*$. But $x^{m+1} = y = y^* = (x^*)^{m+1} = x^{m(m+1)}$. Thus S is finite and this is a contradiction. Thus m = 1 and so * is the identity involution. Then $(S, *) \approx (Z^+, +, id)$ and the latter can be *-embedded in (Z, +, id) which is a group. The identity mapping is a proper involution on (Z, +). This completes the proof.

Proposition 7. Let (S, *) be a proper*-semigroup and let x be an element in S such that $S_x = \langle xx^* \rangle$ is finite or such that $\langle x \rangle$ is finite and x commutes with x^* . Then x is regular.

Proof. Let x be an element such that S_x be finite and let $a = xx^*$. Then $S_x = \langle a \rangle$ and $a = a^*$. Let (k, n) be a pair of positive integers, $1 \leq k < n$, be such that $a^k = a^n$. Then

be *-cancellation it follows that $a^{n-k+1} = a$ and so S_x is a group. Then using the same argument as used in the previous proposition 6 it follows that x is regular.

If $\langle x \rangle$ is finite and x commutes with x^* then $xx^* \neq 0$ and $\langle x^* \rangle$ is finite. It follows that $\langle xx^* \rangle$ is finite and we use the same argument above to deduce that x is regular. This completes the proof.

Proposition 8. Let (S, *) be a commutative 0- cancellative p^* -semigroup. Then there is a regular p^* -semigroup (T, *) which *-embeds (S, *).

Proof. Since for all $s \in S, s^{**} = s$, it follows that $S^* = S$. Since for all $s \in S, 0^* = (0.s)^* =$ $s^*.0^*$ it follows that $0^* = 0^*s$ for all $s \in S$. Thus $0^* = 0^*.0 = 0$. Thus for all $s \in S, s^* = 0$ $0 \Leftrightarrow s = 0$. Since S has no zero divisors, $T = S \setminus \{0\}$ is a subsemigroup closed under * and so it is a proper *-subsemigroup of S. Let $W = T \otimes S$. We define multiplication on W by $(t_1, s_1)(t_2, s_2) = (t_1t_2, s_1s_2)$ for all $t_1, t_2 \in T$ and for all $s_1, s_2 \in S$. We define involution on W by $(s,t)^* = (s^*,t^*)$ for all $(s,t) \in W$. We notice that this involution is proper. For let $(t_1, s_1), (t_2, s_2) \in W$ be such that $(t_1, s_1)(t_1, s_1)^* = (t_1, s_1)(t_2, s_2)^* = (t_2, s_2)(t_2, s_2)^*$. Then $t_1t_1^* = t_1t_2^* = t_2t_2^*, s_1s_1^* = s_1s_2^* = s_2s_2^*$. Since * is proper in S it follows that $t_1 = t_2, s_1 = s_2$ as required. Thus (W, *) is a proper *-semigroup. Next we define a relation $\tilde{}$ on W be declaring that $(t_1, s_1) \tilde{}(t_2, s_2)$ if and only if $t_1 s_2 = s_1 t_2$. Then $\tilde{}$ is reflexive and symmetric. Let $(t_1, s_1)^{\sim}(t_2, s_2), (t_2, s_2)^{\sim}(t_3, s_3)$. Then $t_1s_2 = t_2s_1, t_2s_3 = t_3s_2$. Then $t_1s_2t_2s_3 = t_2s_1t_3s_2$. Then by cancelling t_2 , $t_1s_2s_3 = s_1t_3s_2$. Now if $s_2 = 0$ then $t_2s_1 = 0 = t_2s_3$. Since $t_2 \neq 0, s_1 = 0 = s_3$. This implies that $t_1s_3 = s_1t_3$, and so $(t_1, s_1)^{\sim}(t_3, s_3)$. On the other hand if $s_2 \neq 0$ then from $t_1s_2s_3 = s_1t_3s_2$, by cancellation $t_1s_3 = s_1t_3$. Thus again (t_1, s_1) (t_3, s_3) . Thus $\tilde{}$ is transitive. We show that $\tilde{}$ is a congruence. Let $(t_1, s_1)^{\sim}(t_2, s_2), (t, s) \in W$. Then $t_1s_2 = t_2s_1$. We need to show that (t_1t, s_1s) (t_2t, s_2s) , or $t_1t \cdot s_2s = s_1s \cdot t_2t$ and this is true. Let the class [(a, b)] in W be denoted by a/b for all $(a,b) \in W$. Thus $W/\tilde{} = \{a/b : b \in T, a \in S\}$ is a semigroup. We define an involution * on W/\sim by $(a/b)^* = a^*/b^*$ for all $a/b \in W/\sim$. This is welldefined. For let a/b = c/d. Then ad = bc and so $d^*a^* = c^*b^*$. Thus $a^*/b^* = c^*/d^*$. Also $(a/b)^{**} = a/b, (a/b.c/d)^* = (ac/bd)^* = (ac)^*/(bd)^* = (c^*a^*)/(d^*b^*)$

 $= c^*/d^*.a^*/b^* = (c/d)^*.(a/b)^*$, for all $a/b, c/d \in W/\tilde{}$. This involution is proper. For let $(a/b.a/b)^* = (a/b.c/d)^* = (c/d.c/d)^*, b, d \neq 0$. Then $aa^*/bb^* = ac^*/bd^* = cc^*/dd *$. Then $aa^*bd^* = bb^*ac^*, ac^*dd^* = bd^*cc^*, aa^*dd^* = bb^*cc^*$. We need to show that a/b = c/dor ad = bc. By cancellation $aa^* d^* = b^*ac^*$. If a = 0 then $bb^*cc^* = 0, b \neq 0$. Then $cc^* = 0$ and so c = 0. It follows that ad = bc as required. On the other hand if $a \neq 0$ then from

 $aa^* d^* = b^*ac^*$ we get $a^* d^* = b^*c^*$ and so da = cb as required. Thus $(W/\tilde{\}, *)$ is a proper *-semigroup. Now we see that $W/\tilde{\}$ is regular. For let $a/b \in W/\tilde{\}$. If a = 0 then a/b.a/b.a/b = a/b. On the other hand if $a \neq 0$ then a/b.b/a.a/b = aba/bab = a/b since abab = abab. Finally we show that there is a *-embedding $f : (S, *) \to (W/\tilde{\}, *)$ given by f(a) = ab/b where b is some fixed non zero element in S. For if f(a) = f(c) then ab/b = cb/b and so abb = cbb from which we get a = b. Also $f(ac) = acb/b = ab/b.cb/b = a^*bb^* = a^*bb^*$. This completes the proof.

3. Two Counter Examples

Example 4. Let S be the multiplicative group generated by the matrix $A = \begin{pmatrix} -1 & 2i \\ 2i & 3 \end{pmatrix}$. We notice that $A^{-1} = A^t$. Now (S, *) under the inverse involution (which is the transpose involution) is a proper *-semigroup: $aa^{-1} = ab^{-1} = bb^{-1}$ implies that a = b for all $a, b \in S$. It is to be noticed that S is an infinite cyclic group. This is a Z-module with involution defined by $(\sum m_i A^{m_j})^* = \sum m_i A^{-m_j}, m_i \in Z$. This is the same as the semigroup ring with involution (Z[S], *) where * is as defined above. Since Z is a formally complex ring under the identity involution and since (S, *) is an inverse it follows that (Z[S], *) is a proper *-ring. This not regular if we take 2A then there is no element in Z[S] of the $C = \sum m_i A^{m_j}$ such that 2AC.2A = 2A then taking absolute values of determinants of both sides would give $2^8k = 2^4$ where k is a positive integer and this is impossible. We claim that the proper *-ring (Z[S], *) cannot be *-embedded in any regular proper *-ring.

$$A^{3} = \begin{pmatrix} -5 & 6i \\ 6i & 7 \end{pmatrix}, A^{4} = \begin{pmatrix} -7 & 8i \\ 8i & 9 \end{pmatrix}, B = A^{3} - A^{4} = \begin{pmatrix} 2 & -2i \\ -2i & -2 \end{pmatrix}.$$
 Then in $(R, *)$
we have $BB^{*} = 0$. This implies that $A^{3} = A^{4}$ in $(R, *)$ although $A^{3} \neq A^{4}$ in $(Z[S], *)$ and

we have $BB^* = 0$. This implies that $A^3 = A^4$ in (R, *) although $A^3 \neq A^4$ in (Z[S], *) and this is a contradiction.

Example 5. Consider the set S of matrices of kind $\begin{pmatrix} a & b \\ ka & kb \end{pmatrix}$, $a, b, k \in Z[x]$. We

restrict a to be a polynomial of nonzero constant term and b to be a polynomial without constant term. Then S is closed under multiplication as can be easily verified. We notice that the two columns as well as the two rows in any of these matrices are linearly dependent and that S is closed under the transposition involution. Also we notice that this involution is proper for there is no nonzero matrix A in S such that $AA^* = AA^t = 0$. Thus (S,t)is a proper *-semigroup. Now consider the multiplicative semigroup $T = M_2(Q(i)(x))$ of all 2 by 2 matrices with entries as rational functions in x and with coefficients from the field Q[i]. This semigroup (S,t) is a semigroup with the transpose involution t. But this involution is not proper.

Assume that there is a smallest proper *semigroup (W,t) in (T,t) that contains (S,t). Consider the matrix $A = \begin{pmatrix} 1+x & ix \\ 0 & 0 \end{pmatrix} \in S$. Then there is a matrix $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S$. W such that ABA = A, BAB = B. Thus $\begin{pmatrix} 1+x & ix \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1+x & ix \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1+x & ix \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1+x & ix \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Carrying out the necessary calculations we find that $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \in W$. But we notice that $BB^t = 0$ and so (W,t), although regular and contains (S,t), is not a proper *-semigroup.

Example 6. In this example we exhibit a p^* -semigroup which is not regular and can be *-embedded in a regular p^* -semigroup yet it cannot be *-embedded in any regular p^* -ring. Let $R = M_2([2Z][i])$ be the ring of all 2×2 matrices with entries from the ring [2Z][i]. Let S be the subsemigroup of R (under multiplication) generated by the elements ae_{ij} , where a = 0, 2 or 2i and e_{ij} is the matrix with 0 everywhere except the ij-entry, which is 1. Let $s_1 = 2e_{11}$ and $s_2 = 2ie_{12}$. Then s_1, s_2 are in S. Let t be the transpose involution on S. Then (S, *) is a non-regular p*-semigroup. Let T be the set $\{qe_{ij}, q \in Q\}$. Then (T,t) is a regular p*-semigroup which *-embeds (S,t). We claim that (S,t) cannot be *-embedded in any p*-ring (regular or not). Otherwise, let f be a *-embedding of (S,t)into a proper*-ring (W, *). Then (R, t) has a ring homomorphic image in (W, *), because the elements of S form a basis for the free Z-module R and W is a Z-module which contains S. Let us call such a homomorphism by f^- . Then f^- is [2Z][i]-linear and it extends f. The involution * on W extends t in the sense that $f^-(A^t) = (f^-(A))^*$. Now t is not a proper involution on R since if A is the non zero matrix with first row being (2, -2i), and the second row being the zero row then $A = s_1 - s_2 \in R$ and $AA^t = 0$. Thus $f^-(AA^t) = 0 = f^-(A)(f^-(A))^*$ in W. Since (W, *) is a p*-ring it follows that $\overline{f}(A) = 0$ in W. Thus $0 = f^-(s_1) - f^-(s_2)$ in W. But then $f(s_1) = f(s_2)$ in W and this is a contradiction.

References

- A. Clifford and G. Preston, The Algebraic Theory of Semigroups, Math. Surveys, American Math. Soc., Providence, R.I. 7 (1969).
- [2] J. Howe, Introduction to Semigroup Theory, Academic Press (1976).
- [3] J. Rotman, The Theory of Groups, Allyn amd Bacon, Inc., Second Edition, 1973
- [4] A. Shehadah, A Counter-Example on *-Embeddability into Proper *-Rings, Semigroup Forum, Vol. 34 (1986) 121-123.
- [5] A. Shehadah, Proper Embeddability of Inverse Semigroup Rings, Bull. Austral. Math. Soc., 34(1986), 383-387.
- [6] A. Shehadah, Formally Complexity of Inverse Semigroup Rings, Bull. Austal. Math. Soc., 41(1990) 343-346.
- [7] A. Shehadah, m-formally Complex rings and mp*-semigroups, Mathematica Japonica, 1999