ENDOMORPHISMS AND AUTOMORPHISMS OF CERTAIN SEMIGROUPS

ALI REZA KHODDAMI ${ }^{1, *}$, MEHRI HASANI ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Shahrood, P.O. BOX 3619995161-316, Shahrood, Iran
${ }^{2}$ Education and training system in Shahrood, Shahrood, Iran

Copyright © 2014 Khoddamin and Hasani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let V be an arbitrary vector space over \mathbb{C} and let $0 \neq \mu \in V^{*}$ be a linear functional on V. We equip V with a multiplication converting it into a semigroup, denoted by V_{μ}. In this note the semigroup structure of V_{μ} are investigated and in particular, the endomorphisms and automorphisms of V_{μ} are characterized.

Keywords: semigroup, semigroup homomorphism, semigroup automorphism, algebra homomorphism, algebra automorphism.

2010 AMS Subject Classification: 20M15, 16B99, 15A03.

1. Introduction and preliminaries

A semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup with an identity element is called a monoid. A monoid in which every element has an inverse is called a group. A semigroup homomorphism between two semigroups T and T^{\prime} is a function $\varphi: T \longrightarrow T^{\prime}$ such that the equation $\varphi(a b)=\varphi(a) \varphi(b)$ is hold for all elements $a, b \in T$. A semigroup homomorphism from T into itself is called an endomorphism. For semigroup T, a bijective endomorphism of T is called a semigroup automorphism. The set

[^0]Received July 12, 2014
of all semigroup automorphisms of T is denoted by $A u t T$. In the case where T is an algebra, $\operatorname{Hom}(T)$ is the set of all algebra endomorphisms of T.

In this paper let V be a non-zero vector space over \mathbb{C} and let μ be a non-zero linear functional on V. For each $a, b \in V$ define $a \cdot b=\mu(a) b$. One can simply verify that "." converts V into an associative algebra. We denote (V, \cdot) by V_{μ} that is a semigroup. Note that V_{μ} is not a monoid in general. Indeed V_{μ} is a monoid if and only if $\operatorname{dim} V=1$. Also if $\operatorname{dim} V>1$ then $Z\left(V_{\mu}\right)=\{0\}$, where $Z\left(V_{\mu}\right)$ is the center of V_{μ}. It follows that V_{μ} is not an abelian semigroup. Indeed V_{μ} is abelian if and only if $\operatorname{dimV}=1$. Since μ is linear it is clear that $\mu(a b)=\mu(\mu(a) b)=\mu(a) \mu(b),\left(a, b \in V_{\mu}\right)$. In particular one can simply verify that $\operatorname{Hom}\left(V_{\mu}, \mathbb{C}\right)=\{\mu, 0\}$, where $\operatorname{Hom}\left(V_{\mu}, \mathbb{C}\right)$ is the set of all algebra homomorphisms from V_{μ} into \mathbb{C}.

Some basic properties of V_{μ} such as Arens regularity, n-weak amenability, minimal idempotents and ideal structure are investigated in [2], in the case where V is a Banach Space. The number of roots of a polynomial equation with coefficients in V_{μ} is investigated in [1], in the case where V is a vector space.

In this note our purpose is to characterize the semigroup endomorphisms and automorphisms of V_{μ}. In particular we characterize the algebra endomorphisms and automorphisms of V_{μ}. It is worthwhile mentioning that the study of the semigroup endomorphisms and automorphisms of V_{μ} is very interesting. Also the study of these products has significance in two respects. First, the products exhibit many properties that are not shared in general. Second, the semigroup V_{μ} can serve as a source of examples (or counterexamples) for various purposes in semigroup theory.

The following examples are some different endomorphisms of V_{μ} that are worthy of consideration.
(1) $\varphi: V_{\mu} \longrightarrow V_{\mu}, \varphi(a)=e$, where e is a constant element of V_{μ} satisfying, $\mu(e)=1$.
(2) Let $n \in \mathbb{N}$ and let $\varphi: V_{\mu} \longrightarrow V_{\mu}, \varphi(a)=a^{n}$ (note that V_{μ} is not abelian and also φ is not linear).
(3) $\varphi: V_{\mu} \longrightarrow V_{\mu}, \varphi(a)=\mu(a) e$, where e is a constant element of V_{μ}, satisfying, $\mu(e)=1$.
(4) $\varphi: V_{\mu} \longrightarrow V_{\mu}, \quad \varphi(a)=a+\mu(a) c$, where c is a constant element of ker $\mu=\{v \in$ $V \mid \mu(v)=0\}$.

2. Main Results

In this section we characterize the semigroup endomorphisms and automorphisms of V_{μ}. Also we characterize the algebra endomorphisms and automorphisms of V_{μ}.

Theorem 2.1. Let V be a non-zero vector space and let $\mu \in V^{*}$ be a non-zero linear functional. Then the map $\varphi: V_{\mu} \longrightarrow V_{\mu}$ is a semigroup endomorphism if and only if one of the following statements is hold.
(1) $\varphi=0$.
(2) $\varphi(a)=c$ for all $a \in V_{\mu}$, where c is a constant element of V_{μ} satisfying, $\mu(c)=1$.
(3) $\varphi(0)=0, \mu \circ \varphi=0$ on ker μ and $\varphi\left(\frac{b}{\mu(a)}\right)=\frac{\varphi(b)}{\mu \circ \varphi(a)}$ for all $a \in(\operatorname{ker} \mu)^{C}$ and $b \in V_{\mu}$.

Proof. Let $\varphi: V_{\mu} \longrightarrow V_{\mu}$ be a semigroup endomorphism. So

$$
\begin{aligned}
\varphi(\mu(a) b) & =\varphi(a b)=\varphi(a) \varphi(b) \\
& =\mu(\varphi(a)) \varphi(b),\left(a, b \in V_{\mu}\right)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\varphi(\mu(a) b)=\mu(\varphi(a)) \varphi(b),\left(a, b \in V_{\mu}\right) \tag{2.1}
\end{equation*}
$$

Upon substituting $b=0$ in (2.1) we conclude that $\varphi(0)=\mu(\varphi(a)) \varphi(0)$. So $(1-\mu \circ \varphi(a)) \varphi(0)=$ 0 for all $a \in V_{\mu}$, which is equivalent to $\varphi(0)=0$ or $\mu \circ \varphi(a)=1$ for all $a \in V_{\mu}$. Let $\mu \circ \varphi(a)=1$ for all $a \in V_{\mu}$. It follows that $\varphi(\mu(a) b)=\mu(\varphi(a)) \varphi(b)=\varphi(b),\left(a, b \in V_{\mu}\right)$. Choosing $a=0$ we conclude that $\varphi(0)=\varphi(b)$ for all $b \in V_{\mu}$. Let $\varphi(0)=c$. So $\varphi(b)=c$ for all $b \in V_{\mu}$ and for some $c \in \mu^{-1}(\{1\})$, Providing 2.

In the case where $\varphi(0)=0$ let $e \in \mu^{-1}(\{1\})$. Upon substituting $a=e$ in (2.1) we conclude that $\varphi(b)=\varphi(\mu(e) b)=\mu(\varphi(e)) \varphi(b)$. It follows that $(1-\mu \circ \varphi(e)) \varphi(b)=0$ for all $b \in V_{\mu}$. Which is equivalent to $\varphi=0$ (providing 1) or $\mu \circ \varphi(e)=1$. Our proof in the case where $\varphi(0)=0$
and $\varphi \neq 0$ reveals that, the condition $\mu(e)=1$ implies $\mu \circ \varphi(e)=1$. So if $\mu(a) \neq 0$ then

$$
\begin{aligned}
1 & =\mu \circ \varphi\left(\frac{a}{\mu(a)}\right)=\mu \circ \varphi\left(a \frac{a}{\mu(a)^{2}}\right) \\
& =\mu\left(\varphi(a) \varphi\left(\frac{a}{\mu(a)^{2}}\right)\right) \\
& =\mu \circ \varphi(a) \mu \circ \varphi\left(\frac{a}{\mu(a)^{2}}\right) .
\end{aligned}
$$

It follows that $\mu \circ \varphi(a) \neq 0$ for all $a \in(k e r \mu)^{C}$. Hence

$$
\begin{aligned}
\varphi(b) & =\varphi\left(\mu(a) \frac{b}{\mu(a)}\right)=\varphi\left(a \frac{b}{\mu(a)}\right) \\
& =\varphi(a) \varphi\left(\frac{b}{\mu(a)}\right) \\
& =\mu \circ \varphi(a) \varphi\left(\frac{b}{\mu(a)}\right),\left(a \in(\operatorname{ker} \mu)^{C}, b \in V_{\mu}\right) .
\end{aligned}
$$

So $\varphi\left(\frac{b}{\mu(a)}\right)=\frac{\varphi(b)}{\mu \circ \varphi(a)},\left(a \in(\operatorname{ker} \mu)^{C}, b \in V_{\mu}\right)$. Also if $a \in \operatorname{ker} \mu$ then the equation (2.1) implies that $0=\varphi(0)=\mu \circ \varphi(a) \varphi(b)$ for all $b \in V_{\mu}$. Since $\varphi \neq 0$ so $\mu \circ \varphi(a)=0,(a \in \operatorname{ker} \mu)$. It follows that $\mu \circ \varphi=0$ on $\operatorname{ker} \mu$, providing 3 .

An straightforward calculation can be applied to show that the converse is hold.
Deepening in the proof of the previous theorem one can conclude the following results.
Corollary 2.1. Let V be a non-zero vector space and let $\mu \in V^{*}$ be a non-zero linear functional.
If $\varphi: V_{\mu} \longrightarrow V_{\mu}$ is a non-constant semigroup endomorphism then the following statements are hold
(1) $\varphi(0)=0$.
(2) $\varphi(k e r \mu) \subseteq k e r \mu$.
(3) $\mu(a)=1$ implies $\mu \circ \varphi(a)=1$.

Corollary 2.2. Let V be a non-zero vector space and let $\mu \in V^{*}$ be a non-zero linear functional. If $\varphi: V_{\mu} \longrightarrow V_{\mu}$ is a semigroup automorphism then the following statements are hold
(1) $\varphi(0)=0$.
(2) $\varphi(\operatorname{ker} \mu)=k e r \mu$.

Proof. Since φ is an automorphism so φ is a non-constant endomorphism. So the fact that $\varphi(0)=0$ follows from Corollary 2.1. Also since φ and φ^{-1} are semigroup endomorphisms,

Corollary 2.1 implies that $\varphi(\operatorname{ker} \mu) \subseteq \operatorname{ker} \mu$ and also $\varphi^{-1}(\operatorname{ker} \mu) \subseteq \operatorname{ker} \mu$. So $\varphi(\operatorname{ker} \mu) \subseteq k e r \mu$ and $\operatorname{ker} \mu \subseteq \varphi(\operatorname{ker} \mu)$. It follows that $\varphi(\operatorname{ker} \mu)=k e r \mu$.

Corollary 2.3. Let V be a non-zero vector space and let $\mu \in V^{*}$ be a non-zero linear functional. Then the bijective map $\varphi: V_{\mu} \longrightarrow V_{\mu}$ is a semigroup automorphism if and only if the following statements are hold
(1) $\varphi(0)=0, \mu \circ \varphi=0$ on ker μ.
(2) $\varphi\left(\frac{\varphi^{-1}(b)}{\mu(a)}\right)=\frac{b}{\mu \circ \varphi(a)}$ for all $a \in(\operatorname{ker} \mu)^{C}$ and $b \in V_{\mu}$.

Theorem 2.2. Let V be a non-zero vector space, let $\mu \in V^{*}$ be a non-zero linear functional, and let $\varphi: V_{\mu} \longrightarrow V_{\mu}$ be a non-zero linear map. Then the following statements are equivalent.
(1) $\varphi \in \operatorname{Hom}\left(V_{\mu}\right)$.
(2) $\mu=\mu \circ \varphi$.
(3) there exists a linear map $\phi: V_{\mu} \longrightarrow$ ker μ satisfying, $\varphi(a)=a-\phi(a)$, $a \in V_{\mu}$.

Proof. $1 \longrightarrow 2$. Let $\varphi \in \operatorname{Hom}\left(V_{\mu}\right)$. So $\mu(a) \varphi(b)=\varphi(a b)=\varphi(a) \varphi(b)=\mu(\varphi(a)) \varphi(b)=$ $\mu \circ \varphi(a) \varphi(b),\left(a, b \in V_{\mu}\right)$. It follows that $(\mu(a)-\mu \circ \varphi(a)) \varphi(b)=0$ for all $a, b \in V_{\mu}$. Since $\varphi \neq 0$, so $\mu(a)=\mu \circ \varphi(a)$ for all $a \in V_{\mu}$. Hence $\mu=\mu \circ \varphi$.
$2 \longrightarrow 3$. Let $\mu(a)=\mu \circ \varphi(a)$ for all $a \in V_{\mu}$. So $a-\varphi(a) \in \operatorname{ker} \mu, a \in V_{\mu}$. Hence there exists a map $\phi: V_{\mu} \longrightarrow \operatorname{ker} \mu$ satisfying $\phi(a)=a-\varphi(a)$ for all $a \in V_{\mu}$. Since φ is linear, clearly ϕ is linear and also $\varphi(a)=a-\phi(a), a \in V_{\mu}$.
$3 \longrightarrow 1$. Let $\phi: V_{\mu} \longrightarrow \operatorname{ker} \mu$ be a linear map and let $\varphi=I-\phi$. So

$$
\begin{aligned}
\varphi(a b) & =a b-\phi(a b)=\mu(a) b-\phi(\mu(a) b)=\mu(a) b-\mu(a) \phi(b)=\mu(a)(b-\phi(b)) \\
& =\mu(a-\phi(a))(b-\phi(b))=\mu(\varphi(a)) \varphi(b) \\
& =\varphi(a) \varphi(b),\left(a, b \in V_{\mu}\right)
\end{aligned}
$$

It follows that $\varphi \in \operatorname{Hom}\left(V_{\mu}\right)$.
Let $\operatorname{Ism}\left(V_{\mu}\right)$ be the set of all algebra automorphisms of V_{μ}. The following examples are two kinds of algebra automorphisms of V_{μ}.
(1) $\varphi: V_{\mu} \longrightarrow V_{\mu}, \varphi(a)=a-\mu(a) c$, where $c \in \operatorname{ker} \mu$.
(2) $\varphi: V_{\mu} \longrightarrow V_{\mu}, \varphi(a)=-a+2 \mu(a) e$, where $e \in \mu^{-1}(\{1\})$.

We characterize and unify the members of $\operatorname{Ism}\left(V_{\mu}\right)$.
Theorem 2.3. Let V be a non-zero vector space and let $\mu \in V^{*}$ be a non-zero linear functional.
Then $\varphi \in \operatorname{Ism}\left(V_{\mu}\right)$ if and only if there exists a linear map
$\phi: V_{\mu} \longrightarrow$ ker μ, satisfying the following properties,
(1) $\varphi(a)=a-\phi(a), a \in V_{\mu}$.
(2) $\phi=\varphi \circ \phi \circ \varphi^{-1}$.

Proof. Let $\varphi \in \operatorname{Ism}\left(V_{\mu}\right)$. Then by Theorem 2.2 there exists a linear map $\phi: V_{\mu} \longrightarrow \operatorname{ker} \mu$ satisfying $\varphi(a)=a-\phi(a)$ for all $a \in V_{\mu}$. So $\varphi\left(\varphi^{-1}(a)\right)=\varphi^{-1}(a)-\phi\left(\varphi^{-1}(a)\right)$. It follows that

$$
\begin{equation*}
a=\varphi^{-1}(a)-\phi \circ \varphi^{-1}(a), a \in V_{\mu} . \tag{2.2}
\end{equation*}
$$

On the other hand, we have $a=\varphi^{-1}(\varphi(a))=\varphi^{-1}(a-\phi(a))=\varphi^{-1}(a)-\varphi^{-1} \circ \phi(a), a \in V_{\mu}$. It follows that

$$
\begin{equation*}
a=\varphi^{-1}(a)-\varphi^{-1} \circ \phi(a) . \tag{2.3}
\end{equation*}
$$

By (2.2) and (2.3), we can conclude that $\phi \circ \varphi^{-1}=\varphi^{-1} \circ \phi$. So $\phi=\varphi \circ \phi \circ \varphi^{-1}$. For the converse, let $\varphi=I-\phi$ and $\phi=\varphi \circ \phi \circ \varphi^{-1}$, for some linear map $\phi: V_{\mu} \longrightarrow k e r \mu$. Since ϕ is linear so φ is linear. Also by Theorem 2.2, $\varphi \in \operatorname{Hom}\left(V_{\mu}\right)$. Since φ is bijective so $\varphi \in \operatorname{Ism}\left(V_{\mu}\right)$.

The following example shows that the inclusion $\operatorname{Ism}\left(V_{\mu}\right) \subset A u t V_{\mu}$ is proper.
Example 2.1. Let $V=\mathbb{C}$ and let $\mu: \mathbb{C} \longrightarrow \mathbb{C}$ be the identity map. It is clear that $\mu \in V^{*}$ and $V_{\mu}=\mathbb{C}$ with the usual product. Define $\varphi: V_{\mu} \longrightarrow V_{\mu}$ by $\varphi(z)=z|z|$. One can simply verify that $\varphi \in \operatorname{Aut} V_{\mu}$ and also $\varphi^{-1}(z)=\frac{z}{\sqrt{|z|}}, z \neq 0$ and $\varphi^{-1}(0)=0$. Clearly φ is not linear. So $\operatorname{Ism}\left(V_{\mu}\right) \varsubsetneqq A u t V_{\mu}$.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] A. R. Khoddami, Polynomial equations with coefficients in an associative algebra, Preprint.
[2] A. R. Khoddami and H. R. Ebrahimi Vishki, The higher duals of a Banach algebra induced by a bounded linear functional, Bull. Math. Anal. Appl. 3 (2011), 118-122.

[^0]: *Corresponding author

