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Abstract. In this paper, we investigate the solvability of a class of nonlinear variational inequalities involving a

combination of relaxed monotone operators with nonexpansive mappings in a Hilbert space.
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1. Introduction-Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,

respectively. Let K be a closed convex subset of H and let A,T1,T2,g : H → H be a nonlinear

mappings. Let K(·) : H→ P(H) be the multi-valued mapping. Then the following problems is

said to be a nonlinear variational inequality (NVI) problem: determine an element u ∈ K such

that:

(i) g(u) ∈ K(u),

(ii) 〈Ag(u),v−g(u)〉 ≥ 〈Au,v−g(u)〉−ρ〈(T1 +T2)u,v−g(u)〉, ∀v ∈ K(u),
(1.1)
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where ρ > 0 is a constant which was introduced by Verma [1]. Next, we shall denote the

solution of (1.1) by Γ.

Next, we consider some special cases of (NVI) problem (1.1) as following.

For K(u) = K for all u ∈ H, the (1.1) reduces to: find an element u ∈ K such that g(u) ∈ K

and

〈Ag(u),v−g(u)〉 ≥ 〈Au,v−g(u)〉−ρ〈(T1 +T2)u,v−g(u)〉, ∀v ∈ K, (1.2)

where ρ > 0 is a constant.

Replacing g(u) by u0 for some u ∈ K in (1.2), the (1.2) reduces to Noor [2]: find u0 ∈ K such

that

〈Au0,v−u0〉 ≥ 〈Au,v−u0〉−ρ〈(T1 +T2)u,v−u0〉, ∀v ∈ K, (1.3)

where ρ > 0 is a constant.

For T1 = I, the identity mapping on H, the (1.1) collapses to: find an element u ∈ K such that

g(u) ∈ K(u) and

〈Ag(u),v−g(u)〉 ≥ 〈Au,v−g(u)〉−ρ〈(I +T2)u,v−g(u)〉, ∀v ∈ K(u), (1.4)

where ρ > 0 is a constant.

Variational inequalities introduced by Stampacchia [3] in the early sixties have had a great

impact and influence in the development of almost all branches of pure and applied sciences

and have witnessed an explosive growth in theoretical advances, algorithmic development, see

[4-20] and references therein. It is well known that the variational inequalities are equivalent

to the fixed point problems. This alternative equivalent formulation is very important from the

numerical analysis point of view and has played a significant part in several numerical meth-

ods for solving variational inequalities and complementarity. In particular, the solution of the

variational inequalities can be computed using the iterative methods. Recently, variational in-

equalities have been generalized and extended in several directions using innovative and novel

techniques. General variational inequalities represent an important and extremely useful class

of nonlinear problems arising from applied mathematics, optimization and control theory, eco-

nomics, mechanics, engineering sciences, physics and others.

Next, we recall the following:
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(1) A mapping T of H into H is called monotone if

〈Tu−T v,u− v〉 ≥ 0, ∀u,v ∈ H.

(2) T is called r-strongly monotone if there exists a constant v > 0 such that

〈T x−Ty,x− y〉 ≥ r‖x− y‖2, ∀x,y ∈ H.

This implies that

‖T x−Ty‖ ≥ r‖x− y‖, ∀x,y ∈ K,

that is, A is r-expansive and, when r = 1, it is expansive.

(3) A is said to be µ-cocoercive if there exists a constant µ > 0 such that

〈T x−Ty,x− y〉 ≥ µ‖T x−Ty‖2, ∀x,y ∈ H.

Clearly, every µ-cocoercive mapping A is 1
µ

-Lipschitz continuous.

(4) A is called relaxed γ-cocoerceive if there exists a constant u > 0 such that

〈T x−Ty,x− y〉 ≥ (−γ)‖T x−Ty‖2, ∀x,y ∈ H.

(5)A : H→ H is said to be a relaxed monotone operator if there exists a constant g > 0 such

that

〈T x−Ty,x− y〉 ≥ −r‖x− y‖2, ∀x,y ∈ H.

Relaxed operators were applied to the study of constrained problems in reflexive Banach

spaces, where the set of all admissible elements is nonconvex but star-shaped. As a result, cor-

responding variational formulations are no longer variational inequalities but, instead, become

hemi-variational inequalities [11].

(6) A : H → H is called Lipschitz continuous if there is a constant L > 0 such that for all

x,y ∈ H, we have

‖T x−Ty‖ ≤ L‖x− y‖.

(7) A is said to be relaxed (γ,r)-cocoercive if there exist two constants u,v > 0 such that

〈T x−Ty,x− y〉 ≥ (−γ)‖T x−Ty‖2 + r‖x− y‖2, ∀x,y ∈ H.
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For u = 0, A is v-strongly monotone. This class of mappings is more general than the class

of strongly monotone mappings. It is easy to see that we have the following implication:

r-strongly monotonicity⇒ relaxed (γ,r)-cocoercivity.

(8) S : H→ H is said to be nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈ H.

S is said to be strictly pseudocontractive if there exists a constant κ ∈ [0,1) such that

‖Sx−Sy‖2 ≤ ‖x− y‖2 +κ‖(I−S)x− (I−S)y‖2, ∀x,y ∈ H.

It is clear that strictly pseudocontractive mappings include nonexpansive mapping as a special

case. Next, we shall denote the fixed point set of S by F(S).

We now recall some well-known concepts and results:

Lemma 1.1. For any z ∈ H, u ∈ K satisfies the inequality:

〈u− z,v−u〉 ≥ 0, ∀v ∈ K,

if and only if u = PKz.

Lemma 1.2. Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−λn)an +bn, ∀n≥ n0,

where n0 is some nonnegative integer, {λn} is a sequence in (0,1) with ∑
∞
n=1 λn =∞, bn = o(λn),

then limn→∞ an = 0.

Lemma 1.3 [1] An element u ∈ K is a solution of the (NVI) problem (1.1) if and only if u ∈ K

such that g(u) ∈ K(u) and

〈A(g(u))−Au+ρ(T1 +T2)u,v−g(u)〉 ≥ 0, ∀u ∈ K(u). (1.5)

Lemma 1.4 [1] An element u ∈ K is a solution of the (NVI) problem (1.1) if and only if u ∈ K

such that g(u) ∈ K(u) and

g(u) = m(u)+PK[g(u)+Au−Ag(u)−ρ(T1 +T2)u−m(u)], (1.6)

where PK is the projection of H onto K.
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It follows from (1.6) that

u = u−g(u)+m(u)+PK[g(u)+Au−Ag(u)−ρ(T1 +T2)u−m(u)].

If u is a common element of the set of fixed points of some nonexpansive mapping S and set of

solutions of the (NVI) problem (1.1), we have

u = u−g(u)+m(u)+PK[g(u)+Au−Ag(u)−ρ(T1 +T2)u−m(u)]

= S{u−g(u)+m(u)+PK[g(u)+Au−Ag(u)−ρ(T1 +T2)u−m(u)]}
(1.7)

2. Algorithms

Algorithm 2.1. For u0 ∈ H, un+1 is defined by an iterative scheme

un+1 = (1−αn)un +αn
(
αI +(1−α)S

)
{un−g(un)+m(un)

+PK[g(un)+Aun−Ag(un)−ρ(T1 +T2)un−m(un)]},
(2.1)

for all n≥ 0, where ρ > 0 is a constant and S is a κ-strictly pseudocontractive mapping.

If S = I, the identity mapping on H, the algorithm (2.1) reduces to the following.

Algorithm 2.2. For u0 ∈ H, un+1 is defined by an iterative scheme

un+1 = (1−αn)un +αn{un−g(un)+m(un)

+PK[g(un)+Aun−Ag(un)−ρ(T1 +T2)un−m(un)]},
(2.2)

for all n≥ 0, where ρ > 0 is a constant.

If S = I, the identity mapping on H and {αn}≡ 1, the algorithm (2.1) reduces to the following

algorithm which was mainly considered by Verma [9].

Algorithm 2.3. For u0 ∈ H, un+1 is defined by an iterative scheme

un+1 = un−g(un)+m(un)+PK[g(un)+Aun−Ag(un)−ρ(T1 +T2)un−m(un)], (2.3)

for all n≥ 0, where ρ > 0 is a constant.

If S = g = I, the identity mapping on H and {αn} ≡ 1, the algorithm (2.1) reduces to the

following.
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Algorithm 2.4. For u0 ∈ H, un+1 is defined by an iterative scheme

un+1 = m(un)+PK[un−ρ(T1 +T2)un−m(un)], (2.4)

for all n≥ 0, where ρ > 0 is a constant.

3. Main results

Theorem 3.1. Let H be a real Hilbert space, K be a finite closed convex subset of H and the set

K(u) = m(u)+K be defined by a multi-valued mapping K(u) : H → P(H), where m : H → H

is Lipschitz continuous with the Lipschitz continuity constant λ > 0. Let T1 : H → H be a

relaxed (γ1,r1)-cocoerceive and µ1-Lipschitz continuous mapping, T2 : H→ H be Lipschitzian

and relaxed monotone with the Lipschitz continuity constant p> 0 and the relaxed monotonicity

constant q > 0, A : H→ H be Lipschitz continuous with the Lipschitz continuity constant s > 0

and g : H → H be a relaxed (γ2,r2)-cocoerceive and µ2-Lipschitz continuous mapping. Let

S be a kappa-strictly pseudocontractive mapping such that F(S)∩Γ 6= /0. Assume that α ∈

[κ,1), {αn} ⊂ [0,1] is chosen such that ∑
∞
n=0 αn = ∞ and 2θ2 +θ1 + 2λ + s+ sµ2 < 1, where

θ1 =
√

1+2ργ1µ1−2ρr1 +2ρq+ρ2(µ1 + p)2 and θ2 =
√

1+µ2
2 −2r2 +2γ2µ2

2 . Then the

sequence {un} generated by (2.1) converges strongly to u∗ ∈ F(S)∩Γ.

Proof.

Fix u∗ ∈ F(S)∩Γ and Let T : αI +(1−α)S. In view of the restriction, we find that T is

nonexpansive with F(T ) = F(S); see Zhou [12]. we have

u∗ = (1−αn)u∗+αnT{u∗−g(u∗)+m(u∗)

+PK[g(u∗)+Au∗−Ag(u∗)−ρ(T1 +T2)u∗−m(u∗)]}.

It follows that

‖un−u∗‖ ≤ (1−αn)‖un−u∗‖+αn‖un−g(un)+m(un)

+PK[g(un)+Aun−Ag(un)−ρ(T1 +T2)un−m(un)]

−{u∗−g(u∗)+m(u∗)

+PK[g(u∗)+Au∗−Ag(u∗)−ρ(T1 +T2)u∗−m(u∗)]}‖

(3.1)
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Now, we consider the rightside of second term of (3.1)

‖un−g(un)+m(un)+PK[g(un)+Aun−Ag(un)−ρ(T1 +T2)un−m(un)]

−{u∗−g(u∗)+m(u∗)+PK[g(u∗)+Au∗−Ag(u∗)−ρ(T1 +T2)u∗−m(u∗)]}‖

≤ 2‖un−u∗− [g(un)−g(x∗)]‖+2‖m(un)−m(u∗)‖+‖A(un)−A(u∗)‖

+‖Ag(un)−Ag(u∗)‖+‖un−u∗−ρ[(T1 +T2)un− (T1 +T2)u∗]‖

≤ 2‖un−u∗− [g(un)−g(x∗)]‖+‖un−u∗−ρ[(T1 +T2)un− (T1 +T2)u∗]‖

+(2λ + s+ sµ2)‖un−u∗‖.

(3.2)

Next, we will consider the second term of the rightside of (3.2).

‖un−u∗−ρ[(T1 +T2)un− (T1 +T2)u∗]‖2

≤ ‖un−u∗‖2−2ρ〈un−u∗,T1un−T1u∗〉−2ρ〈un−u∗,T2un−T2u∗〉

+ρ
2(‖T1un−T1u∗‖+‖T2un−T2u∗‖)2

≤ ‖un−u∗‖2−2ρ(−γ1‖T1un−T1u∗‖2 + r1‖un−u∗‖2)+2ρq‖un−u∗‖

+ρ
2(µ1 + p)2‖un−u∗‖2

≤ θ
2
1 ‖un−u∗‖2,

(3.3)

where θ1 =
√

1+2ργ1µ1−2ρr1 +2ρq+ρ2(µ1 + p)2. In view of the assumption that g is

relaxed (γ2,r2)-cocoercive and µ2-Lipschitz continuous, we obtain

‖un−u∗−g(un)−g(u∗)‖2

≤ ‖un−u∗‖2−2[−γ2‖g(un)−g(u∗)‖2 + r2‖un−u∗‖2]+‖g(un)−g(u∗)‖2

≤ ‖un−u∗‖2 +2µ
2
2 γ2‖un−u∗‖2−2r2‖un−u∗‖2 +µ

2
2‖un−u∗‖2

= (1+2µ
2
2 γ2−2r2 +µ

2
2 )‖un−u∗‖2

= θ
2
2 ‖un−u∗‖2,

(3.4)
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where θ2 =
√

1+µ2
2 −2r2 +2γ2µ2

2 . Substitute (3.3) and (3.4) into (3.2) yields that

‖un−g(un)+m(un)+PK[g(un)+Aun−Ag(un)−ρ(T1 +T2)un−m(un)]

−{u∗−g(u∗)+m(u∗)+PK[g(u∗)+Au∗−Ag(u∗)−ρ(T1 +T2)u∗−m(u∗)]}‖

= (2θ2 +θ1 +2λ + s+ sµ2)‖un−u∗‖.

(3.5)

Substituting (3.5) into (3.1), we find that

‖un−u∗‖ ≤ (1−αn)‖un−u∗‖+αn(2θ2 +θ1 +2λ + s+ sµ2)‖un−u∗‖

= [1−αn(1−2θ2−θ1−2λ − s− sµ2)]‖un−u∗‖.
(3.6)

In view of Lemma 1.2, we can get the desired conclusion easily. This completes the proof.
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