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Abstract. Monte Carlo simulation is the use of experiments with random numbers to evaluate mathematical 

expressions. The base experimental units are random numbers. The expressions may be definite integrals, systems of 

equations and financial engineering. In problems of moderate dimensions, quasi-Monte Carlo method usually 

provides better estimates than the Monte Carlo method. In this paper, we study Faure sequence(Faure sequence is 

low-discrepancy sequence), and introduce partition Monte Carlo and we employ to obtain significant improvement 

in Asian option price model. 
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1. Introduction 

The Monte Carlo (MC) method has been introduced in finance in 1977, in the pioneering 

work [3]. In 1995, Paskov and Traub in [16] published a paper, in which they used quasi-Monte 

Carlo (QMC) methods to estimate the price of a collaterized mortgage obligation [6]. The 

problem they considered was in high dimensions (360) nevertheless, they obtained more accurate 

approximations with QMC methods than with the standard MC method [5]. Since then, many 

people have been looking at QMC methods has a promising alternative for pricing financial 

products [1,2,4,12,14,18,21]. Researchers study on QMC methods have also been very interested 

by these advances in computational finance because they provided convincing numerical results 

suggesting that QMC methods could do better than MC even in high dimensions, a task that was 

generally believed to be out of reach. 
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Asian options are of particular importance for commodity products which have low trading 

volumes, since price manipulation is inhibited. Hence, the pricing of such options becomes one 

of the most interesting fields. Since there are no known closed form analytical solutions to 

arithmetic average Asian options, many numerical methods are applied.  

This paper deals with pricing of geometric average Asian options with the help of Monte 

Carlo methods. We also investigate ways to improve the precision of the simulation estimates 

through the partition Monte Carlo technique. 

 

2. Monte Carlo Method (MC) 

Monte Carlo method is an analytical technique for solving a problem by performing a large 

number of trial runs, called simulations, and inferring a solution from the collective results of the 

trial runs. Monte Carlo integration is to use random points for the numerical evaluation of an 

integral [22]. 

  ∫        
   

 
∑      

 

   

 

 

 

in this method I is approximate by taking random variables    and arithmetic averaging by 

contribution      . In the special case of the above equation is integration bounded on      ,  

  ∫        
 

 
∑      

 

   

 

 

  

The base of Monte Carlo method is to generate independent identically distributed random 

variables on      , which the interval number uniformly distributed on       to generate these 

distributed random variables, we employ the rand function on Matlab programming software.  

 

3. Quasi-Monte Carlo Methods 

As an alternative of the MC method for the general problem for which QMC methods have been 

proposed is multi-dimensional numerical integration. Hence, for the remainder of this section, 

we assume the problem under consideration is to evaluate 

  ∫        
 

 

 

where f is a square-integrable function. Many problems in finance amount evaluate such integrals, 

as we discuss in Section 3. To approximate I, both MC and QMC proceed by choosing a point 
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set    {            }        , and then the average value of    over     is computed, i.e., 

we get, 

   
 

 
∑      

   

   

 

in the MC method, the points               are independent and uniformly distributed over 

      . In practice, one uses a pseudorandom number generator to choose these points. The idea 

of QMC methods is to use a more regularly distributed point set, so that a better sampling of the 

function can be achieved. An important difference with MC is that the set    is typically 

deterministic when a QMC method is applied. 

Quasi-random (deterministic) numbers are similar to random numbers but exhibit much more 

regularity. This makes them well-suited for numerical evaluation of multi-dimensional integrals. 

The main types of quasi-random sequences are encompassing Halton, Faure, Sobol, and 

Korobov sequences. In this section for achieving the goal of this paper Faure sequence and its 

structure will be introduced. 

The main problem of the Faure sequence is that the differences between sample size and 

dimension are small. Faure sets points                     and uses the powers of the upper 

triangular Pascal matrix modulo b for the generator matrices. The n
th

 element of the Faure 

sequence is expressed as 

        
         

            
        

here         is the radical inverse function in base b, and it is expressed as 

    
   

  

 
 

  

  
   

  

    
 

that                  is the digit vector of the b-adic representation of  . b is a prime 

number greater than or equal to the dimension   and   is the Pascal matrix modulo b whose (i, j)- 

element is equal to (
   
   

)  mod b. The matrix vector products       for            , are 

done in modulo b arithmetic. In generating quasi-random number generators for Monte Carlo 

computations, we may employ for sequence. 

 

4. PMC method 
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Estimated results of Asian option price by the Monte Carlo and quasi-Monte Carlo are reliable, 

however we can significantly improve the results by managing and partitioning of the random 

numbers generated that is known as p-rand or PMC method. 

The quasi random numbers for generating random number we can improve the uniform property 

of random number on       by partitioning the interval       to k sub intervals. Then, we 

independently generate the random numbers on each sub intervals. For example, if we generate 

1000 random number on       by a random generator, in a PMC method we may generate 100 

random number on each sub interval  
   

  
 

 

  
  independently, where           . This method 

will control the uniformity of distributed random number on desired sub intervals  
   

  
 

 

  
   

performed on      . It is expected to have more accuracy in results as we increase the number of 

partitioned sub intervals. In fact, we would like to examine this claim by investigating this idea 

on finance engineering in the numerical results section. For example we express algorithm and 

histogram PMC method. 

Algorithm of the method(PMC): 

Step 1.  Choose   as the number of random numbers. 

Step 2.  Choose number of sample points. 

Step 3. Choose     number of sub-interval’s j, with          , where   is the a number of 

subintervals. 

 

Results are shown separately in two histograms. 

 

Fig 1. Histogram for N=1000, using the rand-function in Matlab programming software. 
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Fig 2.  Histogram for N=1000, partitioning by use of the rand-function in Matlab programming 

software (p-rand). 

 

The first histogram shows the numbers that are randomly generated. But, the second histogram is 

stand for showing the partitioned randomly generated numbers. Obviously, points discrepancy 

will be decreased by partitioning of the random numbers generated, and consequently results will 

be improved by reducing error.  

The purpose of this article is to apply partition Monte Carlo method that improves the results of 

Asian option price. We compare these obtained results with other method’s results by relative 

error and CI width (confidence interval width) in Asian option. In the next section, we discuss 

Asian option pricing. 

 

5. Asian option pricing 

An Asian option is a financial derivative whose payoff depends on the average price of the 

underlying asset. There are many varieties: Other than the usual call and put variations, there are: 

 Fixed strike Asian options whose payoff is the difference (if positive) between the 

average price and a fixed strike price. 

 Floating strike options whose payoff is the difference (if positive) between the final 

stock price and the average stock price. 

 American versions of the Asian option (not discussed in this paper), which allow for 

early exercise (as opposed to the European version which can only be exercised at 

expiry).  
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There are also variations in terms of how the averaging is defined. The most important is 

whether the average is arithmetic or geometric (the former being far more common in practice). 

This distinction is important, not just in practice, but in terms of pricing and analyzing these 

options.   

Another important distinction is whether the average is taken over a discrete set of 

observations, or a continuous set. The average may be a weighted average, with more weights 

being assigned to observations deemed to be more important. Finally, the averaging period may 

start at a future date (known as forward starting options).  

There are two basic forms of Asian Option [20]: 

An average price option is an option which at expiry pays the difference between the average 

value of the underlying during the life of the option (averaging period) and a fixed strike. 

                                       

                                     

where    (∏   
 
   )

       
. 

An average strike option is an option which at expiry pays the difference between the underlying 

market price and the strike which is an average of the underlying price over the specified 

averaging period [6]. In our work we will concentrate on the Average price option since it is 

much more common. 

 

  5.1. Simulation of Stock Prices 

Given a stock paying continuous dividends at the rate of, and a continuously compounding risk-

free interest rate of  , paths of stock prices can be simulated using Equation (1) for the stock 

price by the following equation in [21]. Which will be resulted in 

                      √                                         (1) 

where   has a standard normal distribution. Let     denote the price of the stock at time        . 

Starting with the initial stock price   , we simulate the stock price at the next time value 

      , by taking a realization     of a standard normal random variable and evaluating the 

right-hand-side of the equation. This process is repeated using the previous price as the new 

initial price. For example 
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          ((  
  

 
)    √    )            

which that      for             are standard normal distribution [20]. 

Algorithm: 

The Monte Carlo (MC) implementation to price this derivative: 

Step1. Find each i
th

  path we find; 

     
   

 (∏   
 
   )

       
                    

 

 
            . 

Step2. Calculate payoff of the i
th

 path. For example, for an average price call the payoff is 

       
   

    (    
   

  )                       . 

Step3. Discount this value by the risk-free rate to get the price of the option: 

    ̂   
             

   
. 

Step4. Take an average of those payoffs: 

    ̂    
 

   
 ∑  ̂   

      
   . 

Step5. Compute the relative error:  

Std ( ̂       ̂    √    .(Std is standard division). 

 

  5.2 Pricing 

Here we consider a problem from computational finance: pricing of geometric Asian call options. 

In simulation, we generate a sequence of asset prices             that is subject to an Ito 

process               where t is time,   and    are the drift and volatility of the underlying, 

respectively, and          is a standard Brownian motion [6]. Let                

             be a call option payoff that    (∏   
 
   )

       
is the geometric average of 

the asset prices, and F is the strike price. The price of the Asian call option is the expected value 

                       ,                                              (2) 

which is estimated by simulation. In this expression r is the risk-free interest rate and T is the 

expiration time, i.e., the time when we observe the final price   . To calculate the expected 

value, the probability distribution for average should be known [17]. 

If the average price found as geometrical average then there are analytical formulas for valuing 

European average price option (since the price of the asset is assumed to be lognormally 
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distributed and geometric average of a set of lognormally distributed variables is also lognormal). 

The geometric average is defined as: 

   (∏   
 
   )

       
. 

Therefore the price of the geometric Asian call option is given by a modified Black-Scholes 

formula [5], 

                                       √                                      

where  

         
   

 
[       (  

  

 
)          

 

 
 (  

  

 
)          ]  

  (
   

 
)
 

            
           

   
                 

  
         

√ 
  

where    is the current geometric average,  is the last known fixingand in this expression under 

the risk-free rate    . 

 

6. Numerical Results 

In this section, we implemented PMC method to the financial engineering and also significant 

improvement will be seen in Asian call option price. Criterion like CI Width (confidence interval 

width) to show the uncertainty in the price, and any mispricing on this scale could result in an 

arbitrage opportunity and other citation is relative error. We estimated the option price using MC, 

PMC and QMC methods. 

Let      ,       ,     ,      ,      07. Where    and   are the drift and 

volatility of the underlying, respectively, leading to an exact price of 5.3187. 

figs.3, 4 and fig.5, 6 displays the results when       the number of points simulation 

increases. That in the MC and PMC method M, the number of replications, is equal 1 and N is 

increased. And in QMC method the number of replications, M is chosen fix 10. 
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Fig 3. Relative error for  pricing of an Asian call option, with       number of points.  

    increases (M is fix at 10, we only increase N) M is the number of replicationsand 

    ,   is trading days. 

 

Fig 4. CI Width for pricing of an Asian call option, with       number of points.     

increases (M is fix at 10, we only increase N) M is the number of replications and     ,   is 

trading days. 
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Table.1 

 

Table.2 

 

Table.3 

 

   With                                          we obtain a typical 

estimate of Relative Error  and CI Width for MC (table.1), PMC(table.2) and QMC(table.3), also 

we saw that       relative error of the PMC            and for          relative error 

of the PMC             and also for          relative error of the PMC,           and 

also for          and also         relative errors respectively are           and 

          it is plainly visible that PMC relative error  is less of QMC and MC. Also for PMC 

CI Width (table.2) with       there is about            uncertainly in the price, as the 

amount of   is increased to        there is about           uncertainly in the price, and for 

                     respectively uncertainly is equal           ,            and 

          vividly see that any mispricing on this scale could result in an arbitrage opportunity. 

According to fig.3 and fig.4 the same expression is satisfied in fig.5 and fig.6 but in this figures 

(fig.5, 6)                                 and                       and it is 

plainly visible that the efficiency of this method is bright and higher than some applicable 

methods such as MC and QMC. 

 MC MC MC MC MC 

X=N M 10000 25000 50000 75000 1000000 

Relative Error 0.004896 0.003100 0.002206 0.001790 0.001550 

CI Width 0.085560 0.054141 0.038253 0.031255 0.027078 

 PMC PMC PMC PMC PMC 

X=N M 10000 25000 50000 75000 100000 

Relative Error 0.000184 0.000118 0.000082 0.000068 0.000058 

CI Width 0.002621 0.001674 0.001172 0.000961 0.000831 

 Faure Faure Faure Faure Faure 

X=N M 10000 25000 50000 75000 100000 

Relative Error 0.252332 0.203729 0.120468 0.116130 0.166097 

CI Width 0.002621 0.001674 0.001172 0.000961 0.000831 
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Fig 5. Relative error for pricing of an Asian call option, with       number of points. 

    increases (M is fix at 10, we only increase N) M is the number of replicationsand     , 

  is trading days. 

Fig 6. CI Width for pricing of an Asian call option, with       number of points.     

increases (M is fix at 10, we only increase N) M is the number of replications and     ,   is 

trading days.  
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