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Abstract. In this paper, we developed a formulation for pricing and Hedging of Rainbow Option and in particular

the Best of Asset Option with pay-off max(S1,S2, ...Sn,K).Rainbow option is a class of options that involves

multiple assets and the behaviour of the underlying determine the specific type of the Rainbow option in question.

In this study, we consider a Best of Asset type of Rainbow option with Pay-off given as max (S1,S2,−−−Sn,K).

Here, we make use of the Malliavin Calculus and the Clack Ocone formula to formulate the Price and the Hedging

strategy in closed form.The price of the Best of Asset option will be determined from the Clark-Haussmann Ocone

CHO formula as the discounted expectation of the pay-off f (w) while the hedging portfolio will be obtained from

the integrant in the Martingale representation theorem set up of the Payoff.The integrant involves the Malliavin

derivative of the pay-off and its market price of risk and in the case that the latter is time -dependent, it reduces to

the discounted expectation of the malliavin derivative of f (w) conditioned with respect to the filtration.
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This work is developed in line with the works of Margable [5], on pricing of exchange Option

which allows one to exchange an asset for another and the works of Mataranvura [7], where the

price and the hedging of an exchange option was provided with the help of the CHO formula.

A fundamental question is,how should this Option be priced. In a standard Black-Sholes

formula,the unique arbitrage free price is given by the discounted expectation of the Pay-off

under the unique risk-Neutral measure.Although ,in most literature,effort has been dedicated to

pricing of contingent claim, perhaps due to it important to market operator and traders, but less

attention has been paid to hedging which actually help the market players in decision making.

A solution of the hedging problems determine an arbitrage free price via the initial value of the

hedging strategy.

The MRT expresses every square integrable martingale as a sum of a pre-visible process and

an Ito integral.The advantage of the CHO [8] is that it allows the use of malliavin derivative for

computing the hedging portfolio.The malliavin derivative is an alternative mathematical opera-

tion to delta hedging approach. Delta hedging approach has a set back because the derivative of

certain payoff that are not differentiable everywhere are not obtainable,but the malliavin deriv-

ative ensure the differentiability of such functions.

In [2], a recursive procedure for pricing and hedging European basket and rainbow options

on N assets was developed with a payoff w[ f (st ,K)]+ where st is a vector of N assets, f is a

function representing the payoff with w=+1 for a call and w=−1 for a put. If for instance,N =

3,then st = (s1,s2,s3) and f (st ,k) = (θ1s1+θ2s2+θ3s3)−K for the basket option with weights

(θ1,θ2,θ3) and f (st ,K) = max(s1,s2,s3)−K for a rainbow option .The procedure involves the

decomposition of the basket or rainbow payoff function into sum of exchange option payoff

function.

This recursive approach has several advantages over those already developed.Firstly,the un-

derlying assets price may follow heterogeneous log normal processes.Some asset price could

follow mean -reverting processes whilst others follow standard log normal processes. Secondly,

the frame work provides a convention for selecting the implied volatilities vanilla option on the

individual underlying asset that are used to price the basket option .This yield volatility skew

consistent prices. Thirdly,the approach derived analytic approximation for multi-asset option
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Greeks,and unlike other approaches, these Greeks will be influenced by the individual asset

price volatilities and correlations. Hence, hedge ratios are consistent with the individual asset

implied volatility and implied correlation skews. These however are not without limitations.

The work of [5] initiated the study of determining the value of an option which exchange one

asset for another explicitly. This is today known as Margrabe option. In [7], it is provided a

malliavin calculus approach for computing both the price and hedging portfolio of an exchange

option with two underlying assets using the Clark Haussmann-Ocone (CHO) formula whose

application in the generalized form was studied by [4]. This techniques was also considered in

[8] but for Asian type of option in explicit form.

2. Review of Malliavin calculus

Here, we shall consider some features of the malliavin calculus as it relate to our work.We

consider the notion of differentiability within the family of random variables that are equal to

functions of independent increment of Brownian motion.

Consider a real Brownian motion W on the probability space (Ω,σ ,µ) endowed with the

Brownian filtration

β
ω = β

ω
t , tε[0,T ].

Let ∆k
n =W k

t −W k−1
t be the kth increment of the Brownian motion for k = 1,2−−−2n.

Suppose T = 1 and for nεN,

tk
n =

k
2n , k = 0,1...2n

is the (k + 1)th element of the nth order dyadic partition of the interval [0,T],then we write

Ik
n = [tk−1

n , tk
n] as the kth interval of the partition.

We denote ∆n = (∆1
n,−−−∆2n

n ), the R2n vector of the nth order Brownian increment by C∞
pol

( the family of smooth function that together with their derivative of any order have at most

polynomial growth).

Definition 2.1. [1] For every X = ϕ(∆n) ∈ S,the stochastic derivative of X at time t is defined

on S by DtX =
ϕ(∆n)

xk
nn(t)

,where S is a set of Cylindrical functional. The definition is well posed
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i.e it is independent of n,if n,m ∈ N, then

X = ϕn(∆n) = ϕm(∆m) ∈ S(1)

and

Dt(X) =
∂ϕn(∆n)

∂xk
nn(t)

= DtX =
∂ϕm(∆m)

∂xk
mm(t)

.

If we endow S with the norm, then,

‖X‖1,2 = E(X2)
1
2 +E[

∫ T

0
(DsX)2ds]

1
2

=

‖X‖L2(ϕ)+‖DX‖L2([0,T ],ϕ).

In what follow, we concentrate on the Hilbert Space D1,2 which will be relevant space for all of

our computations.

Definition 2.2. The space D1,2 of the Malliavin - differentiation random variables is the closure

of S with respect to the norm ‖.‖1,2.In other words, X ∈D1,2 iff ∃ a sequence (Xn) ∈ S such that

1) X = limn→∞ Xn ∈ L2(Ω).

2) The limn→∞ DXn ∈ L2([0,T ],Ω).

Then the Malliavin derivative of X is defined as DX = limn→∞ DXn ∈ L2([0,T ]XΩ). The differ-

ential operator D is linear but not bounded (reference) i.e., sup
‖DX‖L2
‖X‖L2

=+∞.

If X ,Y ∈ D1,2, then the product XY in general is not square integrable and so,it does not

belongs to D1,2. It is therefore worth while to use instead of D1,2, the slightly smaller but closed

under product.

D1,∞ = ∩p≥2D1,p, where D1,p is the closure of S with respect to the norm

||X ||1,p = ||X ||LP(Ω)+‖DX‖Lp([0,T ],Ω).

We observe (by generalisation) that XεD1, p iff ∃ a sequence (Xn ∈ S such that

1) X = limn→∞ Xn ∈ Lp(Ω). 2) The limn→∞ DXn ∈ Lp([0,T ],Ω). If p≤ q, by Holder’s inequality,

we get ||.||Lp([0,T ]XΩ)≤ T
q−p
pq ‖.‖Lp([0,T ]XΩ) and so D1,p ≤ D1,q.

In particular for every X ∈D1,p with p≥ 2 and an approximating sequence (Xn) in Lp, we have

limn→∞ DXn = DX in L2([0,T ]XΩ).
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Proposition 2.3. [1] Let ϕ1 ∈C∞
pol(R), then

i)If X ∈ D1,∞, then ϕ(X) ∈ D1,∞ and Dϕ(X) = ϕ
′
(X)DX

ii)If X ∈ D1,2 and ϕ,ϕ
′
are bounded, then ϕ(X) ∈ D1,2.

Proof If X ∈ S,ϕ ∈C
′

and both ϕ and it first order derivative are bounded, then ϕ(X) ∈ S. If

X ∈ D1,2, then ∃ a sequence (Xn) ∈ converging to X ∈ L2(Ω) and such that (DXn) converges to

DX ∈ L2([0,T ]xΩ), then by (dominated convergence theorem), ϕ(Xn) tends to ϕ(X) ∈ L2(Ω).

Furthermore, Dϕ(Xn) = ϕ
′
(Xn)DXn and ||ϕ ′(Xn)DXn−ϕ

′
(X)DX ||L2 ≤ I1 + I2 where

I1 = ||(ϕ
′
(Xn)−ϕ

′
(X))DX ||L2 → 0,n→ ∞

(1); it suffice that ϕ ∈C
′

and that both ϕ and its first order derivative have at most polynomial

growth by dominated convergence theorem and

I2 = ‖ϕ
′
(Xn)(DX−DXn)‖L2 → 0,n→ ∞

Since (DXn) converges to DX and ϕ
′
is bounded.

3. Pricing and hedging in a complete market

Let (Ω,P,µ,Ft) be a filtered probability space endowed with the filtration Ft generated by

the Brownian motion.The filtration represent the flow of available information to the trader

concerning the assets in the market at any time t > 0 .We define the prices of the assets on this

filtered probability space.Here ,we consider two types of asset,the first is a risk-less asset with

differential

(2) dX(t) = µ(t)X(t)dt

satisfying the assumption of existence and uniqueness of solution X(t) with X0(0) = x0 been

the price of the asset at time t = 0, where µ(t) is the risk-less interest rate which is consider to

be a constant.It should be noted however that µ(t) can also varies with time as examined in [3].

The second asset are risky assets in form of stocks, foreign exchange, crude resources e.t.c. The

price Xi(t) of the assets i is given by the differential
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(3) dXi(t) = µ(t,w)dt +
n

∑
j=1

σi, j(t,w)dWj(t)

Xi(0) = x0 i = 1,2−−− n, where µ(t,w) is the rate of return of each asset and σi, j is the

volatility coefficient of the Brownian motion Wj in security i.

If we assume µi(t,w) =



µ1

.

.

.

µn


be the vector of the rate of return for the asset i and that the

matrix

σ(t,w) =



σ11 σ12 − − σ1n

σ21 σ22 − − σ2n

.

.

σn1 σn2 − − σnn


≥ 0 be the matrix of coefficient of volatility. If

X(t) =



X1(t)

.

.

.

Xn(t)


,then for conveniency, we can write (3) as

(4) dX(t) = µ(t)dt +σ(t)dW (t), X(0) = x0, t ∈ [0,T ].

Let Θ(t) = Θ(t,w) = (Θ0(t,w),Θ1(t,w)−−−Θn(t,w)) represent the investor’s holding at any

time t ∈ [0,T ],where Θi(t,w) is the number of units of asset i that the investor can hold.Any

investor that select a portfolio consisting of n assets will have to define the proportion of his

wealth that he must invest in each of the n assets.The holder of a portfolio Θ may decide to

short his position at any time t ∈ [0, t] and then bank plus the trading gains up to the date of

shortening his position.



PRICING AND HEDGING OF BEST OF ASSET OPTIONS 7

In complete market setting,where we assume that the portfolio is self financing ,so that the

value of this portfolio at time t ∈ [0, t] is given by

V Θ(t) =V Θ(t,w) =V (0)+
∫ t

0
Θ0dX0(s)+

n−1

∑
i=1

∫ t

0
Θi(s)dXi(s)

The portfolio Θ is called admissible if it is self financing and the value process V Θ(t) : t ∈ [0,T ]

is bounded below. If we write the value of the portfolio V Θ(t) as

V Θ(t) =
n−1

∑
j=0

Θ j(t)X j(t)

and assuming that the portfolio is self financing and admissible,then if σ is invertible,we have

dV Θ(t) = ρ(t)V Θ(t)dt +Γ(t)σ [σ−1(α−ρI)dt +dB(t)],

where Γ(t) =



Γ1

.

.

.

Γn


. If we let u = σ−1(α − ρI) =



u1

.

.

.

un


, where X(t) is the vector of stock

prices,and if we further assume that u satisfies the Novikov condition then by the Girsanov

theorem B̂(t) ∈ [0,T ] given by B̂(t) = µdt + dB(t) is a Brownian Vector with respect to the

probability measure Q given by

dQ(w) = exp(−
∫ T

0
u(s)dB(s)− 1

2

∫ T

0
‖u(s)‖2ds)dP(w)

where ||.|| is the usual norm in Rn. Then

dV Θ(t) = ρ(t)V Θ(t)dt +Γ(t)σdB(t).

Solving for V Θ, we get

exp−
∫ T

0
ρ(s)dsV Θ =V Θ(0)+

∫ T

0
e−

∫ T
0 ρ(s)

Γ(t)σ d̂B(t)

eρTV Θ(T ) =V Θ(0)+
∫ T

0
e−ρt

Γ(t)σ d̂B(t).

This is a particular version of the Martingale Representation Theorem as applied to a particular

square Integrable martingale f (w) = e−ρTV Θ(T ). It is this martingale Representation theorem

which the CHO formula relies on.
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In what follow, we state the Clack- Ocone -Formula and consequently, the generalized Clark-

Ocone Haussmann formula without proof.

The martingale representation theorem asserts that for every X ∈ L2(Ω,Ft), there exist u ∈

L2 such that X = E(X)+
∫ T

0 usdWs. If X is malliavin differentiable,we are able to obtain the

expression of u such that ut ∈ D1,2 for every t and we have DtX = ut +
∫ T

0 DtusdWs and so

taking the conditional expectation,we can conclude that E(DtX |Ft) = ut . The Clack- Ocone

formula is the main link between Hedging and Malliavin calculus and we state it as proposition

as follow:

Proposition 3.1. (Clack -Ocone Formula) [1]. If X ∈ D1,2,then

X = E(X)+
∫ T

0
E[(DtX |Ft)]dWt

One immediate consequence of the Clark Ocone Formula is that ,If X ∈ D1,2 and DX = 0, then

X is constant a.s. The financial interpretation and implication of the Clack -Ocone Formula is

as follow. Suppose X ∈ L2(Ω,Ft) is the payoff of an European option on an asset S,with the

dynamics of the discounted price under the EMM given as dŜt = σtStdWt , then if (α,β ) is a

replicating strategy for the option, we have,

X̂ = E(X̂)+
∫ T

0
αtdŜt = E(X̂)+

∫ T

0
αtσt ŜtdWt .

By the Clack-Ocone formula, we have

X̂ = E(X̂)+
∫ T

0
E[(DtX |Ft)]dWt

so we obtain the expression of the replicating strategy,

αt =
E[(DtX |Ft)]

σt Ŝt
, t ∈ [0,T ].

This can be extended to multi- asset regime with

dSi
t = σ

i
t Si

tdW i
t , i = 1,2,−−−n

so that

α
i
t =

E[(DtX i|Ft)]

σ i
t Ŝt

i , ∀i = 1,2−−−n.
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Theorem 3.2. (The Generalized Clack -Ocone Haussmann Formula)[4] Suppose that X ∈ D1,2

and assume that the following conditions holds

(1) EQ[||X ||L2
Q
]≤ ∞.

(2) EQ[
∫ T

0 ||DtX ||2L2
Q

dt]≤ ∞.

(3) EQ[||X ||2L(Q).
∫ T

0 (
∫ T

0 DtU(s,w)dB(s)+
∫ T

0 DtU(s,w).U(s,w))2dt]≤ ∞, then

F(w) = EQ[X ]+
∫ T

0
EQ[(DtX−X

∫ T

0
DtU(s,w)dB(s)FtdB(t))|Ft ]dB(t),

where U(s,w) is the Girsanov kernel,Q is the equivalent martingale measure and B̂(t) = B̂(t.w)

is a Brownian motion with respect to Q.

By letting G(w) = e−ρT F(w) and applying the generalized CHO formula to G, we have

G(w) = EQ[G]+
∫ T

0
EQ[(DtG−G

∫ T

t
[DtU(s,w)dB̂(s)FtdB̂(t)/Ft ]dB(t),

where Dt represent the Malliavin derivative.By the martingale representation theorem,we get

V (0) =V Q(0) = EQ[G]

and

e−ρt
Γ(t)σ = EQ[(DtG−G

∫ T

t
[DtU(s,w)dB(s)/FtdB(t))/Ft ],

where

Γ(t) = e−ρ(T−t
σ
−1EQ[(DtG−G

∫ T

t
[DtU(s,w)dB(s)/FtdB(t))/Ft ].

This gives the explicit number of unit of stocks.The holding Θi(t) is the Bank account which

can be found from the self financing condition.

The implication of these result is that ,in a complete market,every contingent claim with pay-

off f (w) is attainable by the portfolio of stock and bonds.Therefore V (0) ,the initial value of a

self financing portfolio equals the price of such derivative since F(t) =V (t).It then shows that

the zero price of such a contingent claim is the discounted expectation of the pay-off.

4. The n-dimensional market model and transformation theorem

Suppose that a Portfolio consist of n- underlying assets mainly of risky securities like the

Best Of Asset option.If we consider specifically the case of European Best of Asset option
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which have it prices at time t as X1(t),X2(t),−−−,Xn(t) with a risk-less Bank account which

has it price as

dX0(t) = ρ(t)X0(t)dt.

Under the assumption of existence of a unique solution X0(t). where ρ(t) is the interest rate.The

risky securities is given as

Xi(t) = Xi(0)e
((αi− 1

2 ∑
n
j=1 σ2

i, j)t+∑
n
j=1 σi, jB j) i = 1,2...n,

where B j(t), j = 1,2,−−−n is a standard Brownian motion. Suppose that the investor ob-

serve that at time T > 0 P(X1(t)> X2(t)>,−−−,Xn(t))> 0, then the Payoff of the option

becomes

f (w) = max(Xi(t)−X j(t))+, i 6= j.

We intend to determine the price and the Hedging portfolio of this option by using the gener-

alized CHO formula. The Girsanov change of measure for this set up can be easily done by

letting σ .U = α − ρI, where I =



1

1

.

.

.

1


, σ =



σ11 σ12 σ13...σ1n

σ21 σ22 σ23...σ2n

. . ...

. . ...

. . ...

σn1 σn2 σn3...σnn


, U =



u1

u2

.

.

.

un


, α =



α1

α2

.

.

.

αn


With constant coefficient,U satisfies the Novikov conditions, so that the probability measure Q

defined by dQ(w) = M(T )dP(w) is equivalent to P and e−ρtXi(t) is a martingale with respect

to Q.

M(t) = e(∑
n
j=1 U jB j− 1

2 ∑
n
j=1 U2

j )

is a P- Martingale. With respect to Q, price Xi is

Xi(t) = Xi(0)e
((ρi− 1

2 ∑
n
j=1 σ2

i, j)t+∑
n
j=1 σi, jB j)

so that

e−ρtXi(t) = X̂i(t) = Xi(0)e
(∑n

j=1 σi, jB̂ j− 1
2 ∑

n
j=1 σ2

i, j)
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i = 1,2,−,−,−n is a Q -Martingale. We assume that σ is invertible so that the market is

complete.Suppose we choose a self financing portfolio Θ=(Θ0(t),Θ1(t),−−−Θn(t))Tr,which

is also admissible ,then the discounted value of the portfolio at any time t < T is given by

e−ρtV Θ(t) =V Θ(0)+
∫ t

0
e−ρs

Γ(s)dB̂(s),

where Γ(s) = (Θ1(t),Θ2(t),−−−Θn(t))Tr. From CHO formula, we note that for any contin-

gent claim, f (w) =V Θ(T ), we get

V Θ(T ) = EΘ[e−ρt f (w)]

and

Γ(t) = e−ρ(T−t)
σ
−1EΘ[Dt f (w)|Ft ],

where, σ−1 is the inverse of σ such that the determinant of σ , ∆ 6= 0,since our market is assumed

a complete market.

Proposition 4.1. Let X1,X2,−−−,Xn be n independent standard normal random variables and

let λ ∈ R.Let the probability measure Pλ equivalent to P with density

Pλ

P
= e(λXi− 1

2 λ 2),

then the random Gaussian variables X1−λ ,X2, ,−,−,−Xn are independent standard variables

with respect to Pλ .

Proof. We have to show that X1−λ ,X2,−,−,−Xn are independent normally distributed random

variables with respect to the probability measure Pλ . Since a random variable X with mean

E[X ] = m and variance E[X −E(X)]2 = c is normally distributed if it characteristics function

E[eitX ] = e−
1
2 ct2+itm. Then

EP(λ )[e
itX1 ] = EP[eitX1.eλX1− 1

2
λ

2](5)

= EP[eit+λ )X1− 1
2 λ 2

](6)

= e
1
2 (it+λ )2− 1

2 λ 2
(7)

= e−
1
2 t2+itλ .(8)
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Therefore X1 is normal with mean λ and variance 1 with respect to Pλ .It follows that X1−λ

is normal with mean zero and variance 1 with respect to P(λ ). We show also that X2 is normal

with mean,

EP(λ )[X2] = EP[eλX1− 1
2 λ 2

X2] = EP[eλX1− 1
2 λ 2

]EP(X2) = 0

and

EP(λ )[X
2
2 ] = EP[e(λX1−

1
2

λ
2)X2

2 ] = 1

has variance 1. It shows that Xi, i = 1,2,−−−n i.e, X1,−,−,Xn are normally distributed with

mean zero and variance 1.

To prove that X1−λ ,X2, ,−,−,−Xn are uncorrelated, i.e.,

EP(λ )[(X1−λ )X j] = 0, j = 2,3,−,−,−n

EP(λ )[(X1−λ )X j] = EP[(X1−λ )X j.eλX1− 1
2 λ 2

] = EP[X j]E[(X1−λ )eλX1− 1
2 λ 2

] = 0.

Corollary 4.2. Let X1,X2,−,−,−Xn be an n-independent standard normal variables and λ1,λ2,−,−λn ∈

R. Then

EP[(Si−S j)
+] = eyi+

1
2 λ 2

i Φ(
yi− y j +λ 2

i√
λ

2
i +λ 2

j

)− ey j+
1
2 λ 2

j Φ(
yi− y j +λ 2

j
√

λ
2
i +λ 2

j

) i 6= j,

where

Si = eλiXi+yi

and

S j = eλ jX j+y j , i, j = 1,2,−,−,n.

Proof.

EP[(Si−S j)
+] = EP[(Si−S j)]

Si > S j

= EP[eλiXi+yi1λiXi+yi>λ jX j+y j ]−EP[eλ jX j+y j1λiXi+yi>λ jX j+y j ]

= EP[eλiXi+yi+
1
2 λ 2

i −
1
2 λ 2

i ]−EP[e
λ jX j+y j+

1
2 λ 2

j −
1
2 λ 2

j ]

= e
1
2 λ 2

i +yiEP[eλiXi− 1
2 λ 2

i ]− e
1
2 λ 2

j +y jEP[e
λ jX j− 1

2 λ 2
j ],
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By the above proposition, one has

= e
1
2 λ 2

i +yiEP(λ )[λiXi + yi > λ jX j + y j]− e
1
2 λ 2

j +y jEP(λ )[λiXi + yi > λ jX j + y j]

= e
1
2 λ 2

i +yiP(λi)[λiXi + yi > λ jX j + y j]− e
1
2 λ 2

j +y jP(λ j)[λiXi + yi > λ jX j + y j]

(9)

= e
1
2 λ 2

i +yiP(λi)[λi(Xi−λi)−λ jX j > y j−yi−λ
2
i ]−e

1
2 λ 2

j +y jP(λ j)[λ j(X j−λ j)−λiXi 6 yi−y j−λ
2
j ].

We have shown that the random variables X1−λ1,X2,−,−,Xn are standard normal distribution

with respect to P(λi), so that with respect to the same probability measure, the random variable

Zi = λi(Xi−λi)−λ jX j, j 6= i has a normal distribution with mean zero(vector) and co-variance

matrix σ2
i = λ 2

ik +λ 2
jk i > j. But σ2

i ∀i, are equal, so that

σ
2
i = σ

2
i+1 =−−= σ

2
i+(n−1),

Then (9) becomes

eyi+
1
2 λ 2

i Φ(
yi− y j +λ 2

i√
λ 2

i +λ 2
j

)− ey j+
1
2 λ 2

j Φ(
yi− y j +λ 2

j√
λ 2

i +λ 2
j

).

If we consider a portfolio with 3 underlying assets i.e., n = 3 then the above has the following

expression

(10) ey1+
1
2 λ 2

1 Φ(
y1− y2 +λ 2

1√
λ 2

1 +λ 2
2

)− ey2+
1
2 λ 2

2 Φ(
y1− y2 +λ 2

2√
λ 2

1 +λ 2
2

)

(11) e1+
1
2 λ 2

1 Φ(
y1− y3 +λ 2

1√
λ 2

1 +λ 2
3

)− ey3+
1
2 λ 2

3 Φ(
y1− y3 +λ 2

3√
λ 2

1 +λ 2
3

)

(12) ey2+
1
2 λ 2

2 Φ(
y2− y3 +λ 2

2√
λ 2

2 +λ 2
3

)− ey3+
1
2 λ 2

3 Φ(
y2− y3 +λ 2

3√
λ 2

2 +λ 2
3

).

5. Pricing and hedging Portfolio of best of assets option
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For a fixed time interval [0,T ], the random variables Xi, i = 1,2,−,−,n are Brownian motion

Bi(T,w) respectively.The equivalent probability measure P(−→u ) will be given by the density

dP(−→u )(w) = e
−→u Xi− T

2 ||
−→u ||2,

where we have assume that the vector −→u satisfies the Novikov condition.

Proposition 5.1. The price of the European Best of Asset option is given by

V (0) = Xi(0)Φ(
ln(Xi(0)

K )+ T
2 ∑

n
j=1Ci j√

T ∑
n
j=1Ci j

),

where Φ(x) =
∫ x
−∞

1√
2π

e
−1
2 Z2

dz is the cumulative distribution function of the standard normal

distribution.

Proof. With respect to the EMM Q,the price of the n underlying assets Xi, i = 1,2,−,−n are

given by

Xi(t) = Xi(0)e
(ρ− 1

2+∑
n
j=1 Ci j)t+∑

n
j=1 Ci jB j(t) = Xi(0)eρt .e−

T
2 ||
−→u i||2+−→u iBi(t), i = 1,2,−,−n,

where

−→u i = (σi1,σi2,−,−,σin)
Tr,

Bi(t) = (B1(t),B2(t),−,−,Bn(t))Tr. Therefore,the time zero price of the European Best of

Asset option is

V (0) = EQ[e−ρT f (w)] = EQ[Xi(T )−K]

= EQ[Xi(0)e−
T
2 ||
−→u i||2+−→u iBi(T )−K].

If we define the probability measure Q(ui), i = 1,2,−,−n equivalent to Q by

dQ(ui)(w) = e−
T
2 ||
−→u i||2+−→u iBi(T ),

then

EQ[Xi(0)e−
T
2 ||
−→u i||2+−→u iBi(T )−K]

= Xi(0)EQ(ui)[1−→u iBi(T )−K≥ln(Xi(0)
K )+ T

2 ||
−→u i||2

].
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Considering the result of the previous proposition,we then state that the price at time zero of the

European call for Best of Asset option is given by V (0) = Xi(0)N(d1) where

d1 =
In(Xi(0)

K )+ T
2 ||ui||2√

T ||ui||
2 .

Also,the time zero price of the European put for Best of Asset option is given by V (0) =

Xi(0)N(d2), where

d2 =
In(Xi(0)

K )− T
2 ||ui||2√

T ||ui||
2

||ui||2 = ∑
n
j=1 σ2

i, j. It is important to observe that this price depend only on the market volatili-

ties.

We consider the portfolio

Θ = (θ0(t),θ1(t),θ2(t), ...θn(t)).

Using the CHO formula, we have

Γ(t) = e−ρ(T−t)
σ
−1EQ[DtF/Ft ],

where σ−1 = inverse of the matrix nxn matrices, and Γ(t) = (θ1(t),θ2(t), ...θn(t)) DtF =

(σi1,σi2, ...,σin)
TrXi(T )1D−K), where D = w : Xi(T,w)> K, therefore, we have

EQ[DtF/Ft ] = (σi1,σi2, ...,σin)
TrEQ[Xi(T )1D Ft−K).

Proposition 5.2. The perfect Hedge Θ(t) of the option is given by

Θi(t) =
1
∆
[Xi(t)(σi,iσ j, j−σ

2
i, j)Φ(di)−X j(t)(σ j,iσ j,i−σi, jσ j, j)Φ(d j)].

Proof. To compute EQ[Xi(T )1D/Ft ] i = 1,2, ...n,we need the markov property.

We compute EQ[Xi(T )1D/Ft ] as follow:

EQ[Xi(T )1D/Ft ] = EQ[Xi(T )1Xi(T )≥K/Ft ]

= EQ[F(Xi(T ))/Ft ] = EXi,K
Q [F(Y (T − t)/Ft ],
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where f (y) = f (Xi,K) = 1Xi≥K . Therefore, the previous expression becomes EXi,K
Q [Xi(T −

t)1Xi(T−t)≥K]. But with respect to Q, we have

Xi(t) = Xi(0)e
(ρ− 1

2 ∑
n
j=1 σi, j2)t +

n

∑
j=1

σi, jB j(t), i = 1,2...n.

Since Y (T − t) is independent of Ft , we have

EXi,K
Q [F(Y (T − t) Ft ]Xi=Xi(t)

= EQ[Xi(t)e
(ρ− 1

2 ∑
n
j=1 σ2

i, j)(T−t)+
n

∑
j=1

σi, jB j(T − t)1D]

= Xi(t)eρ(T−t)EQ[e
(− T−t

2 ∑
n
j=1 σ2

i, j)t +
n

∑
j=1

σi, jB j(T − t)1D],

where

D =
n

∑
j=1

σ1, jB j(T − t)−
n

∑
j=1

σ2, jB j(T − t)≥ T − t
2

n

∑
j=1

(σ2
1, j−σ

2
2, j)+ In(

Xi

K
).

Since ∑
n
j=1(σ

2
1, j) = ||Ui||2, we have = Xi(t)eρ(T−t)EQ[e(−

T−t
2 ||Ui||2+UiB(T−t)1D] so that

D =
−→
U 1
−→
B (T − t)−−→U 2

−→
B (T − t)≥ T − t

2
||−→U 2||+ In(

X1(t)
K

)

−→
B (T − t) =

∥∥∥B1(T − t) B2(T − t) , ... ,Bn(T − t)
∥∥∥ This is normally distributed with mean

zero and Variance (T − t) with respect to the measure Q. Then,Z(T − t) = B(T−t)−0√
(T−t)

is a nor-

mally distributed random vector with zero vector mean and covariance identity matrix.Then our

expression become

Xi(t)eρ(T−t)EQ[e(−
T−t

2 ||Ui||2+Ui
√

(T−t)Z(T−t)1D]

so that

D =
−→
U 1
√

T − tZ1(T − t)−−→U 2
√

T − tZ2(T − t)≥ T − t
2
||Ui||2 +

T − t
2
||U2||2 + In(

Xi(t)
K

)

Re-arranging our expression, we have that

Xi(t)eρ(T−t)EQ[e−(
T−t

2 )||−→U i||2 +
−→
U i
√

(T − t)Z(T − t)1D]

D =
√

T − t
−→
U iZ(T − t)≥ T − t

2
||−→U i||2 + In(

Xi(t)
K

)
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so that = Xi(t)eρ(T−t))Φ(d)

d =
In(Xi(t)

K )+ T−t
2 ||
−→
Ui ||2√

T − t||Ui||2

EQ[DtF/Ft ] = (σi1,σi2, ...,σin)
T Xi(t)eρ(T−t))

Φ(di)− (σ j1,σ j2, ...,σ jn)
T X j(t)eρ(T−t))

Φ(d j)

Γ(t) = e−ρ(T−t)
σ
−1EQ[DtF/Ft ]

gives

Γ(t) = (σi1,σi2, ...,σin)
T Xi(t)σ−1

Φ(di)− (σ j1,σ j2, ...,σ jn)
T X j(t)σ−1

Φ(d j).

Conclusion. In this paper, we have developed an explicit formulation with the generalized

Clark-Haussmann -Ocone CHO formula for the price and hedging of portfolio of n-risky asset-

s.This has a direct implication on European contingent claim.This work can be extended if we

considered a stratonovich approach for the equations (3) and (4) and investigate the possibility

of having a solution in relation to the malliavin calculus developed on CHO.
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