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Abstract. We study a financial market where asymmetric information, mispricing and jumps exist, and link the

random optimal portfolios of informed and uninformed investors to the deterministic optimal portfolio of the

symmetric market, where no mispricing exists. In particular, we show that under quadratic approximation, the ex-

pectation of the random optimal portfolio in the asymmetric market is equal to the optimal deterministic portfolio

in the symmetric market. We also compute variance bounds of the optimal portfolios for investors having logarith-

mic preferences, and prove that the variance of optimal portfolios are bounded above by a simple function of the

mean–reversion speed, level of mispricing, and the variance of the continuous component of the return process of

the asset.
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Investors in financial markets do not all share the same information set, and indeed, some

are more informed than others. This naturally leads to asymmetric information which affects

trading strategy and asset prices. Understanding the link between asset mispricing and asym-

metric information is a topic of ongoing interest in financial economics. Many studies have

been conducted on asymmetric information and its effects on asset price, including Biais et al.

[1], Mendel and Shleifer [11], Serrano-Padial [13], and Vayanos and Wang [16]. Mispricing

models for assets under asymmetric information are studied in Brunnermeier [2], Buckley et al.

[4, 6], Buckley and Long [5], Guasoni [9], Shiller [14], Summers [15] and Wang [17].

The classic Black-Scholes option pricing model assumes that returns follow geometric Brow-

nian motion. However, the return processes differ from this benchmark in at least three impor-

tant ways. First, asset prices jump, leading to non-normal return innovations. Second, return

volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often

negatively for equities. Carr and Wu [7] show that time-changed Lévy processes can simultane-

ously address these three issues. Lévy processes have gained more acceptance in the modelling

of asset returns as the processes capture jumps of finite and infinite activity and variation, and

as such, are good candidates for modelling asset returns.

Buckley et al. [6] incorporate Lévy jumps in asset pricing by developing a mispricing model

of an asset under asymmetric information in a non-Guassian market driven by a jump-diffusion.

The jumps are driven by a pure jump Lévy process, while the mispricing is modelled by a

continuous Ornstein–Uhlenbeck process. Utility is logarithmic, as in the purely continuous

geometric Brownian motion case of Guasoni [9]. The authors obtain random optimal portfolios

and maximum expected logarithmic utilities for both the informed and uninformed investors,

including asymptotic excess utilities and show that the optimal portfolio of each investor may

contain excess asset holdings over its Merton optimal. They obtain approximation results which

suggest that jumps reduce the excess asymptotic utility of the informed investor relative to the

uninformed investor, and hence jump risk could be helpful for market efficiency as an indirect

reducer of information asymmetry. Their study also suggests that investors should pay more

attention to the overall variance of the asset pricing process when jumps exist in mispricing

models. Moreover, if there is too little or too much mispricing, then the informed investor has
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no utility advantage in the long run. Buckley and Long [5] present a discontinuous mispricing

model under asymmetric information where both the asset/stock and mispricing jump, while

Buckley [3] reports on the long-run excess optimal power utility of informed investors.

In this paper, we link the random optimal portfolios of the investors in the asymmetric mar-

ket to the symmetric market, and show that the random optimal portfolio is equal to the de-

terministic optimal portfolio plus noise under quadratic approximation. This leads to purely

deterministic optimal portfolios which result from Lévy jump-diffusion markets having strictly

deterministic market coefficients. We also report the mean and variance of these random opti-

mal portfolios in asymmetric markets for both investors, and provide bounds on the volatilities

of each portfolio.

The rest of the paper is organized as follows: A literature review is presented in the next sec-

tion. The model is briefly reviewed in Section 3. We present asymmetric optimal portfolios for

both investors, and link these random portfolios to the symmetric deterministic optimal portfo-

lio in Section 4. We also report expectation and variance bounds, along with their surfaces, for

each asymmetric optimal portfolio. Section 5 concludes the paper.

2. Related literature

Discrete-time mispricing (fads) models for stocks under asymmetric information were first

introduced by Shiller [14] and Summers [15] as plausible alternatives to the efficient market or

constant expected returns assumption (see, Fama [8]). Brunnermeier [2] presents an extensive

review of asset pricing under asymmetric information mainly in the discrete setting. He shows

how information affects trading activity, and that expected return depends on the information set

or filtration of the investor. These models show that past prices still carry valuable information,

which can be exploited using technical (chart) analysis that uses part or all of past prices to

predict future prices.

Wang [17] presents the first continuous-time asset pricing model under asymmetric infor-

mation, and obtained optimal portfolios for both the informed and uninformed investors. In

his paper, investors have different information concerning the future growth rate of dividends,
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which satisfies a mean-reverting Ornstein-Uhlenbeck process. Informed investors know the fu-

ture dividend growth rate, while the uninformed investors do not. All investors observe current

dividend payments and stock prices. The growth rate of dividends determines the rate of ap-

preciation of stock prices, and stock price changes provide signals about the future growth of

dividends. Uninformed investors rationally extract information about the economy from prices,

as well as dividends.

Guasoni [9] extends Summers [15] models to the purely continuous random setting. He stud-

ies a continuous-time version of these models both from the point of view of informed investor,

who observe both fundamental and market values, and from that of uninformed investor, who

only observe market prices. He specifies the asset price in the larger filtration of the informed

investor, and then derive its decomposition in the smaller filtration of the uninformed investor

using the Hitsuda [10] representation of Gaussian processes. Uninformed investors have a non-

Markovian dynamics, which justifies the use of technical analysis in optimal trading strategies.

For both types of investors, he solves the problem of maximization of expected logarithmic u-

tility from terminal wealth, and obtains an explicit formula for the additional logarithmic utility

of informed agents.

Buckley et al. [4] generalize the theory of mispricing models of stocks under asymmetric

information, to investors having preferences from the power utility class (Constant Relative

Risk Averse) instead of logarithmic preferences as in Guasoni [9], which is a limiting case of

the relative risk aversion being one. They allow the stock price dynamic to move continuously

as geometric Brownian motion, while the mispricing process remains as a continuous mean-

reverting Ornstein–Uhlenbeck process. They present log-linear representations of maximum

expected utilities of the investors, and report the excess utility of the informed investor. They

obtain analogous but more general results which includes those of Guasoni [9] as a special case

of the relative risk aversion approaching one. We direct the reader to Buckley and Long [5], and

Buckley et al. [6] and the references therein, for a complete review of the literature.

3. The model
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We begin by briefly reviewing the model presented in Buckley et al. [6]. Consider an econo-

my with two types of investors: informed investors, who observe both fundamental and market

values, and uninformed investors, who only observe market values. Investors have information

banks that are modelled by two different filtrations—the less informed investor has a filtration

H 0, corresponding to the natural evolution of the market, while the better informed investor

has the larger filtration H 1, which contains the information of the uninformed investor. Al-

though each investor observes the same asset price S, its dynamic depends on the filtration of

the observer. For both investors, the asset has log returns dynamic:

d(logSt) = (µt−
1
2

σ
2
t )dt +σtdYt +dXt , t ∈ [0, T ], (1)

Yt = pWt +qUt , p2 +q2 = 1, p≥ 0, q≥ 0,

dUt = −λ Ut dt +dBt , λ > 0, U0 = 0, (2)

Xt =
∫ t

0

∫
R

xN(ds,dx),

where W and B are independent standard Brownian motions independent of X , while U = (Ut)

is a mean-reverting Ornstein–Uhlenbeck process with rate λ , and X is a pure jump Lévy process

having a σ -finite Lévy measure v on B(R−{0}), with triple (ζ ,0,v), where ζ =
∫
|x|<1 xv(dx).

N is a Poisson random measure on R+×B(R−{0}) that is linked to the asset. It counts the

jumps of X in the time interval (0, t). The proportion of mispricing in the asset is given by q2.

The return process of the asset has three components; a continuous component µ∗t = µt −
1
2σ2

t , a diffusive component σtdYt which is random, and a discontinuous component Xt , which

is also random. The continuous component of the asset’s return µ∗t and the volatility σt , are

assumed to be deterministic functions with σ = limt→∞ σt = σ∞ > 0. Generally, σt will be

taken to be a constant. The process Y = (Yt)t≥0, the continuous random component of excess

return, and the mean–reverting O–U process U = (Ut)t≥0 representing the mispricing, are de-

fined exactly as in Guasoni [9], where U satisfies the Langevin stochastic differential equation

(2). This admits a unique solution Ut =U0 e−λ t +
∫ t

0 e−λ (t−s)dBs =
∫ t

0 e−λ (t−s)dBs with EUt = 0

and EU2
t = Var(Ut) = (1− e−2λ t)/2λ . Applying Itô’s formula to (1) yields percentage return:

dSt

St−
= µtdt +σtdYt +

∫
R
(ex−1)N(dt,dx), t ∈ [0, T ].
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Now let i ∈ {0,1}. Buckley et al. [6] show that under asymmetric information, the percentage

returns dynamics for the i-th investor depends on the filtration H i and can be written as

dSt

St−
= µ

i
t dt +σt dBi

t +
∫
R
(ex−1)N(dt, dx), (3)

where µ i
t = µt +υ i

t σt , υ0
t =−λ

∫ t
0 e−λ (t−u)(1+γ(u))dB0

u, υ1
t =−λ qUt =−λ q

∫ t
0 e−λ (t−u)dBu,

1+ γ(u) = (1− p2)/(1+ p tanh(pλu)) and B and Bi are H i–adapted standard Brownian mo-

tions. Furthermore, Buckley et al. [6] show that to maximize the expected logarithmic utility

from terminal wealth, an investor must hold an optimal portfolio given by the following:

Lemma 1. [6] Let π ∈ [0, 1] and defined G(π) =
∫
R log(1+π(ex−1))v(dx), where v(.) is the

Lévy measure of the jump process.

(1) If
∫
R(e
±x−1)2v(dx)< ∞, then G′′(π)< 0. That is, G is strictly concave on [0, 1].

(2) Let i ∈ {0,1}. For the i-th investor, there is an unique optimal portfolio π∗,i ∈ [0,1] for

the asset with dynamics (1), given by π
∗, i
t =

θ i
t

σt
+

G′(π∗, it )

σ2
t

, where θ
i
t =

µ i
t − rt

σt
is the Sharpe

ratio (market price of risk) of the asset for the i-th investor, rt is the risk-free interest rate and

π∗, i ∈ [0,1]⊂Ai(x), the admissible set.

4. Linkage of asymmetric and symmetric optimal portfolios

Consider the situation of a symmetric financial market with no mispricing, where both in-

vestors have equal information and observe the fundamental value of the asset. In this case,

q = 0, and the asset price S has percentage return dynamic:

dSt

St−
= µtdt +σt dWt +

∫
R
(ex−1)N(dt, dx). (4)

Lemma 1 gives the optimal portfolio, π
∗, i
t , for each investor as π

∗, i
t = [µ i

t −rt +G′(π∗, it )]/σ2
t .

Thus, for the symmetric market (4), the deterministic optimal portfolio that maximizes expected

utility of terminal wealth is π∗t = [µt− rt +G′(π∗t )]/σ2
t , which must be solved numerically.

We now link π∗, i, the random optimal portfolio in the asymmetric market with dynamic given

by (3), to π∗t , the deterministic optimal portfolio in the symmetric market, with corresponding

dynamic (4).
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Theorem 1. Let i ∈ {0,1} and T > 0 be the investment horizon. Assume that G is restricted to

[0, 1] and
∫
R(e
±x−1)kv(dx)< ∞ for some integer k ≥ 2.

(1) There exists a process η i between π∗ and π∗, i, such that for all t ∈ [0,T ],

π
∗, i
t = π

∗
t +

υ i
t σt

σ2
t + |G′′(η i

t )|
. That is, π

∗, i
t = π∗t + ε i

t , where ε represents noise.

(2) Under quadratic approximation of G at π∗t , π
∗, i
t ≈ π∗t +

υ i
t σt

σ2
t −G′′(π∗t )

and E[π∗, it ]≈ π∗t .

Proof. (1) If
∫
R(e
±x− 1)2v(dx) < ∞, then G′′(π) exists for all π ∈ [0, 1], and by Lemma 1,

optimal portfolios exist for both symmetric and asymmetric markets, given respectively by

π
∗
t =

µt− rt +G′(π∗t )
σ2

t
=

µt− rt

σ2
t

+
G′(π∗t )

σ2
t

,

and

π
∗, i
t =

µ i
t − rt +G′(π∗, it )

σ2
t

=
υ i

t
σt

+
µt− rt

σ2
t

+
G′(π∗, it )

σ2
t

.

Let the portfolios β ∗, i, be defined by: β
∗, i
t := π

∗
t +

υ i
t

σt
=

µt− rt

σ2
t

+
G′(π∗t )

σ2
t

+
υ i

t
σt

. Since G′ is a

differentiable function, then by the Mean Value theorem, there exists a process η i between π∗

and π∗, i such that for all t ∈ [0, T ],

π
∗, i
t −β

∗, i
t =

G′(π∗, it )−G′(π∗t )
σ2

t
=

(π∗, it −π∗t )G
′′(η i

t )

σ2
t

.

Since G′′(π)< 0 for all π , then π
∗, i
t − (π∗t +

υ i
t

σt
) =−(π∗, it −π∗t )|G′′(η i

t )|
σ2

t
. Rearranging, we get

π
∗, i
t
(
σ

2
t + |G′′(η i

t )|
)
= υ

i
t σt +π

∗
t
(
σ

2
t + |G′′(η i

t )|
)
,

whence, π
∗, i
t = π

∗
t +

υ i
t σt

σ2
t + |G′′(η i

t )|
.

(2) E(υ i
t ) = 0, and under quadratic approximation of G at π∗t , G′′(η i

t ) ≈ G′′(π∗t ). Therefore

by Part (1),

E[π∗, it ] = π
∗
t +E

(
υ i

t σt

σ2
t + |G′′(η i

t )|

)
≈ π

∗
t +σt

E(υ i
t )

σ2
t −G′′(π∗t )

= π
∗
t . �

Observe from Theorem 1 that the random portfolio is the deterministic symmetric optimal

portfolio plus noise which is driven by the diffusive volatility of the asset return and the mis-

pricing processes. That is, the investors hold a random excess amount of assets that depends
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on the level of mispricing, volatility, mean-reversion speed, and symmetric optimal portfolio.

Moreover, under quadratic approximation, the expected value of the random asymmetric op-

timal portfolio is the symmetric optimal portfolio for each investor. Thus, the deterministic

symmetric optimal portfolio is the benchmark for the random optimal asymmetric portfolios.

Another advantage of our main result in Theorem 1 is that it also allows us to easily compute

upper bounds on the expected squared deviations of the asymmetric and symmetric optimal

portfolios for each investor.

Proposition 1. Let i ∈ {0,1}, p ∈ [0, 1] and T > 0 be the the investment horizon. Assume that

G is restricted to [0, 1] and
∫
R(e
±x− 1)kv(dx) < ∞ for some integer k ≥ 2. Then, for each

t ∈ [0, T ],

(1) E[π∗, it −π∗t ]
2 ≤ λ

2σ2
t
(1+ p)(1+(−1)i p)(1−e−2λ t), where λ is the mean–reversion rate of

the mispricing process.

(2) Var[π∗, it ]≤ Li, where Li =
λ

2σ2
t
(1+ p)(1+(−1)i p) are the variance bounds.

Proof. (1) By Theorem 1, π
∗, i
t = π

∗
t +

υ i
t σt

σ2
t + |G′′(η i

t )|
. The expected squared deviation of π

∗, i
t

from the symmetric optimal portfolio is E[π∗, it −π
∗
t ]

2 = E
[

υ i
t σt

σ2
t + |G′′(η i

t )|

]2

≤ E[υ i
t ]

2

σ2
t

.

When i = 1, it is easy to show that

E[υ1
t ]

2 =
λ

2
(1− p2)(1− e−2λ t) =

λ

2
(1+ p)(1− p)(1− e−2λ t).

When i = 0, υ0
t =−λ

∫ t
0 e−λ (t−u)(1+ γ(u))dB0

u, and by Itô isometry,

E[υ0
t ]

2 = λ
2
∫ t

0
e−2λ (t−u)(1+ γ(u))2du. (5)

But 1+ γ(u) = 1−p2

1+p tanh(pλu) , where tanh(u) ∈ (−1,1), for each p ∈ [0,1]. Therefore, we have

0≤ 1+ γ(u)≤ 1−p2

1−p = 1+ p, whence (1+ γ(u))2 ≤ (1+ p)2, and by (5)

E[υ0
t ]

2 ≤ λ
2
∫ t

0
e−2λ (t−u)(1+ p)2du = λ

2(1+ p)2e−2λ t
∫ t

0
e2λudu

= λ
2(1+ p)2e−2λ t (e

2λ t−1)
2λ

=
λ

2
(1+ p)2(1− e−2λ t)

=
λ

2
(1+ p)(1+(−1)0 p)(1− e−2λ t).
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Therefore, for i ∈ {0,1},

E[υ i
t ]

2 ≤ λ

2
(1+ p)(1+(−1)i p)(1− e−2λ t),

and

E[π∗, it −π
∗
t ]

2 ≤ λ

2σ2
t
(1+ p)(1+(−1)i p)(1− e−2λ t).

(2) The variance of the asymmetric optimal portfolio is

Var[π∗, it ]≤ E[π∗, it −π
∗
t ]

2

≤ λ

2σ2
t
(1+ p)(1+(−1)i p)(1− e−2λ t)

≤ λ

2σ2
t
(1+ p)(1+(−1)i p) = Li . �

We first observe that the variance bounds L0 = λ (1+ p)2/(2σ2
t ) and L1 = λq2/(2σ2

t ) satisfy

L1 ≤ L0 for all values of the parameters. This is expected as the informed investor is exposed

to the less uncertainty. We also note that when there is no mispricing (i.e. q2 = 0 and hence

L1 = 0), there is no variability in the optimal portfolio of the informed investor. In this case,

the investor holds the Merton [12] optimal portfolio. The variance bound for the uninformed

investor will be at its maximum in this event. Similarly, if there is 100% mispricing (i.e. q2 = 1),

the variance bound for the optimal portfolio of the uninformed investor is at its minimum value

of L0 = λ/(2σ2
t ) which coincides with the maximum variance bound L1 = λ/(2σ2

t ) of the

optimal portfolio of the informed investor.

Another interesting observation of our study is that optimal portfolios for both investors have

little variability as the mean-reversion speed λ → 0. Thus at slow speeds, both investors hold

the expected value of their random portfolios which is its Merton optimal portfolio. In prac-

tice, investors assume that σt , the continuous component of the asset’s volatility, is constant.

However, take note that the variances of the optimal portfolios of both investors are extremely

sensitive to the variance of the asset, being inversely related thereto. Plots of variance bounds

surfaces L0(λ ,σ ,q2) and L1(λ ,σ ,q2) for the uninformed and informed investor, respectively,

are presented below in Figures (1)-(2), where q2 is the proportion of mispricing in the market.
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FIGURE 1. Variance Bounds Surfaces L0(λ ,σ ,q2) and L1(λ ,σ ,q2) when Asset Volatility σ = 24%.

1
0.8

q2: Percentage of Fads

0.6
0.4

0.2
00

λ: Mean-reversion speed

5

60

80

0

40

20

10V
ar

ia
nc

e 
B

ou
nd

s:
 L

0
 &

 L
1

0

q2: Percentage of Fads

0.5

1
0

2

λ: Mean-reversion speed

4
6

8
10

0

50

V
ar

ia
nc

e 
B

ou
nd

s:
 L

0
 &

 L
1

02

λ: Mean-reversion speed

468
q2: Percentage of Fads

100
0.5

1

0

20

40

80

60

V
ar

ia
nc

e 
B

ou
nd

s:
 L

0
 &

 L
1

L
1
(λ,σ,q2)

L
0
(λ,σ,q2)

10
8

λ: Mean-reversion speed

6
4

2
0

q2: Percentage of Fads

0

0.5

0

80

40

20

60

1V
ar

ia
nc

e 
B

ou
nd

s:
 L

0
 &

 L
1

Stock Volatality (σ ) = 50%

FIGURE 2. Variance Bounds Surfaces L0(λ ,σ ,q2) and L1(λ ,σ ,q2) when Asset Volatility σ = 50%.
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5. Conclusion

When asymmetric information, mispricing/fads and jumps exist in the price of a financial

asset, optimal portfolios of both informed and uninformed investors are random. However, in

a symmetric market, the portfolios of both investors are identical and equal to the deterministic

Merton optimal portfolio. We show that under quadratic approximation, these random portfo-

lios are noisy representations of the deterministic optimal portfolio of the symmetric market.

Moreover, their expectations are the deterministic Merton optimal portfolio. We also show that

the variance of each portfolio is bounded above by a simple function of the mean reversion

speed, level of fads/mispricing, and variance of the continuous component of the return process

of the asset. There is an asymmetric relation between the variance bounds and return volatility.

However, the variance bounds correlate positively with mean reversion speed and the level of

mispricing/fads.
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