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Abstract. In this paper, we construct a continuous-in-time model which is designed to be used for the finances

of public institutions. This model is based on using measures over time interval to describe loan scheme, reim-

bursement scheme and interest payment scheme; and, on using mathematical operators to describe links existing

between those quantities. The consistency of the model with respect to the real world is illustrated using examples

and its mathematical consistency is checked. Then the model is used on simplified examples in order to show its

capability to be used to forecast consequences of a decision or to set out a financial strategy.
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1. Introduction

For the time being, a discrete model of financial multiyear planning has been being used by the

company MGDIS (http://www.mgdis.fr/). This model allows to set out annual and multiyear

budgets for any organization and, in particular, for local communities. It has also been being

marketed by MGDIS in the context of the local community finances.
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This model uses tables and generates outcomes in the form of tables. Each value in the tables

is a synthetic value of a given quantity over a given period of time.

The implementation of the model to provide answers to a question consists first in setting

the whole time period of interest associated with the question. Then, it consists in defining the

periods of time and the quantities under consideration. A table is filled with every known (or

forecasted) quantity associated with every period of time. The model allows to compute the

quantities that are consequences of the known ones on the first period of time. Then, knowing

the values of all quantities under consideration on the first period, the model allows to compute –

on the second period of time – the values of the quantities that are consequences of the quantities

on the first period of time and of the known quantities on this second period of time. And finally,

the process goes on to compute the values of all quantities on the third period, on the fourth one,

etc.

This way to proceed gives good results, works well and software tools implementing it help

organizations to foresee the consequences of their decisions and to elaborate their strategies.

Nevertheless it has drawbacks. The first one is related to the fact that the definition of the pe-

riods of time at stake is done at the beginning of the process. Consequently, in the case when

an implementation of the model is done using given periods of time and when the same model

is needed, but with other periods of time, all the process needs to be redone starting from the

ground. As this is expensive, this is commonly not done. And in practice, only one model, with

one set of periods of time, is implemented.

The second drawback is linked with the using of tables itself. This imposes to compute the

quantities on the first period of time before computing them on the second one etc. Hence, this

makes the model hard to be used within an automatic strategy elaboration tool that needs to

manage constrains and goals several years ahead.

A way to overcome those drawbacks consists in designing models of a new kind which are

continuous-in-time, which involve mathematical objects like measures and densities and which

use mathematical operators like derivation, integration and convolution.

As those models are continuous-in-time (see Merton [9] and Sundaresan [10]), the question
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of the periods of time is not an issue while implementing the model. They can of course be

introduced once all the measures are computed. In particular, the outcomes of the model can be

reported on any set of periods of time without reimplementing it.

On another hand, as it manages measures, that are defined on the whole time period of interest,

using operators that link them, the issue of computing things on a given year before computing

things on the next year etc. is avoided. Then the question of establishing strategies may be

expressed as a problem of optimization under constraints involving a fitness (see Hanselmann,

Schrempf & Hanebeck [7]), mathematical operators and (if they exist) their inverses.

Setting out first models of that kind is the aim of the present paper. This is done with the

constraint that the discrete model of financial multiyear planning can be interpreted as particu-

lar case of the continuous-in-time models built in the present paper. This is important in order

to reuse works that were previously led using the discrete model in the new framework.

We refer to Frénod & Safa [2, 4, 3], which improve one of the continuous-in-time financial

models built in the present paper incorporating in it elements of control theory in order to deter-

mine the optimal loan scheme that achieves desired goals and that satisfies imposed constraints.

The paper is organized as follows. In section 2, we introduce the models. There are the ”fi-

nancial model with constant rate”, the ”model with variable rate” (which is a simple evolution

of the former one). There is also the ”financial model with constant rate set at instants of bor-

rowing” which needs a non-direct improvement of the financial model with constant rate. The

mathematical consistency of the models is analyzed and the way to interpret them is explained.

In section 5, the models are used on simplified problems in order to show how they can be used.

2. Financial model with constant rate

2.1. Mathematical material. In this section, we build the financial model which we will work

with hereafter. This model is based on the use of measures. We will take as definition of

measures the Radon measure slant that consists in saying that a measure on a close, bound-

ed and non-empty interval [tI,Θmax] ⊂ R is a continuous and linear form acting on space



4 E. FRÉNOD, T. CHAKKOUR

C o
c ([tI,Θmax]) of continuous functions defined over [tI,Θmax]. It is well known that the usu-

al norm on C o
c ([tI,Θmax]) is:

‖ψ‖L∞([tI,Θmax]) = sup
t∈[tI,Θmax]

{
|ψ(t)|

}
,(2.1)

and that the set of Radon measures M ([tI,Θmax]) is a Banach space when provided with norm:

‖µ‖M ((tI,Θmax)) = sup
ψ∈C o

c ([tI,Θmax]),ψ 6=0

{
〈µ,ψ〉

‖ψ‖L∞([tI,Θmax])

}
.(2.2)

As we will use the convolution and Fourier Transform which are operators acting on measures

over R, we will also consider that M ([tI,Θmax]) is the set of Radon Measures over R, supported

in [tI,Θmax].

Among M ([tI,Θmax]), some measures are absolutely continuous with respect to the Lebesgue

measure dt. This means that they read ρ(t)dt, where t is the variable in R. From the application

point of view, the density ρ(t) of such a measure can be interpreted as a time density (time

density of borrowed amount linked with a loan, time density of repayment, etc.). In the sequel,

we will call those kinds of measures ”density measures”. Other measures, for instance Dirac

masses δt=t1 are concentrated. They can be interpreted as localized actions or payment etc.

Before explaining the quantities that are involved in the models and the relations between

them, we introduce Tmin which is the time scale below which nothing coming from the model

will be observed. To be more precise, we say that a measure m̃ is observed over time interval

[t1, t2] if

∫ t2

t1
m̃,(2.3)

is computed. And, we will always, choose times t1 and t2 such that t2− t1 > Tmin.

2.2. Model building. In what follows, [tI,Θmax] stands for a time interval over which things

happen.
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The first quantity is the Loan Measure κ̃E . It is defined such that the amount borrowed

between times t1 and t2 is: ∫ t2

t1
κ̃E .(2.4)

It is related to the Total Borrowed Amount of the loan: Kmax by the following expression:∫ +∞

−∞

κ̃E = Kmax .(2.5)

The second one is the Capital Repayment Measure ρ̃K . It gives the scheme according to

which the capital is repaid and it is defined such that the amount of capital which is repaid

between t1 and t2 is: ∫ t2

t1
ρ̃K .(2.6)

Loan Measure κ̃E and Capital Repayment Measure ρ̃K are both supposed to be in M ([tI,Θmax])

and are connected by a convolution operator:

ρ̃K = κ̃E ? γ̃,(2.7)

where the Repayment Pattern γ̃ is a non-negative measure with total mass which equals 1, i.e:∫ +∞

−∞

γ̃ = 1,(2.8)

which support is included in [0,Θmax−tI] and which is such that the support of κ̃E ? γ̃ is included

in [tI,Θmax]. The Repayment Pattern expresses the way an amount 1 borrowed at t = 0 is repaid.

Notice that if κ̃E = κE(t)dt and γ̃ = γ(t)dt are density measures, then so is ρ̃K , i.e ρ̃K =

ρK (t)dt and:

ρK (t) = (κE ? γ)(t) =
∫ +∞

−∞

κE(s)γ(t− s) ds.(2.9)

Loan Density κE and Repayment Density ρK are time densities. Since the amounts are ex-

pressed in monetary unit, the unit of those densities is monetary unit over time. Then, since the

dimension of dt is time, κE(t)dt and ρK (t)dt have the dimension of a monetary amount. By

the way, because of its definition the dimension of density γ(t) is the inverse of a time yielding

γ(t)dt has no dimension. This makes that formula (2.9) is homogeneous with regard to dimen-

sion issues. In the case when the measures are not density measures, then κ̃E and ρ̃K have the
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dimension of monetary amount and γ̃ has no dimension. Thus, formula (2.7) is also consistent.

In order to illustrate formula (2.7) (or (2.9)), in Figure 1, we draw examples of κ̃E , γ̃ and

ρ̃K . The picture at the top left of Figure 1 shows three measures that are density measures.

The function at the top is Density γ and the one in the middle is Density κE . The result of the

convolution, which definition here is given by (2.9) is drawn at the bottom. The result of the

action of γ on κE via the convolution is a shift toward right and an enlargement of the support.

The picture at the top right shows the action of Repayment Pattern γ (which is a density mea-

sure) on a Loan Measure which is the Dirac mass δt= 1
4
. We see that the result is a function which

is a shift of 1
4 of γ toward the right. This illustrates that the Repayment Pattern gives the way

that an amount 1 borrowed at time 0 is repaid. Indeed, in the present situation the considered

Loan Measure means that an amount 1 is borrowed at time t = 1
4 . Hence, Repayment Density

ρK is the repayment density which is generated by an amount 1 borrowed at t = 0 shifted of 1
4 .

The picture at the bottom left represents the convolution of Repayment Pattern which is the

Dirac mass δt= 1
4

and density measure of Loan Density κE . The result is a function which is a

shift of κE of 1
4 . Here, Repayment Measure ρ̃K is a density measure. We notice the results of

pictures in the top right and the bottom left are the same. This results from convolution proper-

ty.

The picture at the bottom right shows the action of γ̃ which is Dirac mass δt= 1
4

on a sum of

two Dirac (δt= 1
4
+δt= 1

2
). This convolution result is not density measure, it is κ̃E translated of 1

4

which is the time at which the Repayment Pattern is concentrated.

The third quantity involved in the model is the Current Debt Field KRD. It is a function that,

at any time t, gives the capital amount still to be repaid. The fourth one is the Interest Payment

Measure ρ̃I . It is related to the Current Debt Field by a proportionality relation. This induces

that ρ̃I = ρI (t)dt is always a density measure and that ρI (t) is linked with KRD by:

ρI (t) = αKRD(t),(2.10)

where, α is the loan rate, it is the inverse of a time (see Remark 2.1). Relation (2.10) is dimen-

sionally homogeneous. Indeed, it relates Interest Payment Density ρI , which dimension is the
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one of monetary amount over time, to field KRD expressed in monetary unit by the multiplica-

tion by α which unit is the inverse of a time.

There are also other measures which are used in this model such as ρ̃I
K , σ̃ , β̃ , σ̃g. They are

defined as follows. Measure ρ̃I
K is the Initial Debt Repayment Plan. It expresses how current

debt amount at the initial instant will be repaid. It is a repayment scheme and it satisfies:∫ +∞

tI
ρ̃
I
K = KRD(tI),(2.11)

where KRD(tI) is the known Current Debt at initial time tI.

Algebraic Spending Measure σ̃ is defined such that the difference between spendings and in-

comes required to satisfy the current needs between times t1 and t2 is:∫ t2

t1
σ̃ .(2.12)

Measure of Isolated Spending β̃ is related to the notion of project. We consider that, in the

budget, some spendings can be gathered because they all contribute to a common goal. We

call this gathering a project and β̃ is the Spending Scheme associated to the project. The last

considered measure is the Current Spending σ̃g. It is the Scheme associated to spendings which

are not related to the project and it is defined as:

σ̃g = σ̃ − β̃ .(2.13)

In order to balance the budget in terms of incomes and spendings, the budget balance rules

obligate Loan Measure κ̃E to be equal to Measure of Algebraic Spending σ̃ added to measures

associated with quantities that have to be repaid or paid. This is expressed by the following

equality:

κ̃E = σ̃ + ρ̃K + ρ̃
I
K + ρ̃I .(2.14)

According to (2.13) and (2.14), the dimension of the following measures ρ̃I
K , σ̃ , β̃ , σ̃g is the

one of a monetary amount.
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FIGURE 1. In each of the four pictures, γ̃ is represented at the top, κ̃E in the mid-

dle and ρ̃K = κ̃E ? γ̃ at the bottom. (When the considered measure is a density

measure, its density is drawn. When it undergoes concentrations, bars located at

the concentration positions, with hight the amount which is concentrated at each

location, are drawn).

Remark 2.1. Rate α can be written in terms of the usual rate of the loan τ . In fact, τ is

determined such that, if the Current Debt KRD remains the same and equals a constant K over

the period [t1, t1 +1year],

∫ t1+1year

t1
ρ̃I = τK,(2.15)
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which means that the interest paid over the year is equal to τK. In this case, ρI (t) = αK and

then relation ρI (t) = αKRD(t) becomes:

(1year)αK = τK.(2.16)

So:

α =
τ

(1year)
.(2.17)

It is important to notice that τ has no dimension (as it links variables that express both in

monetary units). The variable α is a quantity that is dimensionless divided by a time. It has the

dimension of an inverse of time.

The Current Debt Field KRD is related to Loan Measure κ̃E and Repayment Measure ρ̃K by

the following Ordinary Differential Equation:

dKRD

dt
= κE(t)−ρK (t)−ρ

I
K (t).(2.18)

The solution of this ODE is expressed:

KRD(t) = KRD(tI)+
∫ t

tI
κ̃E −

∫ t

tI
ρ̃K −

∫ t

tI
ρ̃
I
K =

∫ t

tI
κ̃E −

∫ t

tI
ρ̃K +

∫ +∞

t
ρ̃
I
K .(2.19)

Using expression (2.7) of Repayment Measure ρ̃K and expression (2.10), the Interest Pay-

ment Density ρI can be expressed in terms of Loan Measure κ̃E :

ρI (t) = α

∫ t

tI
κ̃E −α

∫ t

tI
κ̃E ? γ̃ +α

∫ +∞

t
ρ̃
I
K .(2.20)

2.3. Justifications and properties. We will justify, in this section, the convolution relation

(see (2.7) or (2.9)), that links Repayment Measure ρ̃K with Loan Measure κ̃E . We will adopt

both mathematical and financial point of view.

The picture at the top left of Figure 2 shows the action of Repayment Pattern γ̃ which is a

combination of seven Dirac masses (three Dirac masses have the same mass 5
19 at different times
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0.3, 0.4, 0.5, the other four Dirac masses have the same mass 1
19 at times 0.25, 0.35, 0.45, 0.55,

see top diagram) on Dirac mass located in 0.1 with mass equal to 20 (see middle diagram). This

convolution result is not a density measure, it is 20× γ̃ translated of 0.1 (see bottom diagram).

This simulation can be interpreted from the financial slant as follows. The middle diagram

means the Loan amount is borrowed at once at time 0.1. The measure drawn in the bottom

diagram is computed using formula (2.7), it means that the total repayment is made of amount
100
19 at times 0.4, 0.5, 0.6 and amount 20

19 at times 0.35, 0.45, 0.55, 0.65. Thus, the total repay-

ment amount is equal to 300+80
19 = 380

19 = 20, meaning that it equals the amount borrowed at time

0.1. This diagram represents well the Repayment Plan associated with localized loan which

is represented by the middle diagram according to the Repayment Pattern γ̃ shown in the top

diagram. This example illustrates that formula (2.7) models correctly the way to compute the

Repayment Scheme from the loan.

The picture at the top right of Figure 2 represents the convolution of Repayment Pattern γ̃

which is the same as previously and Loan Measure κ̃E = 20δt=0.1 +10δt=0.17 (see middle dia-

gram). The result (see bottom diagram) is the superposition of two measures, the first measure

is the one of the bottom diagram at the top left picture, and the second measure is this same one

shifted of 0.07 and divided in half.

The meaning of this simulation can be given as follows. The middle diagram means that the

loan is shared into two pieces, the first one consists in borrowing 20 at time 0.1 and the second

one consists in borrowing 10 at time 0.17. The bottom diagram represents the result of formula

(2.7). The total repayment is constitued by two repayments. The first repayment is associated

with the first piece and is done according to the Repayment Pattern γ̃ . The second repayment

is associated with the second piece. The total repayment of the first piece is shown at the top

left picture in the bottom diagram. The repayment associated with the second piece is made of

amount 50
19 at times 0.47, 0.57, 0.67, and of amount 10

19 at times 0.42, 0.52, 0.62, 0.72. The total

repayment is well the combination of these two repayments, which is equal to the following

amount: 20+(3× 50
19)+ (4× 10

19) = 30. We can also conclude with this example that formula
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(7) is pertinent.

The picture at the bottom left of Figure 2 shows the action of Repayment Pattern γ̃ , which is

the same as the previous one, on Loan Measure κ̃E which is a combination of five Dirac masses

(two Dirac masses have the same mass 20 at times 0.1 and 0.17, three Dirac masses have the

same mass 10 at times 0.07, 0.13 and 0.2, see middle diagram). This convolution result is the

combination of two measures. The first measure is the sum of 20× γ̃ which is translated of 0.1

and 20× γ̃ which is translated of 0.17. The second measure is the sum of the same quantity

10× γ̃ which are translated respectively of 0.07, 0.13 and 0.2.

The meaning of this simulation is the following. The middle diagram means that the loan is

shared into five pieces, two pieces consist in borrowing 20 at times 0.1 and 0.17 and the other

three pieces consist in borrowing 10 at times 0.07, 0.13 and 0.2. The total repayment is the sum

of five repayments. Each repayment is associated with one piece and is done according to the

Repayment Pattern γ̃ . The total repayment can be computed as previously as the combination of

these five repayments. The bottom diagram represents the result of formula (2.7) which models

correctly the way to compute the Repayment Plan from the loans.

The bottom right picture in this same Figure 2 shows three density measures. The function

in the top diagram is Density γ and the one in the middle diagram is Density κE . They are such

that γdt and κEdt are respectively close to Repayment Pattern Measure γ̃ and to Loan Measure

κ̃E of the bottom left picture. The result of the convolution is drawn in the bottom diagram. It

is Repayment Density ρK and it is such that ρK dt is close to ρ̃K of the bottom diagram in the

bottom left picture.

This illustrates that, if a Repayment Pattern Density γ and a Loan Density κE are respectively

idealizations of Repayment Pattern Measure γ̃ and Loan Measure κ̃E , then Repayment Density

ρK given by (2.9) is an idealization of Repayment Measure ρ̃K given by (2.7).

To express this in more mathematical terms, we notice that for any measures κ̃E1, κ̃E2 in

M ([tI, Θmax]) and γ̃1, γ̃2 in M ([0,Θmax]) such that κ̃E2 ? γ̃2 and κ̃E1 ? γ̃1 are in M ([tI,Θmax]),
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we have:

(2.21) ‖κ̃E2 ? γ̃2− κ̃E1 ? γ̃1‖M ([tI,Θmax]) ≤ ‖κ̃E2− κ̃E1‖M ([tI,Θmax])‖γ̃1‖M ([0,Θmax])+

‖γ̃2− γ̃1‖M ([0,Θmax])‖κ̃E2‖M ([tI,Θmax]).

Using this formula with κ̃E1 and γ̃1, which are respectively the measures in the middle and

the top diagram of the bottom left picture and with κ̃E2 = κE2(t)dt, γ̃2 = γ2(t)dt, where κE2,

γ2 are the densities drawn in the middle and the top diagram of the bottom right picture, we

obtain the following conclusion: measure ρ̃K 1 which is the Repayment Plan associated with

Loan Measure κ̃E1 and with Repayment Pattern γ̃1, and, measure ρK 2 which is the Repayment

Density associated with Loan Density κE2 and with Repayment Pattern Density γ2 satisfy:

(2.22) ‖ρK 2(t)dt− ρ̃K 1‖M ([tI,Θmax]) ≤ ‖κE2(t)dt− κ̃E1‖M ‖γ̃1‖M ([0,Θmax])+

‖γ2(t)dt− γ̃1‖M ([0,Θmax])‖κE2(t)dt‖M ([tI,Θmax]).

This means that if κ̃E1 and κ̃E2 are close and if γ̃1 and γ̃2 are close, then, ρ̃K 2 and ρ̃K 1 are also

close.

We just saw that if any two density measures are respectively close to two concentrated

measures, then, the density measure which is obtained by the convolution of these two density

measures is also close to the concentrated measure which is obtained by the convolution of these

two concentrated measures.

This will be the basis that will allow us to prefer using density measures in the models and

simulations. In fact, there are several mathematical and financial reasons for this preference.

From the mathematical point of view, it is clearly easier to handle functions than measures.

Indeed, with functions, we can for instance use the Hilbert nature of L2 spaces, we can call

upon functional analysis and numerical analysis. From the financial point of view, the density

approach can bring fuzziness, for instance in front of uncertainty, that can be welcome.

Loan and Repayment Measures are represented by concentrated measures in the left pictures

and the top right picture of Figure 2. This formalism is consistent with reality. Indeed, in the

real world, amounts are borrowed at fixed times and amounts are also repaid at fixed times. For
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FIGURE 2. In each of the four pictures, γ̃ is represented at the top, κ̃E in the mid-

dle and ρ̃K = κ̃E ? γ̃ at the bottom. These measures are concentrated measures

in pictures at the left and in the top right picture. They are density measures in

the bottom right picture.
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instance, we can easily interpret the top left picture of Figure 2 by saying that an amount is

borrowed at time 0.1 and repaid in seven times (at times 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65). It

is concluded that financial simulation using concentrated measures gives realistic results.

Loan and Repayment Measures that are represented in the bottom right picture of Figure 2 are

density measures. A direct interpretation of the diagrams of this picture leads that amounts are

borrowed continuously in time and amounts are also repaid continuously in time. This is not in

accordance with the real world.

In order to describe how the simulation in the bottom right picture of Figure 2 is linked with

the simulation of the bottom left picture of this same figure, a Friedrich mollifier is introduced.

A Friedrich mollifier is a regular non-negative even function such that its integral is equal to 1.

We take as Friedrich mollifier a Gaussian function.

The picture at the bottom right represents three diagrams. The one at the top is the density

γ of measure γdt which is the convolution of this Friedrich mollifier with Repayment Pattern

Measure γ̃ which is directly on its left (in the bottom left picture). The one in the middle is

the density κE of measure κEdt which is the convolution of this Friedrich mollifier with Loan

Measure κ̃E which is directly on its left. The diagram at the bottom of this figure represents

Repayment Density ρK which is related to γ and κE by equality (2.9).

Observing the bottom right picture and the bottom left picture of Figure 2 brings the conclusion

that the integral over a large enough interval of Loan Measure κ̃E and Repayment Measure

ρ̃K give results which are respectively close to the integral over the same interval of density

measures κEdt and ρK dt. In other words, if the simulations of the bottom pictures are observed

(see (2.3)) over a large enough interval, they bring very close conclusions.

This interpretation, calling upon ”model observation”, may justify that we can use density

measures in place of concentrated measures in the models and simulations.

Moreover, the bottom right picture in Figure 2 can be seen as a probabilistic version of the

bottom left picture of Figure 2. This probabilistic approach is related to an approximation,

which allows to replace pertinently a concentrated measure with concentrations that are not

deterministically known by a density measure. Indeed, if for instance, we imagine that the



A CONTINUOUS-IN-TIME FINANCIAL MODEL 15

instants where the measure of the bottom diagram at the bottom left picture is concentrated are

not known precisely, then, this measure can be replaced by the one of the bottom diagram of

the bottom right picture.

In order to deepen this probabilistic vision, several references are proposed to the reader.

The paper of Hanselmann, Schrempf & Hanebeck [7] describes a numerical method which is

based on optimization and estimate techniques including this approach. The target of this nu-

merical method is to produce a good estimate of a density measure which is related only to the

information about a concentrated measure. This built density measure is considered as the right

estimator and the optimal approximation of the considered concentrated measure. Section 3 of

[7] is referred for more technical details in the optimization part.

The paper of Klumpp & Hanebeck [8] proposes an approach which allows the multiplication

of two Dirac measures which is mathematically not defined. The result of this multiplication is

approached by density measure. The numerical iterative method giving this approximation is

given in detail in section 5 of this paper. In this same section, Figures 6, 7 and 8 show the result

of this approximation.

Beside this probabilistic vision, we can introduce a second one which is related to the mean

field limit theory (see Benaim & Le Boudec [1] and Gast, Gaujal & Le Boudec [5]), for in-

stance used in the kinetic theory of gases (see Golse [6]). The framework of this second vision

is when borrower borrows and repays very often small amounts. It is based on the mathe-

matical approach which describes the behavior of a concentrated measure when the number of

instants at which the measure is concentrated goes to infinity while the mass at each instant

of concentration goes to 0. The framework we consider, brings us to model loan and repay-

ment by sums of Dirac masses like ∑
N
i=1 ωN

i δt=tN
i

, where N → +∞ while ∑
N
i=1 ωN

i is bounded

independently of N. In order to avoid concentration of the Dirac mass locations, we also as-

sume ∀[a,b] ⊂ R, Card{i, tN
i ∈ [a,b]} to be also bounded by C(b− a)N, where C is a constant

independent of N. Those sums of Dirac masses are then approximated by density measures.

In this framework, stability formula (2.22) insures that, if this approximation is done for Loan

Measure κ̃E1 (approximated by κE2dt) and for Repayment Pattern γ̃1 (approximated by γ2dt),
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Repayment Density ρK 2 = κE2 ? γ2 is such that ρK 2 approximates well Repayment Measure

ρ̃K 1 = κ̃E1 ? γ̃1.

3. Mathematical properties of the model

In this section we explore mathematical properties of the model we built in the previous section.

Those properties will be useful for some aspects of the model implementation to come in the

following. For our purpose and to be able to use some specific mathematical tools, we consider

the case when all measures are density measures.

For any interval [t1, t2], t2 > t1, L2([t1, t2]) stands for the space of square-integrable functions

over R having their support in [t1, t2]. For a positive number Θγ such that Θγ < Θmax− tI, we

set the Repayment Pattern γ such that:

γ ∈ L2([0,Θγ ]).(3.1)

In order to achieve what is described after equation (2.8), we need to choose Loan Density κE

with support being included in [tI,Θmax−Θγ ].

3.1. General results. Using relations (2.9), (2.14) and (2.20), we can directly state the follow-

ing theorem.

Theorem 3.1. If all measures of model ((2.4)-(2.14), (2.18)-(2.20)) are density measures, if

Repayment Pattern γ satisfies relation (3.1) and if Loan Density κE is in L2([tI,Θmax−Θγ ])

and Initial Debt Repayment Density ρI
K is in L2([tI,Θmax]) then Algebraic Spending Density

σ is also in L2([tI,Θmax]) and has the next expression in terms of Loan Density κE:

σ(t) = κE(t)− (κE ? γ)(t)−α

∫ t

tI
(κE −κE ? γ)(s)ds −α

∫
Θmax

t
ρ
I
K (s)ds −ρ

I
K (t).(3.2)

Relation (3.2) is generally not invertible. Yet, it is possible to obtain an expression that allows,

when it makes sense, to compute Loan Density κE from Algebraic Spending Density σ . For

doing this, in a first place, defining linear operator L : L2([tI,Θmax−Θγ ])→ L2([tI,Θmax])

(acting on Loan Density κE) by

L [κE ](t) = (κE −κE ? γ)(t)−α

∫ t

tI
(κE −κE ? γ)(s) ds,(3.3)
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and operator D : L2([tI,Θmax])→ L2([tI,Θmax]) (acting on Initial Debt Repayment Density

ρI
K ) by

D [ρI
K ](t) =−α

∫
Θmax

t
ρ
I
K (s) ds−ρ

I
K (t),(3.4)

expression (3.2) of density σ reads

σ(t) = L [κE ](t)+D [ρI
K ](t).(3.5)

Secondly, we state the following lemma linking the Fourier Transforms of κE , γ and L [κE ].

Lemma 3.2. If function κE is in L2([tI,Θmax−Θγ ]) and if γ satisfies relation (3.1), then we

have the following equality:

(1−F (γ))F (κE) = F
(
L [κE ]+α

∫ •
tI

L [κE ](s)eα(•−s) ds
)
,(3.6)

where F stands for the Fourier Transform Operator, where operator L is defined by (3.3) and

where

F
(∫ •

tI
L [κE ](s)eα(•−s) ds

)
(3.7)

stands for the Fourier Transform of function

t 7→
∫ t

tI
L [κE ](s)eα(t−s) ds.(3.8)

Proof. Integrating by parts states that:

(3.9)
∫ t

tI

(∫ s

tI
(κE −κE ? γ)(y) dy

)
×αeα(t−s) ds

=
∫ t

tI
(κE −κE ? γ)(s)× eα(t−s) ds−

∫ t

tI
(κE −κE ? γ)(s) ds.

From this, we get the following equality:

∫ t

tI
(κE −κE ? γ)(s) ds =

∫ t

tI

(
(κE −κE ? γ)(s)−α

∫ s

tI
(κE −κE ? γ)(y) dy

)
× eα(t−s) ds.

(3.10)

Using definition (3.3) of operator L , equality in (3.10) is multiplied by α to give:

α

∫ t

tI
(κE −κE ? γ)(s) ds = α

∫ t

tI
L [κE ](s)eα(t−s) ds.(3.11)
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Replacing α
∫ t

tI(κE −κE ? γ)(s) ds in relation (3.11) by (κE −κE ? γ)(t)−L [κE ](t) which is

possible because of (3.3), we obtain the following equality:

κE −κE ? γ = L [κE ]+α

∫ •
tI

L [κE ](s)eα(•−s) ds.(3.12)

Applying Fourier Transform to relation (3.12), we obtain equality (3.6), proving the lemma. �

From Lemma 3.2 and equality (3.5) the following theorem can be stated.

Theorem 3.3. If Repayment Pattern is a density measure with its density γ satisfying relation

(3.1), and if Initial Debt Repayment Density ρI
K is in L2([tI,Θmax]); if we choose an Algebraic

Spending Density σ in L2([tI,Θmax]) such that

F
(

σ −D [ρI
K ]+α

∫ •
tI

σ(s)−D [ρI
K ](s)eα(•−s) ds

)
1−F (γ)

∈ L2(R),(3.13)

then function κE given in terms of σ by:

κE = F−1

(F
(

σ −D [ρI
K ]+α

∫ •
tI

σ(s)−D [ρI
K ](s)eα(•−s) ds

)
1−F (γ)

)
,(3.14)

where F−1 stands for the inverse of the Fourier Transform, is in L2([tI,Θmax−Θγ ]) and is

the Loan Density that brings Algebraic Spending Density σ using model ((2.4)-(2.14), (2.18)-

(2.20)).

This theorem is a generic result that gives indication on the way to reverse the process that

consists in in computing Algebraic Spending Density σ from Loan Density κE into a process

that consists in building a Loan Density κE in order to achieve a desired Algebraic Spending

Density σ . Yet, condition (3.13) needs to be explained, as it is not very usable in this form.

Nevertheless, It seems to be too complicated to give it a more usable form remaining at this

level of genericallity. Hence, to give a more precise form to (3.13) we will choose a given

expression of Repayment Pattern Density γ .

3.2. Results with a specific Repayment Pattern.
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Theorem 3.4. If

γ =
1

Θγ

1[0,Θγ ],(3.15)

and if Initial Debt Repayment Density ρI
K and Algebraic Spending Density σ are in L2([tI,Θmax])

and satisfy the following equality:∫
Θmax

tI

(
σ(y)−D [ρI

K ](y)+α

∫ y

tI
σ(s)−D [ρI

K ](s)eα(y−s) ds
)

dy = 0,(3.16)

then, there exists an unique Loan Density κE in L2([tI,Θmax−Θγ ]) (which expression is given

by formula (3.14)) such that (3.5) holds.

In order to prove this theorem, we need the following lemmas:

Lemma 3.5. Under the same assumptions as in Theorem 3.4, linear operator L given by

relation (3.3) is a one-to-one map.

Proof. In a first place, according to equality (3.12), if Loan Density κE is in Ker(L ), then it

satisfies:

κE −κE ? γ = 0.(3.17)

And, according to definition (3.3) of operator L , if Loan Density κE satisfies relation (3.17),

then, κE is in Ker(L ). Consequently, we have:

Ker(L ) =
{

κE ∈ L2([tI,Θmax−Θγ ]),κE − (κE ? γ) = 0
}
.(3.18)

Secondly, for any positive integer n, we consider Pn the vector space of polynomial functions

of degree n and restricted to interval (tI,Θmax−Θγ). We will show that

Ker(L )∩Pn = {0}.(3.19)

In order to show relation (3.19), we will show that the coefficients of polynomial function κE

are zero for each κE in Ker(L )∩Pn. If κE ∈ Ker(L )∩Pn, then, for any x ∈ (tI,Θmax−Θγ),

κE(x) =

(
i=n

∑
i=0

cixi

)
×1[tI,Θmax−Θγ ](x),(3.20)
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where (ci)0≤i≤n are its coefficients and

κE −κE ? γ = 0.(3.21)

Using equalities (3.15) and (3.20), we obtain

(κE ? γ)(x) =
1

Θγ

i=n

∑
i=0

ci

∫
[tI,Θmax−Θγ ]∩[x−Θγ ,x]

yi dy.(3.22)

Now, on the one hand, we show that coefficients (ci)0≤i≤n are zero, if tI+Θγ ≤ Θmax−Θγ . In

this case, for any x such that tI+Θγ ≤ Θmax−Θγ < x < Θmax, x is outside the support of κE .

Hence, κE(x) = 0. Moreover, the intersection of intervals [tI,Θmax−Θγ ] and [x−Θγ ,x] (on

which the integral in (3.22) is computed) is interval [Θmax−Θγ ,x−Θγ ]. Then, relations (3.21),

(3.22) yield the following equality:

i=n

∑
i=0

ci

i+1
× [(Θmax−Θγ)

i+1− (x−Θγ)
i+1] = 0.(3.23)

The polynom making up the left hand side of equality (3.23) is zero on interval (Θmax −

Θγ ,Θmax) which has an non empty interior. Consequently, coefficients (ci)0≤i≤n are zero.

On the other hand, we show that coefficients (ci)0≤i≤n are zero, if Θmax−Θγ < tI+Θγ . In

this case, for any x such that Θmax−Θγ < tI+Θγ < x < Θmax, κE(x) = 0 and the intersection

of intervals [tI,Θmax−Θγ ] and [x−Θγ ,x] is interval [Θmax−Θγ ,x−Θγ ]. Hence, we obtain that

the polynom of the left hand side of relation (3.23) is zero on interval (tI+Θγ ,Θmax) which has

an non empty interior. Consequently, coefficients (ci)0≤i≤n are zero.

We showed that coefficients (ci)0≤i≤n are zero in both cases tI+Θγ ≤Θmax−Θγ and Θmax−

Θγ < tI+Θγ . From this, we can deduce that (3.19) is true for any integer n.

Hence by density of polynoms in L2([tI,Θmax−Θγ ]) the proof of the lemma is achieved. �

Lemma 3.6. Assuming (3.15), that implies:∫
Θγ

0
yγ(y) dy =

Θ2
γ

2
6= 0,(3.24)

is achieved and if function L [κE ] given by relation (3.3) satisfies:∫
Θmax

tI

(
L [κE ](y)+α

∫ y

tI
L [κE ](s)eα(y−s) ds

)
dy = 0,(3.25)
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then, F (κE) ∈ L∞(R) and is such that

lim
ξ→0

F (κE)(ξ ) =−
2

Θ2
γ

∫
Θmax

tI
y×

(
L [κE ](y)+α

∫ y

tI
L [κE ](s)eα(y−s) ds

)
dy.(3.26)

If L [κE ] does not satisfy the equality in relation (3.25), then, F (κE) has an infinite limit in 0.

Proof. As L [κE ] ∈ L2([tI,Θmax]), we get:

L [κE ]+α

∫ •
tI

L [κE ](s)eα(•−s) ds ∈ L2([tI,Θmax]).(3.27)

Then, using an order 1 Taylor expansion of e−iyξ , we obtain the following expansion of function

F (L [κE ]+α
∫ •

tI L [κE ](s)eα(•−s) ds):

F

(
L [κE ]+α

∫ •
tI

L [κE ](s)eα(•−s) ds
)
(ξ ) =

∫
Θmax

tI

(
L [κE ](y)+α

∫ y

tI
L [κE ](s)eα(y−s) ds

)
dy

−iξ
∫

Θmax

tI
y×

(
L [κE ](y)+α

∫ y

tI
L [κE ](s)eα(y−s) ds

)
dy+O(ξ 2).

(3.28)

Since operator L satisfies equality in relation (3.25), relation (3.28) gives:

(3.29) F

(
L [κE ]+α

∫ •
tI

L [κE ](s)eα(•−s) ds
)
(ξ )

=−iξ
∫

Θmax

tI
y×

(
L [κE ](y)+α

∫ y

tI
L [κE ](s)eα(y−s) ds

)
dy+O(ξ 2).

According to (3.15), function 1−F (γ) is Taylor expanded in 0 until the order 1 to obtain:

1−F (γ)(ξ ) = iξ
∫

Θγ

0
yγ(y) dy+O(ξ 2) = iξ

Θ2
γ

2
+O(ξ 2).(3.30)

According to relations (3.6), (3.29) and (3.30), we get equality (3.26).

Moreover, according to relation (3.6), F (κE) is a finite quantity outside of 0. Hence, it is

concluded that F (κE) is in L∞(R).

On other hand, if equality in relation (3.25) is not satisfied, then, according to relations (3.6),

(3.28) and (3.30), F (κE) has an infinite limit at 0.

From this, the proof of the lemma is achieved. �
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Lemma 3.7. Under assumptions (3.15) and (3.25),(
1

1−F (γ)

)
|(−∞,− 2

Θγ
)∪( 2

Θγ
,+∞)

∈ L∞(R),(3.31)

and F (κE) ∈ L2(R).

In Lemma 3.7,
( 1

1−F (γ)

)
|(−∞,− 2

Θγ
)∪( 2

Θγ
,+∞)

stands for the restriction of
( 1

1−F (γ)

)
to set (−∞,− 2

Θγ
)∪

( 2
Θγ
,+∞).

Proof. As a consequence of assumptions (3.15), equality (3.24) holds and consequently∣∣∣∣∣ 1
1−F (γ)(ξ )

∣∣∣∣∣
2

=
(ξ Θγ)

2

(ξ Θγ − sin(ξ Θγ))
2 +(cos(ξ Θγ)−1)2 ≤

(
ξ Θγ

ξ Θγ − sin(ξ Θγ)

)2

.(3.32)

Hence, if |ξ | ≥ 2/Θγ ∣∣∣∣∣ 1
1−F (γ)(ξ )

∣∣∣∣∣≤ 2,(3.33)

which implies property (3.31).

According to (3.27), we get:

F

(
L [κE ]+α

∫ •
tI

L [κE ](s)eα(•−s) ds
)
∈ L2(R).(3.34)

Consequently, according to relations (3.6) and (3.32)

F (κE)|(−∞,− 2
Θγ

)∪( 2
Θγ

,+∞) ∈ L2(R)(3.35)

Finally, from Lemma 3.6, we know F (κE)∈L∞(R), which gives, using (3.35) that F (κE)∈

L2(R), ending the proof of the Lemma �

Proof of Theorem 3.4. Under the assumptions (3.15) and (3.16) of Theorem 3.4, and using e-

quality (3.5), that gives L [κE ](t) = σ(t)−D [ρI
K ](t), we can apply Lemma 3.7 to deduce that

formula (3.13) of Theorem 3.3 giving κE makes sense and yields κE in L2([tI,Θmax−Θγ ]). Be-

sides, from Lemma 3.5, we obtain the uniqueness of κE , ending the proof of the theorem. �
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4. Other financial models

4.1. Model with variable rate. The model we set out in Subsection 2.2 considered a constant

rate. Nevertheless, if we consider in it a function α that depends on t, the model becomes a

financial model with variable rate. The only modification to make is to enrich (2.10) by writing

ρI (t) = α(t)KRD(t).(4.1)

Once this enrichment is done, the rest of Subsection 2.2 and Subsection 2.3 can be led with

essentially no modification and the explanations remain true.

However, the mathematical results of section 3 are not true anymore in this context, and clearly

using a variable rate makes the question of expressing Loan Density κE in terms of Algebraic

Spending Density σ harder.

4.2. Model with constant rate set at instants of borrowing. In the real world, for loans that

are at fixed rates, the rates are not the same all along the time. In fact, the fixed rate associated

with a borrowed amount is set at the time when the amount is borrowed. The goal of this sub-

section is to enrich the model built above in order to account for this reality.

For this, we consider that all measures involved are density measures (we will see at the

end of the subsection trails to generalize the resulting model to mesures that are not density

measures). The main new thing that we need to introduce is quantity kRD that details Current

Debt Field KRD. Quantity kRD(t,s), that is so called Current Debt Density, depends on two

variables (t and s) and is a time density with respect to variable s. It is defined as the density of

Current Debt at time t which is associated to the amount borrowed at time s. In other words, the

capital amount still to be paid at time t associated with amounts borrowed between two instants

s1 and s2 is, by definition

∫ s2

s1

kRD(t,s)ds.(4.2)
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Current Debt Density kRD is related to Loan Density κE using Repayment Pattern γ by the

following Ordinary Differential Equation:

dkRD(t,s)
dt

=−γ(t− s)κE(s),(4.3)

with initial condition kRD(s,s) = κE(s) that expresses that The Current Debt at time s which is

related to the borrowed amount at time s is the borrowed amount at time s.

To justify the pertinence of equation (4.3), we notice that, in view of the definition of Repayment

Pattern γ , γ(t − s) is the repayment at time t of an amount 1 which is borrowed at time s.

Hence, for a given amount A borrowed at time s, γ(t− s)A is the repayment at time t of amount

A. Consequently, γ(t − s)κE(s) is the density (with respect to s) of what is repaid at time

t associated with what is borrowed at time s. As this repayment density is nothing but the

decreasing rate of kRD(t,s), (4.3) seems consistent.

The solution of this differential equation is expressed as:

kRD(t,s) = κE(s)−
∫ t

s
γ(σ − s)κE(s) dσ .(4.4)

The definition of Current Debt Density kRD is consistent with the definition of Current Debt

KRD which is given in relation (2.19). Indeed, Current Debt KRD can be expressed in terms of

kRD: it is the integral over all instants since tI of what has to be repaid associated with what is

borrowed at those instants plus the Current Debt at time tI minus what has been repaid from

this initial Current Debt:

KRD(t) =
∫ t

tI
kRD(t,s) ds+KRD(tI)−

∫ t

tI
ρ
I
K (s) ds.(4.5)

Using equalities (2.11) and (4.4) in this last formula, we obtain

KRD(t) =
∫ t

tI
kRD(t,s) ds+

∫ +∞

t
ρ
I
K (s) ds

=
∫ t

tI
κE(s) ds−

∫ t

tI

(∫ t

s
γ(σ − s)κE(s) dσ

)
ds+

∫ +∞

t
ρ
I
K (s) ds.

(4.6)
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Since ∫ t

tI

(∫ t

s
γ(σ − s)κE(s) dσ

)
ds =

∫ t

tI

(∫
σ

tI
γ(σ − s)κE(s) ds

)
dσ ,(4.7)

(4.6) yields

KRD(t) =
∫ t

tI
κE(s) ds−

∫ t

tI

(∫
σ

tI
γ(σ − s)κE(s) ds

)
dσ +

∫ +∞

t
ρ
I
K (s) ds.(4.8)

Equality (4.8) has to be compared to (2.19), which in the context of density measures and using

(2.9) to express ρK gives

KRD(t) =
∫ t

tI
κE(t) dt−

∫ t

tI

(∫ +∞

−∞

κE(s)γ(σ − s) ds
)

dσ +
∫ +∞

t
ρ
I
K (t) dt.(4.9)

As γ is 0 on R−, γ(σ − s) is 0 for s larger than σ . On another hand κE(s) is 0 for s smaller than

tI. Hence (4.9) finally read

KRD(t) =
∫ t

tI
κE(t) dt−

∫ t

tI

(∫
σ

tI
κE(s)γ(σ − s) ds

)
dσ +

∫ +∞

t
ρ
I
K (t) dt,(4.10)

which is exactly (4.8).

The other introduced thing is Density rI (t,s). It is a time density with respect to both vari-

ables s and t. It is the Interest Payment Density at time t which is associated with the borrowed

amount at time s. It is related to the Current Debt Density kRD by a proportionality relation:

rI (t,s) = αSAB(s)kRD(t,s),(4.11)

where, αSAB(s) is the value of the rate at the instant s at which the amount is borrowed (SAB is

for Set At Borrowed time). The expression of Borrowed Time Related Interest Payment Density

rI may be given in terms of Loan Density κE as follows:

rI (t,s) = α(s)κE(s)−αSAB(s)
∫ t

s
γ(σ − s)κE(s) dσ .(4.12)

By integration over variable s (which describes the borrowed time), from rI (t,s), Interest Pay-

ment Density ρI can be defined as follows:

ρI (t) =
∫ t

tI
rI (t,s) ds+ρ

I
I (t),(4.13)
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where ρI
I (t) is a third new thing: it is the Interest Payment Density which is related to the

Current Debt Field at the initial instant tI. It is considered as given (as ρI
K and KRD(tI) are).

From (4.12) and (4.13), Interest Payment Density ρI reads

ρI (t) =
∫ t

tI
αSAB(s)κE(s) ds−

∫ t

tI
αSAB(s)

(∫ t

s
γ(σ − s)κE(s) dσ

)
ds+ρ

I
I (t).(4.14)

Expression (4.14) and consequently definition of Borrowed Time Related Interest Payment

Density rI are consistent with the expression of Interest Payment Density ρI given in relation

(2.20). Indeed, if the rate αSAB is fixed with worth α , (4.14) writes

ρI (t) = α

∫ t

tI
κE(s) ds−α

∫ t

tI

(∫ t

s
γ(σ − s)κE(s) dσ

)
ds+ρ

I
I (t),(4.15)

and is exactly (2.20), that when written in the context of density measures reads

ρI (t) = α

∫ t

tI
κE(s) ds−α

∫ t

tI

(∫ t

s
γ(σ − s)κE(s) dσ

)
ds+α

∫ +∞

t
ρ
I
K (s) ds,(4.16)

with the following definition of ρI
I

ρ
I
I (t) = α

∫ +∞

t
ρ
I
K (s) ds.(4.17)

Exchanging the role of s and σ in (4.14), it is possible to write expression of Interest Payments

Density ρI in the next form:

ρI (t) =
∫ t

tI
αSAB(s)κE(s) ds−

∫ t

tI

(∫
σ

tI
αSAB(s)γ(σ − s)κE(s) ds

)
dσ +ρ

I
I (t).(4.18)

Remark 4.1. This last form gives a trail to generalize the model to measures that are not

density measures. Indeed, it brings to think that it is possible to find a subspace of measure

space M ([tI,Θmax]) that is the dual of a space of functions containing piecewise continuous

functions such that (4.18) can be generalized as

ρI (t) =
〈

κ̃E ,αSAB|[tI,t[

〉
−
〈

γ̃ ? (αSABκ̃E)|[tI,σ [,1[tI,t[

〉
+ρ

I
I (t),(4.19)

where κ̃E is an element of this subspace of M ([tI,Θmax]) and where 〈., .〉 stands for the duality

bracket of this space with the space it is the dual of.
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4.3. Model with variable rate set at instants of borrowing. We can generalize the model

explained in subsection 4.2 by considering that rate αSAB which is set at borrowed time is

variable. For this, the only thing that needs to be done is considering that αSAB(s, t) depends on

two variables (s and t). By definition αSAB(s, t) is the rate at time t that applies to amounts that

were borrowed at time s. All formula in subsection 4.2 can be rewritten adding this enrichment.

For instants, (4.18) is rewritten as:

ρI (t) =
∫ t

tI
αSAB(s, t)κE(s) ds−

∫ t

tI

(∫
σ

tI
αSAB(s, t)γ(σ − s)κE(s) ds

)
dσ +ρ

I
I (t).(4.20)

4.4. Model with varying Repayment Pattern. We now enrich again our model to take into

account variable Repayment Pattern γ . For this, we consider that γ(s, t) depends on two vari-

ables. The first variable s is the borrowed instant and the second variable t is the current time.

In order to ensure that amounts borrowed at any time s are repaid exactly, γ(s, t) needs to satisfy

the following variant of (2.8): ∫ +∞

−∞

γ(s,σ) dσ = 1.(4.21)

Generalizing (2.9), Loan Density κE and Repayment Density ρK are connected by:

ρK (t) =
∫ +∞

−∞

γ(s, t− s)κE(s) ds.(4.22)
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FIGURE 3. In each of the four pictures, γ̃ is represented in the top diagram; κ̃E in the second

diagram from the top, ρ̃K , which is computed with relation (2.7), in the third one; KRD which

is computed according to relation (2.19) in the fourth one; ρI , calculated according to relation

(2.10), in the fifth; the sixth diagram gives the density of what is to paid. The two last diagrams

are respectively the amounts of what to pay over monthly and yearly period.
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Thanks to property (4.21), we have:∫ +∞

−∞

ρK (t) dt =
∫ +∞

−∞

κE(t) dt.(4.23)

The variation, with respect to time t, of the Current Debt kRD which is associated to the amount

borrowed at time s is equal to the product of Repayment Pattern γ(s, t− s) by Loan Density κE

at time s. Hence, we obtain the following generalization of relation (4.3):

dkRD(t,s)
dt

=−γ(s, t− s)κE(s).(4.24)

Besides generalizing relation (4.18), Interest Payments Density ρI can be given as follows:

ρI (t) =
∫ t

tI
αSAB(s, t)κE(s) ds−

∫ t

tI

∫
σ

tI
αSAB(s, t)γ(s,σ − s)κE(s) ds dσ +ρ

I
I (t).(4.25)

5. Model using

In this section, we show on simplified examples how the previously built models can be used

by an organization to prepare its future financial plans.

5.1. Forecasts. In this subsection, we show how the model can be used by a local community,

or any organization, to forecast the consequences of a loan in the future.

In a first place, we briefly recall the comments on the pictures of Figure 2 with this slant. In the

top left picture, we see in the bottom digram, the reimbursement of an amount borrowed at once

(see the middle diagram), according to Repayment Pattern of the top diagram. In the top right

picture, the bottom digram shows the reimbursement of an amount borrowed in two (see the

middle diagram), and in the bottom left picture, the bottom digram shows the reimbursement

of an amount borrowed with a more complex scheme. The bottom digram of the bottom right

picture shows the reimbursement density associated to the loan density shown in the middle

diagram, according to the Repayment Pattern shown in the top diagram.

Of course, we could comment similarly on pictures of Figure 1 where various Repayment Pat-

terns (top diagrams) and Loan Measures (middle diagrams) yield Repay Measures (bottom

diagrams).
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Now we turn to richer simulations. Figure 3 shows four simulations in four pictures. Each

picture shows eight diagrams. For every simulation, initial time tI = 0, Current Debt at initial

time KRD(tI) = 0 and Initial Debt Repayment Plan ρ̃I
K = 0. If we stand in the context of

an organization that needs to know its finance state in futur, the two last quantities describe its

finance state at the beginning of the considered period. And, loan rate α and Repayment Pattern

γ̃ is a translation of the loan contract that the organization has with it financial institution. In

every presented simulation loan rate α = 0.07.

The diagram at the top of each picture is the Repayment Pattern γ̃ associated to the simula-

tion. The second diagram is the Loan Measure κ̃E . This measure can be interpreted as the way

the organization is going to borrow and how much it will borrow. Once those quantities laid

down, thanks to our model, Repayment Measure ρ̃K is obtained from γ̃ and κ̃E by (2.7). The

quantities drawn in the fourth and fifth diagrams are respectively the Current Debt Field KRD,

given by equality (2.19), and the Interest Payments Density ρI defined by (2.10). The sixth

diagram is the Measure of what has to be paid to the financial institution defined by ρ̃K + ρ̃I .

This is a forecast of what the organization will pay in future. From measure ρ̃K + ρ̃I , the

amounts of what to pay over monthly and yearly period can deduced by integration. This can

refine the forecast. Those amounts are represented in the seventh and eighth diagram.

Those simulations illustrate the capability of our model to help the setting out of finance

forecast. Moreover, they illustrate the capability of our approach to overcome a problem oc-

curring with the presently used tools (see page 2): With the continuous-in-time approach, the

computations are led without any question concerning time period at which things are going

to be observed. Indeed, those questions arise only at the very end of the process to compute

monthly or annual installments, or any quantity which is related to a period of time.

Another capability which is illustrated by those examples is that our approach is flexible

and can incorporate complexity, concentrated and continuous objects in a same simulation that

makes sense. Their is no limitation in the choice of the Repayment Pattern and of the Loan

Measure. Hence, we can account for a wide variety real situations.



A CONTINUOUS-IN-TIME FINANCIAL MODEL 31

Let us go into more detailed explanations on what can be seen in pictures of Figure 3.

The top left picture shows a Repayment Pattern Density γ which is a piecewise function that

is equal to 0.25 between instants 2 and 6 and to 0 elsewhere. On the second diagram is drawn

Loan Measure κ̃E which is a sum of two Dirac masses. The first Dirac mass is of mass 1 at time

1.25 and the second one is of mass 2 at time 2.25.

The Repayment Pattern Density in the top right picture is the same as before and the Loan

Density is a sinusoidal function over time period [0.2,3] extended by 0.

The top diagram of the bottom left picture is Repayment Pattern Density γ which is an affine

function over an interval extended by 0. In this simulation, Loan Measure κ̃E is the one of the

top right picture, to which is added a Dirac mass that has mass 3 at time 1.5.

In the bottom right picture, the Repayment Pattern is the previous one plus a Dirac mass of

mass 0.5 located at time 6.5. The loan Measure (see second diagram) is the sum of a sinusoidal

function and of Dirac mass with mass 4 at time 1.

5.2. Financial strategy. For an organization, setting out a strategy needs to go beyond doing

forecasts. For financial strategy, it needs to build a budget project, then to estimate its impact on

the future finance health of the organization and if it is not satisfactory, to rebuild a new budget

project.

In this subsection we will show how to use our continuous-in-time model for those kind of

purposes.

We first comment on Figure 4. The first diagram is the Repayment Pattern. It translates

that the organization has to repay borrowed amounts constantly just after borrowing. Then, on a

second period, the repayment decreases, and then stops. During the fourth period the repayment

increases strongly.

The second diagram shows the Loan Measure. It is a translation of how much the organization

plan to borrow and according to what plan it is going to do it. In the third diagram is shown the

Repayment Measure. It can be interpreted as an impact of the choice of the Repayment Pattern

and of the Loan Measure. Now we can imagine that decision makers of the organization do

not find this Repayment Measure convenient and that they would prefer another one: the one
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which is given in the fourth diagram. Once this targeted Repayment Measure is chosen, using

formula (2.7) (or (2.9)), which reads using Fourier Transform F (γ̃)F (κ̃E) = F (ρ̃K ), allows

us to compute a Loan Measure that will give it. This Loan Measure is given in the fifth diagram.

This resulting Loan Measure has some problems: It is not non-negative and its support is two

large. Hence we rid those problems by suppressing its negative part and reducing its support,

leading the loan measure shown in the sixth diagram. In order to be sure that this Loan Measure

fits well the decision makers’ will, its associated Repayment Measure is computed and given in

the last diagram.

This example illustrates well the capability of our model to be used in a strategy elaboration

process. This capability is entirely linked with its continuous-in-time nature. Indeed, this nature

brings to handle objects that are defined over a time interval of interest and mathematical oper-

ators that link them together. Consequently, strategy-related questionings reduce to question of

inverting those operators. And, even if most of those operators are not invertible, solutions of

the posed inversion problem can be brought (as it is the case in this example and consistently

with the contents of section 3).

. The example of Figure 5 is richer than the previous one and involves the same Repayment

Pattern and initial Loan Measure. Yet, it involves moreover a Current Spending Measure σ̃g,

that we chose to be zero, which was not considered in the example related with Figure 4 and e.

Using formula (3.2), the Algebraic Spending Measure σ̃ can be computed. Consequently the

Measure of Isolated Spending β̃ , that models how much money can be put into a project led by

the organization, can be deduced according to formula (2.13), which is same as σ̃ .
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FIGURE 4. γ̃ is represented in the top diagram, κ̃E in the second diagram from

the top, ρ̃K in the third diagram from the top which is computed with relation

(2.7), the fourth diagram from the top is targeted Repayment Density which is

supposed to be given, an new Loan Density is computed in the fifth diagram

from the top, this density is modified to generate also a new Loan Density in

the sixth diagram from the top, the bottom diagram is a consequently modified

Repayment Density ρ̃K .
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FIGURE 5. γ̃ is represented in the top diagram, κ̃E in the second diagram from

the top, β̃ in the third diagram from the top which is computed with relation (3.6)

or (5.2), the fourth diagram from the top is targeted Isolated Spending Density,

an new Loan Density is computed in the fifth diagram from the top, this density

is modified to generate also a new Loan Density in the sixth diagram from the

top, the bottom diagram is a consequently modified Isolated Spending Density

which is same as β̃ .
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The Isolated Spending Measure β̃ is drawn in the third diagram. Now, as in the previous

example, we can imagine that Isolated Spending Measure β̃ does not fit the vision of some

decision makers. Then it can be modified to get a more convenient one, drawn in the fourth

diagram. Once the targeted Measure of Isolated Spending β̃ set, applying formula (3.6), setting

Measure β̃ gives an associated Loan Measure (see the fifth diagram) that needs to be cleaned

(see the sixth diagram). In order to be sure that this Loan Measure fits well the decision makers’

objectives, its associated Isolated Spending Measure is computed and given in the last diagram.

This example illustrates on a more complicated case that our model can be used for strategy

elaboration. This complication consists in giving Loan Measure κ̃E as function of Isolated

Spending Measure β̃ under some assumptions. In order to make the simulations shown in

Figure 5, κ̃E is computed in terms of β̃ following several steps. These steps are the followings,

in this example where σ̃ and β̃ are equals. The first step is to compute L [κE ] as a function of β̃

and D [ρI
K ] using relation (3.5). The second step is to compute Fourier Transform of quantities

L [κE ]+α
∫ •

tI L [κE ](s)eα(•−s) ds and γ . If Inverse Fourier Transform of quantity

F (L [κE ]+α
∫ •

tI L [κE ](s)eα(•−s) ds)
(1−F (γ))

(5.1)

exists, then, κ̃E can be computed in term of β̃ with using relation (3.6) and it is given as follows:

κE = F−1

(
F (L [κE ]+α

∫ •
tI L [κE ](s)eα(•−s) ds)

1−F (γ)

)
.(5.2)
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36 E. FRÉNOD, T. CHAKKOUR

[2] Emmanuel Frénod, Pierre Menard, and Mohamad Safa. Optimal control of a continuous-in-time financial

model. Mathematical Modelling and Numerical Analysis, 2013.

[3] Emmanuel Frénod, Pierre Menard, and Mohamad Safa. Two optimization problems using a continuous-in-

time financial model. Journal of Industrial and Management Optimization, 2014.

[4] Emmanuel Frénod and Mohamad Safa. Continuous-in-time financial model for public communities. pages

1–10, 2013.

[5] Nicolas Gast, Bruno Gaujal, and Jean-Yves Le Boudec. Mean field for markov decision processes: from

discrete to continuous optimization. Inria RR 7239, 2011.

[6] Francois Golse. On the Dynamics of Large Particle Systems in the Mean Field Limit. Ecole Polytechnique,
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