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Abstract. We extend the existing subdiffusive jump-diffusion model to a more general subdiffusive Lévy model,

where the underlying Lévy process is time changed by a general inverse Lévy subordinator. We are able to ob-

tain the characteristic function of log asset price by exploiting the fact that the Laplace transform of the inverse

subordinator can be computed through an inverse Laplace transform in general and is given in explicit form for

commonly encountered inverse subordinators. Different from previous studies where numerical methods such as

Monte Carlo or PDE are used to calculate the option prices, we employ Fourier transform to derive the analytical

solutions to power option prices.
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1. INTRODUCTION

Some financial data, especially asset prices can remain unchanged for constant periods. This

feature is most common in illiquid markets where the number of participants, and thus the
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number of transactions, is rather low. The similar behavior is also observed in physical sys-

tems with subdiffusion, where the constant periods correspond to the trapping events in which

the subdiffusive particles get immobilized. To describe and model the subdiffusion, the most

common approach is to combine two independent processes, where the first process is some

Markov process X(t) and the second is an inverse subordinator T (t) of a general infinite divisi-

ble distribution. Through the composition of the two processes, the new process, X(T (t)), can

exhibit constant time periods and the length of constant periods follows the probability law of

the specified Lévy subordinator.

In the subdiffusion literature for finance, X(t) is typically modeled as a continuous diffusion

process. Some important examples include geometric Brownian motion (GBM) in [9], Brown-

ian motion in [10], multidimensional GBM in [7], Ornstein Uhlenbeck (OU) process in [3] and

[5], Cox, Ingersoll and Ross (CIR) and 3/2 processes in [14] and constant elasticity of variance

(CEV) process in [15]. Recently, [4] extend the existing literature by allowing X(t) to be a jump

diffusion so that the asset price can exhibit discontinuities caused by jumps.

It is well-known that it is a challenging task to obtain analytical formulas for option prices

under subdiffusion. We can express the formula of option prices in terms of the integral of the

density of the inverse subordinator. However, the density function can be expressed in closed

form only in some special situations. Even if the density can be evaluated in closed form,

numerical integration is needed to calculate the option prices. Instead, numerical methods such

as Monte Carlo simulation ([7], [9], [10]) and PDE ([4], [8]) are often used to compute option

prices. In [14] and [15], the analytical formulas for option prices are expressed in terms of

eigenfunction expansion, which avoids the evaluation of density function and also eliminates

the need for numerical integration. However, this method is feasible only when the underlying

process X(t) belongs to a specific class of diffusions.

The contributions of this paper are two-fold. Firstly, we extend the subdiffusive jump dif-

fusion model of [4] to a more general subdiffusive Lévy model where the underlying process

X(t) can not only be Brownian motion or jump diffusion, but also any other Lévy processes

such as Normal Inverse Gaussian (NIG), Variance Gamma (VG) and Carr, Geman, Madan and

Yor (CGMY), to name a few; see [12] and references therein. At the same time, there is no any
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restriction imposed on the range of processes permissible for inverse subordinator T (t). Some

examples of processes for T (t) that have been studied previously include inverse α-stable sub-

ordinator, inverse transient subordinator, inverse tempered α-stable subordinator (see e.g. [3])

and inverse Poisson subordinator (see e.g. [4]).

Secondly, we demonstrate how to price power options under subdiffusive Lévy processes and

derive the closed-form solutions to option prices. The power option belongs to exotic options

where the payoff depends on a power function of asset price. When the power parameter is

one, the power option reduces to a vanilla option. The technique that enables us to obtain the

analytical formulas for the option prices is Fourier transform. We exploit an important result

that the Laplace transform of Laplace transform of T (t) is given in explicit form. Therefore, the

Laplace transform of T (t) can be obtained by taking inverse Laplace transform in general. For

most of inverse subordinators studied in the literature, their Laplace transform can be expressed

in an explicit form. We are then able to derive the characteristic function of log asset price

and calculate the option prices by inverting the characteristic function numerically. Other more

efficient characteristic-function based methods such as fast Fourier transform (FFT) of [1] and

Fourier cosine method of [2] can also be employed to obtain the option prices.

In a numerical study, we investigate the behaviour of the newly proposed model by comparing

the subdiffusive Lévy model with the Lévy model. We demonstrate that the subdiffusive model

can capture the constant periods observed in illiquid markets and different inverse subordinators

can replicate different types of liquidity. Furthermore, we also illustrate that the volatility skew

flattens out more slowly under subdiffusive Lévy model, which indicates it has the potential to

capture the term structure of implied volatility better than the Lévy model.

The structure of the paper is as follows. Section 2 introduces the subdiffusive model. Several

examples of Lévy processes are given and the Laplace transform of the inverse Lévy subor-

dinator is provided with some examples. Section 3 derives the characteristic function for log

asset price and the analytical formulas for the power option prices through Fourier transform.

Section 4 numerically explores the behavior of some specific subdiffusive models with different

underlying Lévy processes and inverse subordinators.
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2. A SUBDIFFUSIVE LÉVY MODEL

Let (Ω,F ,P) be a probability space with an information filtration (Ft). Suppose under the

physical probability measure P, the dynamics of an asset price S(t) is given by

S(t) = S(0)exp[Y (t)] ,(2.1)

where Y (t) is a composition of two processes:

Y (t) = L(T (t)) ,(2.2)

where L(t) is a Lévy process and T (t) is an inverse subordinator.

A Lévy process is infinitely divisible and its characteristic function can be expressed using

Lévy-Khintchine formula (see e.g. [11]).

Proposition 2.1. The characteristic function of the Lévy process L(t) has the form

(2.3) ΦL(t)(u) = E[exp(iuL(t))] = exp(−tψL(−iu)),

where ψL(u) is the characteristic exponent of the Lévy process and given by

ψL(u) = µu− 1
2

σ
2u2 +

∫
(−∞,∞)

(
1− exp(−ux)−ux1|x|<1

)
ν(dx),(2.4)

where µ ∈ R, σ ∈ R+ and ν is a positive Radon measure on R\{0} satisfying:∫
(−∞,∞)

(x∧1)ν(dx)< ∞.

We list several examples of Lévy processes and we refer to [12] for a more comprehensive

list.

Example 2.2. Gaussian Process.

ψL(u) = µu− 1
2

σ
2u2.(2.5)

Example 2.3. Jump Diffusion Process.

ψL(u) = µu− 1
2

σ
2u2−λ [exp(ΦX(iu))−1] ,(2.6)

where λ > 0 is the intensity parameter for a Poisson process and ΦX(·) is the characteristic

function of a jump size random variable.
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Example 2.4. NIG Process.

ψL(u) = µu− 1
2

σ
2u2 +δ

(√
a2− (b−u)2−

√
a2−b2

)
,(2.7)

where a > 0, |b|< a and δ > 0.

Example 2.5. CGMY Process.

ψL(u) = µu− 1
2

σ
2u2− cΓ(−γ) [(M+u)γ −Mγ +(G−u)γ −Gγ ] ,(2.8)

where Γ(·) is the Gamma function and c, G, M > 0, γ < 2.

The process T (t) in (2.2) is an inverse subordinator defined as

T (t) = inf{τ > 0 : D(τ)> t} ,(2.9)

where D(t) is a Lévy subordinator independent of L(t).

The Lévy subordinator D(t) is a nondecreasing process with positive jumps and non-negative

drift with the Laplace transform given in the following result (see e.g. [11]).

Proposition 2.6. The Laplace transform of D(t) is given by

E[exp(−uD(t))] = exp(−tψD(u)) ,(2.10)

where ψD is the Lévy characteristic exponent and given by

ψD(u) = γu+
∫
(0,∞)

(1− exp(−us))ν(ds) ,(2.11)

where γ ≥ 0 and the Lévy measure ν must satisfy∫
(0,∞)

(s∧1)ν(ds)< ∞ .

Throughout the whole paper we will always assume that ν additionally satisfies:∫
(0,∞)
|x|2ν(dx)< ∞.

Let η(u, t) be the Laplace transform of the inverse subordinator T (t), namely

η(u, t) = E[exp(−uT(t))] .(2.12)

To compute η(u, t), we can first use the following result to calculate the Laplace transform

η̂(u,k) of η(u, t) (see e.g. [3], [14]).
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Lemma 2.7. The Laplace transform η̂(u,k) of η(u, t) is

η̂(u,k) =
∫

∞

0
exp(−kt)η(u, t)dt =

ψD(k)
k(u+ψD(k))

,(2.13)

where ψD is the Lévy exponent defined in (2.11).

Given the Laplace transform of η(u, t), we can obtain η(u, t) for general inverse subordi-

nators by taking inverse Laplace transform. For commonly encountered inverse subordinators

T (t), we can obtain the explicit expression for η(u, t) (see e.g. [3], [4] for detailed derivations).

Example 2.8. Inverse α-stable subordinator. Let D(t) be a stable subordinator with Lévy ex-

ponent ψD(k) = kα with α ∈ (0,1). Then, η(u, t) for T (t) is

η(u, t) = E1
α,1(−utα) ,(2.14)

where Eγ

α,β (z) is the generalized Mittag-Leffler function:

Eγ

α,β (z) =
∞

∑
j=0

(γ) jz j

j!Γ(α j+β )
,

where α , β , γ ∈ C, Re(α), Re(β ), Re(γ)> 0.

Example 2.9. Inverse transient subordinator. Let D(t) be a transient subordinator with Lévy

exponent ψD(k) = c1kα1 +c2kα2 with α1, α2 ∈ (0,1), α1 <α2, c1, c2≥ 0 and c1+c2 = 1. Then,

we have

η(u, t) =
∞

∑
j=0

(
− c1tα2−α1

c2

) j

E j+1
α2,(α2−α1) j+1

(
− utα2

c2

)

−
∞

∑
j=0

(
− c1tα2−α1

c2

) j+1

E j+1
α2,(α2−α1)( j+1)+1

(
− utα2

c2

)
.(2.15)

Example 2.10. Inverse tempered α-stable subordinator. Let D(t) be a tempered α-stable sub-

ordinator with Lévy exponent ψD(k) = (k+ϑ)α −ϑ α with ϑ > 0 and α ∈ (0,1). Then, we

have

η(u, t) = 1−u
∫ t

0
exp(−ϑτ)τα−1E1

α,α((ϑ
α −u)τα)dτ .(2.16)
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Example 2.11. Inverse Poisson subordinator. Let D(t) be a Poisson subordinator with Lévy

exponent ψD(k) = λ [1− exp(−kΛ)] with λ > 0 and Λ > 0. Then, we have

η(u, t) =
(

1+
u
λ

)−(b t
Λ
c+1)

.(2.17)

3. OPTION PRICING WITH FOURIER TRANSFORM METHOD

To price the options, we need to change the measure from the physical measure P to the risk

neutral measure Q. For simplicity, we assume that the stochastic process for the asset price S(t)

continues to be an exponential of a subdiffusive Lévy process under the measure Q, that is

S(t) = S(0)exp[rt +ξ (t)+Y (t)] ,(3.1)

where r is the risk-free interest rate and Y (t) is the subdiffusive Lévy process defined in (2.2).

The deterministic function ξ (t) is selected so that the discounted asset price is a nonnegative

martingale under the measure Q. We can calculate ξ (t) from the following lemma.

Lemma 3.1. The function ξ (t) in (3.1) is given by

ξ (t) =− log[η(ψL(−1), t)] ,(3.2)

where η(·, t) and ψL(·) can be found in (2.12) and (2.4), respectively.

Proof. For the subdiffusive Lévy model to be well defined, S(t) must satisfy the martingale

condition:

EQ[S(t)] = exp(rt)S(0) .

Using the law of iterated expectations and (3.1), we have

EQ[S(t)] = S(0)EQ[exp(rt+ξ (t)+Y(t))] = S(0)exp[rt+ξ (t)]EQ{EQ[exp(L(T(t)))|T(t)]}

= S(0)exp[rt +ξ (t)]EQ[exp(−ψL(−1)T(t))] = S(0)exp[rt+ξ (t)]η(ψL(−1), t) .

Therefore, ξ (t) must satisfy (3.2). �

Denote by Φlog(S(t))(u) the characteristic function of the log asset price. We can calculate

Φlog(S(t))(u) from the following lemma.
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Lemma 3.2. For the subdiffusive Lévy process defined in (3.1) and (2.2), the characteristic

function Φlog(S(t))(u) is given by

Φlog(S(t))(u) = EQ[exp(iu log(S(t)))] = exp[iu(log(S(0))+ rt+ξ (t))]η(ψL(−iu), t) ,(3.3)

where η(·, t) and ψL(·) can be found in (2.12) and (2.4), respectively.

Proof. Using the law of iterated expectations and (3.1), we have

Φlog(S(t))(u) = EQ[exp(iu log(S(t)))]

= exp[iu(log(S(0))+ rt +ξ (t))]EQ{EQ[exp(iuL(T(t)))|T(t)]}

= exp[iu(log(S(0))+ rt +ξ (t))]EQ[exp(−ψL(−iu)T(t))]

= exp[iu(log(S(0))+ rt +ξ (t))]η(ψL(−iu), t) .

�

Let C(S(0),τ,K,β ) and P(S(0),τ,K,β ) represent the prices of a power call option and a

power put option with strike K and maturity τ with payoff functions (Sβ (τ)−Kβ )+ and (Kβ −

Sβ (τ))+ for β > 0, respectively. Note that the power options reduce to vanilla options when

β = 1. The power option prices can be computed from the following proposition.

Proposition 3.3. For the subdiffusive Lévy model specified in (3.1) and (2.2), we can obtain the

power option prices as follows.

(1) The power call option price C(S(0),τ,K,β ) is given by

C(S(0),τ,K,β ) = exp(−rτ)
[
Φlog(S(τ))(−iβ )P1−Kβ P2

]
,(3.4)

where

Pj =
1
2
+

1
π

∫
∞

0
Re
[

exp(−iu log(K)) f j(u,τ)
iu

]
du ,

for j = 1,2 and Φlog(S(τ))(·) can be obtained using Lemma 3.2. Furthermore,

f1(u,τ) =
Φlog(S(τ))(u− iβ )
Φlog(S(τ))(−iβ )

,
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and

f2(u,τ) = Φlog(S(τ))(u) .

(2) The power put option price P(S(0),τ,K,β ) is given by

P(S(0),τ,K,β ) =C(S(0),τ,K,β )− exp(−rτ)
[
Φlog(S(τ))(−iβ )−Kβ

]
.(3.5)

Proof. The power call option price can be calculated from

C(S(0),τ,K,β ) = exp(−rτ)EQ
[(

Sβ (τ)−Kβ

)+]
= exp(−rτ)EQ

[
Sβ (τ)1{S(τ)>K}−Kβ 1{S(τ)>K}

]
.

We follow [6] by introducing power numeraire Nβ (t,τ) as the value at time t of Sβ (τ) at τ . We

also define Q̃ as the martingale measure associated with taking Nβ (t,τ) as numeraire. There-

fore, the Radon-Nikodym derivative of the measure change is given by

dQ̃
dQ

=
Sβ (τ)

EQ[Sβ (τ)|Ft]

on Ft . Then, using change of measures and Lemma 3.2, we have

C(S(0),τ,K,β ) = exp(−rτ)EQ
[
Sβ (τ)1{S(τ)>K}−Kβ 1{S(τ)>K}

]
= exp(−rτ)

{
EQ[Sβ (τ)]EQ̃(1{S(τ)>K})−Kβ EQ[1{S(τ)>K}]

}
= exp(−rτ)

[
Φlog(S(τ))(−iβ )P1−Kβ P2

]
,

with two probabilities P1 and P2, which can be calculated from the corresponding characteristic

functions f1 and f2.

f1(u,τ) = EQ̃[exp(iu log(S(τ)))]

=
1

EQ[Sβ (τ)]
EQ[exp(iu log(S(τ)))Sβ (τ)]

=
Φlog(S(τ))(u− iβ )
Φlog(S(τ))(−iβ )

,
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and

f2(u,τ) = EQ[exp(iu log(S(τ)))]

= Φlog(S(τ))(u) .

By inverting two characteristic functions f1 and f2, we can obtain two probabilities P1 and P2

through

Pj =
1
2
+

1
π

∫
∞

0
Re
[

exp(−iu log(K)) f j(u,τ)
iu

]
du ,

for j = 1,2.

The power put option price can be easily obtained through put-call parity for power options.

�

When there is no time change, i.e. T (t) = t, the subdiffusive Lévy model becomes Lévy

model. If in addition, the underlying Lévy process L(t) is a Brownian motion, we obtain the

Black-Scholes model. The power call option price under the Black-Scholes model can be cal-

culated using the following result (see e.g. [13]).

Proposition 3.4. Assume the process for the asset price under the risk neutral measure Q is

S(t) = S(0)exp
[(

r− σ2

2

)
t +σB(t)

]
,

where B(t) is a Brownian motion. The power call option price is given by

C(S(0),τ,K,β ) = Sβ (0)exp
[
(β −1)

(
r+

βσ2

2

)
τ

]
N(d1)−Kβ exp(−rτ)N(d2) ,

where N(·) is the CDF of a standard normal distribution. Furthermore,

d1 =
log S(0)

K +
(
r− 1

2σ2 +βσ2)τ

σ
√

τ
, d2 = d1−βσ

√
τ .

4. A NUMERICAL STUDY

In this section, we numerically study four different subdiffusive models:

• A subdiffusive Lévy model where L(t) is Gaussian and T (t) is an inverse α-stable sub-

ordinator;
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stable subordinator. For Gaussian process: µ = 0.05, σ = 0.3. For NIG process:

µ = 0.05, σ = 0.2, a = 6, b =−4, δ = 0.1.
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subordinator. For Gaussian process: µ = 0.05, σ = 0.3. For NIG process: µ =

0.05, σ = 0.2, a = 6, b = −4, δ = 0.1. For inverse Poisson subordinator: Λ =
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• A subdiffusive Lévy model where L(t) is NIG and T (t) is an inverse α-stable subordi-

nator;

• A subdiffusive Lévy model where L(t) is Gaussian and T (t) is an inverse Poisson sub-

ordinator;

• A subdiffusive Lévy model where L(t) is NIG and T (t) is an inverse Poisson subordi-

nator.

The Laplace transforms for inverse α-stable subordinator and inverse Poisson subordinator

are given in (2.14) and (2.17), respectively. We note that for the subdiffusive Lévy model with

inverse α-stable subordinator, the model converges to the Lévy model without subdiffusion

when α→ 1. Similarly, for the subdiffusive Lévy model with inverse Poisson subordinator, the

model converges to the Lévy model when λ → ∞.

In Figure 1, we simulate a path of subdiffusive Lévy processes with inverse α-stable sub-

ordinator. We plot the simulated path for α = 0.5 and α = 1, where the latter represents the

corresponding Lévy processes without subdiffusion. In Figure 2, we plot the simulated path for

subdiffusive Lévy processes with inverse Poisson subordinator. For comparison purpose, we

plot the path for both λ = 25 and λ = 100000, where the latter converges to the corresponding

Lévy processes without subdiffusion.

It is clear for all the subdiffusive Lévy processes considered, there are flat periods of trajecto-

ries that correspond to the periods when the inverse subordinator T (t) is constant. We also note

that inverse α-stable subordinator and inverse Poisson subordinator describe two different kinds

of illiquidity. The inverse α-stable subordinator can replicate prolonged periods of inactivity

whereas the inverse Poisson subordinator tends to produce the recurring illiquidity at high or

low frequency. The difference in the behavior of the two inverse subordinators is due to the

difference in the Lévy subordinators that governs the probability law for the length of constant

periods.

In Figures 3-6, we display the implied volatility smile patterns with respect to the strike price

K for power call options with β = 2 under subdiffusive Lévy models. We also compare the

implied volatilities obtained from the subdiffusive Lévy models with the corresponding Lévy

models. Although for all the models considered, the conditional expectation of asset prices stays
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FIGURE 3. Implied volatilities for subdiffusive Gaussian processes with inverse

α-stable subordinator for different strike prices K. µ = 0, σ = 0.3, r = 0.05,

S(0) = 100 and β = 2.
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FIGURE 4. Implied volatilities for subdiffusive NIG processes with inverse α-

stable subordinator for different strike prices K. µ = 0, σ = 0.2, a = 6, b =−4,

δ = 0.1, r = 0.05, S(0) = 100 and β = 2.

the same, the conditional volatility varies with α for inverse α-stable subordinator and λ for

inverse Poisson subordinator. When the underlying process is Gaussian without subdiffusion,

the implied volatility always is a constant. However, once the Gaussian process is time changed



14 ZHIGANG TONG, ALLEN LIU

85 90 95 100 105 110 115

0
.3

0
0

.3
1

0
.3

2
0

.3
3

0
.3

4

τ=0.1

Strike Price

Im
p

lie
d
 V

o
la

ti
lit

y

85 90 95 100 105 110 115

0
.3

0
0

.3
1

0
.3

2
0

.3
3

0
.3

4

τ=0.5

Strike Price

Im
p

lie
d
 V

o
la

ti
lit

y
85 90 95 100 105 110 115

0
.3

0
0

.3
1

0
.3

2
0

.3
3

0
.3

4

τ=1

Strike Price

Im
p
lie

d
 V

o
la

ti
lit

y

85 90 95 100 105 110 115

0
.3

0
0

.3
1

0
.3

2
0

.3
3

0
.3

4

τ=2

Strike Price
Im

p
lie

d
 V

o
la

ti
lit

y

λ=100000

λ=25

FIGURE 5. Implied volatilities for subdiffusive Gaussian processes with inverse

Poisson subordinator for different strike prices K. µ = 0, σ = 0.3, Λ = 1/λ ,

r = 0.05, S(0) = 100 and β = 2.
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FIGURE 6. Implied volatilities for subdiffusive NIG processes with inverse

Poisson subordinator for different strike prices K. µ = 0, σ = 0.2, a= 6, b=−4,

δ = 0.1, Λ = 1/λ , r = 0.05, S(0) = 100 and β = 2.

by either inverse α-stable subordinator or inverse Poisson subordinator, the volatility smile

can be produced. When the underlying Lévy process is an NIG process, more complex smile

patterns can be generated through subdiffusion. We also observe when the maturity increases,
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the term structure of implied volatilities flattens out for all the models. However, it seems that

the speed of flattening out is slower for subdiffusive models, which indicates the subdiffusive

models have the potential to replicate the term structure of implied volatility better than the

Lévy models.

5. CONCLUSION

The Lévy model generalizes the famous Black-Scholes model and is able to capture the volatil-

ity skew often observed in equity option prices. For illiquid markets where the number of

participants and thus the number of transactions is low, the asset prices can exhibit constant

time periods. To capture this subdiffusion behaviour, we extend the Lévy model to a subdif-

fusive Lévy model, where the underlying Lévy process is time changed by a general inverse

Lévy subordinator. We are able to derive the formula for the characteristic function of the log

asset price by realizing the fact that the Laplace transform for commonly encountered inverse

subordinators is known explicitly. Without numerical methods such as Monte Carlo or PDE,

we obtain the analytical solution to the power option prices through Fourier transform. We also

numerically study the behaviour of the newly proposed models by comparing them with the

existing Lévy models.

In this paper, for illustration purposes, the option prices are computed through inverting the

characteristic functions numerically. The more efficient methods such as Fast Fourier transform

of [1] or Fourier cosine method of [2] can also be employed. Furthermore, it will be an inter-

esting topic to study the pricing problems for other exotic options or American options under

subdiffusive Lévy model.
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