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Abstract. We say that a module M is a closed cofinitely weak generalized supplemented module or briefly ccwgs-

module if for every N ≤cc M, N has a weak Rad-supplement in M. In this article, the various properties of ccwgs-

modules are given as a proper generalization of cofinitely weak Rad-supplemented modules. We prove that every

cofinite direct sum of a ccwgs-module is a ccwgs-module. In particular, we also prove that every ccwgs-module

over a left Bass ring is a ccws-module. Finally, we show that the notion of cofinitely weak Rad-supplemented

modules and the notion of ccwgs-modules are equivalent under some special conditions.
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1. Introduction

Throughout this paper, it is assumed that R is an associative ring with identity and all modules

are unital left R-modules. Let R be such a ring and let M be an R-module. The notation K ≤M
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(K < M) means that K is a (proper) submodule of M. A submodule N of M is called cofinite

in M if the factor module M
N is finitely generated. A module M is called extending if every

submodule is essential in a direct summand of M [4]. Here a submodule K ≤M is said to be

essential in M, denoted as KEM, if K∩N 6= 0 for every non-zero submodule N ≤M. A closed

submodule N of M, denoted by N ≤c M, is a submodule which has no proper essential extension

in M. Every direct summand of a module M is a closed submodule of M. If L≤c N and N ≤c M

, then L ≤c M by [8, Proposition 1.5]. If N is closed and cofinite submodule of M, we denote

as N ≤cc M. As a dual notion of an essential submodule, a proper submodule S of M is called

small (in M), denoted as S << M, if M 6= S+L for every proper submodule L of M [20, 19.1].

The Jacobson radical of M will be denoted by RadM. It is known that RadM is the sum of all

small submodules of M [20, 21.5]

A non-zero module M is said to be hollow if every proper submodule of M is small in M, and

it is said to be local if it is hollow and is finitely generated. A module M is local if and only if

it is finitely generated and RadM is maximal (see [4, 2.12 §2.15]). A ring R is said to be local

if J is maximal, where J is the Jacobson radical of R.

An R-module M is called supplemented if every submodule of M has a supplement in M.

Here a submodule K ≤ M is said to be a supplement of N in M if K is minimal with respect

to N +K = M, or equivalently, if N +K = M and N ∩K � K [20, page 349]. Every direct

summand of a module M is a supplement submodule of M, and supplemented modules are

a proper generalization of semisimple modules. In addition, every factor module of a supple-

mented module is again supplemented. As a generalization of supplemented modules, a module

M is called weakly supplemented if any submodule N of M has a weak supplement K, i.e. there

exists a submodule K of M such that M = N +K and N∩K�M as in [11].

Alizade et al. [1] have defined cofinitely supplemented modules as a proper generalization

of supplemented modules. They call a module M cofinitely supplemented if every cofinite

submodule N of M has a supplement in M, and give characterizations of these modules over

any rings and commutative domains (see [1]). In particular, it is shown in [1, Theorem 2.8]

that a module M is cofinitely supplemented if and only if every maximal submodule of M
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has a supplement in M. A module M is called cofinitely weak supplemented if every cofinite

submodule has a weak supplement in M [2].

A module M is called lifting (or D1-module) if, for every submodule N of M, there exists

a direct summand K of M such that K ≤ N and N
K << M

K [4, 22.2]. Mohamed and Müller

has generalized the concept of lifting modules to ⊕-supplemented modules. M is called ⊕-

supplemented if every submodule N of M has a supplement that is a direct summand of M

[12]. Clearly every⊕-supplemented module is supplemented, but a supplemented module need

not be ⊕-supplemented in general (see [12, Lemma A.4 (2)]). It is shown in [12, Proposition

A.7 and Proposition A.8] that if R is a dedekind domain, every supplemented R-module is ⊕-

supplemented. Hollow modules are ⊕-supplemented.

In [5], Çalışıcı and Pancar call a module M ⊕-cofinitely supplemented if every cofinite sub-

module of M has a supplement that is a direct summand of M. They gave in the same paper

some properties of these modules. In addition, it is proven in [5, Theorem 2.9] that a ring R is

semiperfect (that is, RR is supplemented) if and only if every free left R-module is ⊕-cofinitely

supplemented.

Let M be a module and U,V be submodules of M. A submodule V of M is called Rad-

supplement (according to [19], generalized supplement) of U in M if U +V = M and U ∩V ⊆

RadV (see [4, Theorem 10.14]). A module M is called Rad-supplemented (according to [19],

generalized supplemented) if every submodule U of M has a Rad-supplement in M. Since

Jacobson radical of a module M is the sum of all small submodules of M, every supplement

is a Rad-supplement. Then, clearly every supplemented module is Rad-supplemented but a

Rad-supplemented module need not to be supplemented. Note that radical modules are Rad-

supplemented. Let R be a non-local dedekind domain with quotient field K. Then K is Rad-

supplemented, but it is not supplemented.

In [3], a module M is called cofinitely Rad-supplemented if every cofinite submodule has

a Rad-supplement in M, and the closure properties of cofinitely Rad-supplemented modules

is given. Lomp [11] calls a module M semilocal if M
RadM is semisimple. Equivalently, every

submodule N of M has a weak Rad-supplement K in M, that is, M = N+K and N∩K ⊆ RadM.

A ring R is called semilocal if the left (or right) R-module R is semilocal. He show [11, Theorem
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3.5] that R is semilocal if and only if every left R-module is semilocal. A submodule V of M is

called weak Rad-supplement of U in M if U +V = M and U ∩V ⊆ RadM ([7]). A module M

is called cofinitely weak Rad-supplemented if every cofinite submodule U of M, there exists a

submodule V of M such that U +V = M and U ∩V ⊆ RadM.

Let M be an R-module. M is called Rad-⊕-supplemented, or generalized ⊕-supplemented,

if every submodule of M has a Rad-supplement that is a direct summand of M ([6]). Clearly,

Rad-⊕-supplemented modules are Rad-supplemented. A module M is called ⊕-cofinitely Rad-

supplemented (according to [9], generalized ⊕-cofinitely supplemented) if every cofinite sub-

module of M has a Rad-supplement that is a direct summand of M. Instead of a ⊕-cofinitely

radical supplemented module, we will use a cgs⊕-module like for [13].

In [14], the notion of closed weak supplemented modules is studied as a generalization of

weak supplemented modules. A module M is called a closed weak supplemented module if

every closed submodule has a weak supplement in M. Then, Türkmen et al. call a module

M closed cofinitely weak supplemented module (or briefly, ccws-module) if for N ≤cc M, N

has a weak supplement in M ([18]). The various properties of ccws-modules are given in the

same paper. A module M is called closed weak generalized supplemented (or, closed weak

Rad-supplemented) if every closed submodule has a weak generalized supplement (weak Rad-

supplement) in M.

In this paper, we introduce the notion of closed cofinitely weak Rad-supplemented modules,

denoted by ccwgs, as a proper generalization of ccws-modules. We provide some properties

of these modules. An example is given to separate ccwgs-modules and cofinitely weak Rad-

supplemented modules. We prove that every cofinite direct summand of a ccwgs-module is a

ccwgs-module. We obtain that every ccwgs-module over a left Bass ring is a ccws-module.

We also prove that a cofinitely strong refinable module M is cgs⊕-module if and only if M is a

cofinitely weak supplemented modules.

2. ccwgs-Modules

In this section, we define the concept of ccwgs-modules as a generalization of cofinitely weak

Rad-supplemented modules, and give various properties of them.
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Definition 2.1. Let M be a module. M is called a closed cofinitely weak generalized supple-

mented module (or briefly a ccwgs-module) if, for every N ≤cc M, there exists a submodule K

of M such that M = K +N and K∩N ⊆ RadM.

Under given definitions, we clearly have the following implications on modules:

co f initely Rad− supplemented modules

��

co f initely weak Rad− supplemented modules

��

ccwgs−modules

It follows from [4, 1.16] that a module M is extending if and only if every closed submodule

is a direct summand of M. Applying this fact, we obtain that every extending module is a

ccwgs-module.

Example 2.2. Consider the Z-module Z, where Z is the ring of all integers. Let nZ = N and

mZ= M be proper submodules of Z such that 0,∓1 6= n, m∈Z. Note that 0 6= nm∈N∩M 6= 0.

So, there is not a submodule M of Z such that Z= N +M and N ∩M ⊆ RadZ= 0. Hence Z is

not cofinitely weak Rad-supplemented module. Since Z is uniform as a Z-module and the direct

summands of Z are 0 and Z itself. It is easy to see that Z is a ccwgs-module because of all

closed submodules are 0 and Z.

Proposition 2.3. Let M be a ccwgs-module. Then any cofinite direct summand of M is a ccwgs-

module.

Proof. Let N be any cofinite direct summand of M and L≤cc N. Since N ≤c M, we obtain that

L ≤c M. In addition, since M
N and N

L is finitely generated, L is a cofinite submodule of M. It

follows that there exists a submodule K of M such that M = L+K and L∩K ⊆ RadM. We have

N = L+(N∩K) and L∩ (N∩K) = L∩K ⊆ N∩RadM. Since N is a direct summand of M. We

obtain that N∩RadM = RadN. Note that L∩ (N∩K)⊆ RadN by [20, 41.1(5)]. Therefore N is

a ccwgs-module.
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Lemma 2.4. (See [15, Lemma 3.5]) Let N and L be cofinite submodules of a module M such

that N +L has a weak Rad-supplement H in M and N∩ (H +L) has a weak Rad-supplement G

in N. Then H +G is a weak Rad-supplement of L in M.

Proposition 2.5. Let M = M1⊕M2 such that each Mi (i = 1,2) is a ccwgs-module. Suppose

that Mi ∩ (M j + L) ≤cc Mi and M j ∩ (L+K) ≤cc M j, where K is a weak Rad-supplement of

Mi∩ (M j +L) in Mi, i 6= j, for any L≤c M. Then M is a ccwgs-module.

Proof. Let L ≤cc M, then M = M1 +M2 +L has a weak Rad-supplement 0 in M. Since M1∩

(M2 +L) ≤cc M1 and M1 is a ccwgs-module, then there exists a submodule K of M1 such that

M1 = M1∩ (M2 +L)+K and M1∩ (M2 +L)∩K = K∩ (M2 +L)⊆ RadM1. By Lemma 2.4, K

is a weak Rad-supplement of M2 +L in M, i.e. M = K +(M2 +L). Since M2∩ (K +L)≤cc M2

and M2 is a ccwgs-module, then M2∩ (K +L) has a weak Rad-supplement J in M2. Again by

Lemma 2.4, K + J is a weak Rad-supplement of L in M. Hence M is a ccwgs-module.

Proposition 2.6. Let M = M1 +M2, where M1 is a ccwgs-module and M2 is any R-module.

Suppose that for any N ≤cc M, N ∩M1 ≤cc M1. Then M is a ccwgs-module if and only if every

N ≤cc M with M2 not contained in N has a weak Rad-supplement.

Proof. (=⇒) It is clear.

(⇐=) Let N ≤cc M with M2 ≤ N. Then M = M1 +M2 = M1 +N and M1 +N has a weak

Rad-supplement 0 in M. Since N ∩M1 ≤cc M1 and M1 is a ccwgs-module, N ∩M1 has a weak

Rad-supplement H in M1. By Lemma 2.4, H is a weak Rad-supplement of N in M. By the

hypothesis, M is a ccwgs-module.

Recall from [10, page 185] that a left R-module M is said to be singular (respectively, non-

singular) if Z(M) = M (respectively, Z(M) = 0), where Z(M) = {m ∈M |Ann(m)ER}.

Let M be a non-singular module and N ≤cc M, then N ∩L ≤cc L for any submodule L of M

and M = N +L.

Corollary 2.7. Let M = M1 +M2 be a non-singular module with M1 ccwgs and M2 any R-

module. Then M is a ccwgs-module if and only if every N ≤cc M with M2 not contained in N

has a weak Rad-supplement.
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Recall from [16, 1.11] that a module M is said to be distributive if (X +Y )∩Z = (X ∩Z)+

(Y ∩Z) for any submodules X ,Y, and Z of M. This means that the submodule lattice Lat(M) is

distributive.

Theorem 2.8. Let M = M1⊕M2 be a distributive module. Then M is a ccwgs-module if and

ony if, for each Mi of M, i ∈ {1,2}, Mi is a ccwgs-module.

Proof. Let L≤cc M. By the isomorphisms M
L
∼= M1

M1∩L +
M2

M2∩L and
M
L

Mi
Mi∩L

∼= M j
M j∩L for each Mi, i ∈

{1,2} and i 6= j, we have Mi∩L is a cofinite submodule of Mi. In addition, since L is a closed

submodule of M, then for each i, i ∈ {1,2}, Mi∩L is closed in Mi. So Mi∩L ≤cc Mi. In fact,

suppose that M1∩L is essential in K. Since M2∩L is essential in M2∩L and M is distributive, we

have that L= (M1∩L)⊕(M2∩L) =K⊕(M2∩L), because L is closed in M. Since for each i, i∈

{1,2}, Mi is a ccwgs-module, there exists a submodule Ki of Mi such that Mi = (L∩Mi)+Ki,

(L∩Mi)∩Ki = L∩Ki ⊆ RadMi. Hence M = M1⊕M2 = [(L∩M1)⊕ (L∩M2)]+ (K1 +K2) =

L+(K1⊕K2) and L∩ (K1⊕K2) = (L∩K1)⊕ (L∩K2)≤ RadM1⊕RadM2 = Rad(M1⊕M2) =

RadM. Thus M is a ccwgs-module. The converse holds by Proposition 2.3.

Corollary 2.9. Let M =⊕n
i=1Mi be a duo module. Then M is a ccwgs-module if and only if for

each cofinite direct summand Mi, i ∈ {1,2, . . . ,n}, Mi is a ccwgs-module.

Recall from [17] that a module M is called cofinitely strong refinable if, for every cofinite

submodule U of M and any submodule V of M with U +V = M, there exists submodules U
′

and V
′
of M with U

′ ⊆U , V
′ ⊆V , M =U

′
+V and M =U

′⊕V
′
.

Proposition 2.10. Let M be a cofinitely strong refinable module. Then the following statements

are equivalent.

(1) M is a cgs⊕-module.

(2) M is a cofinitely Rad-supplemented module.

(3) M is a cofinitely weak Rad-supplemented module.

Proof. (1)⇒ (2)⇒ (3) are obvious.

(3)⇒ (1) Suppose that M is a cofinitely weak Rad-supplemented module. Let N be any

cofinite submodule of M. Then there exists a submodule K of M such that M = N +K and

N ∩K ⊆ RadM. Since M is a cofinitely strong refinable module, there exist submodules N
′
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and K
′

with N
′ ⊆ N, K

′ ⊆ K, M = N +K
′

and M = N
′ ⊕K

′
. It follows that M = N +K

′
and

N∩K
′ ⊆ RadK

′
. Therefore M is a cgs⊕-module.

Proposition 2.11. Let M be an R-module with Rad(M) = 0. Then, M is a ccwgs-module if and

only if every closed cofinite submodule is a direct summand of M.

Proof. (⇒) Let N ≤cc M. By the hypothesis, there exists a submodule K of M such that

M = N +K and N ∩K ⊆ RadM. So N ∩K = 0. Thus M = N⊕K. Therefore N is a direct

summand of M.

(⇐) The converse is clear.

Using Proposition 2.10 and [4, 1.16], we obtain the following fact.

Corollary 2.12. Let M be a finitely generated R-module with Rad(M) = 0. Then the following

are equivalent.

(1) M is a ccwgs-module.

(2) M is extending.

Recall [20, page 192] that a ring R is called a left V-ring if every simple left R-module is

injective. Equivalently, a ring R is a left V-ring if and only if Rad(M) = 0 for all left R-modules

M.

Theorem 2.13. Let R be a left nonsingular V-ring. Then the following statements are equivalent.

(1) Every nonsingular left R-module M is a ccwgs-module.

(2) For any closed cofinite submodule N of every nonsingular left R-module M , N is a

direct summand of M.

Proof. Clear by Proposition 2.11.

Any finite sum of ccwgs-modules need not to be a ccwgs-module, in general. The following

Example shows this.

Example 2.14. Let R = Z[x], where Z is the ring of all integers. It can be seen that the left

R-module R is a ccwgs-module and M = R⊕R is not an extending R-module. As Rad(M) = 0,

by Corollary 2.12, M is not a ccwgs-module.
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Lemma 2.15. (See [15, Lemma 4.10]) Let U and K be submodules of M such that K is a weak

generalized supplement of a maximal submodule N of M. If K +U has a weak Rad-supplement

X in M, then U has a weak Rad-supplement in M.

Theorem 2.16. Suppose that for any cofinite submodule U of M, there exists a submodule K of

M, which is a weak Rad-supplement of some maximal submodule N of M, such that K +U is

closed in M. Then M is a ccwgs-module if and only if M is a cofinitely weak Rad-supplemented

module.

Proof. (⇒) Let U ≤cc M. By the hypothesis, there exists a submodule K of M such that

M = N+K, N∩K ⊆ RadM and K+U ≤c M for a maximal submodule N of M. It follows from
M
U

K+U
U

∼= M
K+U and U is a cofinite submodule of M that K+U is a cofinite submodule of M. Since

M is a ccwgs-module, there exists a submodule X of M such that X is a weak Rad-supplement

of K +U . By Lemma 2.15, U has a weak Rad-supplement in M. So M is a cofinitely weak

Rad-supplemented module.

(⇐) Clear.

Lemma 2.17. Let M be a ccwgs-module. Suppose that RadM is small in M. Then M is a

ccwgs-module if and only if M is a ccws-module.

Proof. Let N ≤cc M . Since M is a ccwgs-module, there exists a submodule K of M such that

M = N +K and N ∩K ⊆ RadM. Since RadM�M, N ∩K �M. Thus M is a ccws-module.

The converse is clear.

A module M is called coatomic if every proper submodule of M is contained in a maximal

submodule of M. Note that coatomic modules have a small radical.

Corollary 2.18. Let M be a coatomic module. Then M is a ccwgs-module if and only if it is a

ccws-module.

Recall from [4] that a ring R is a left Bass ring if every non-zero left R-module has a maximal

submodule. It is known that the ring R is left Bass if and only if RadM is small in M for every

non-zero left R-module M. By using Lemma 2.17, we obtain the following corollary.

Corollary 2.19. Every ccwgs-module over a left Bass ring is a ccws-module.
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[7] F. Y. Eryılmaz, Ş. Eren, Totally cofinitely weak Rad-supplemented modules, International Journal of Pure

and Applied Mathematics, 80(5) (2012), 683-692.

[8] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, New york and Basel (1976).
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