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Abstract. In this paper, we define the notion of closed models defined by counting, and we compute their homotopy

categories. We apply this construction to various categories of graphs. We show that there does not exist a

closed model in the category of undirected graphs which characterizes the Ihara Zeta function in the sense that,

a morphism f : X → Y is a weak equivalence for this model if and only if it induces a bijection between the sets

of non degenerated cycles of X and Y . Finally, we apply our construction to Galoisian complexes and dessins

d’enfant.
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1. Introduction

The theory of closed models defined by Quillen in the context of category theory provides

foundations of homotopy theory and is applied to various mathematics areas. To teach this

important idea, it is necessary to have in hands examples which are easy to understand, are

not trivial, and can be presented after a short introduction. A good framework to find such
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closed models is graph theory. In our papers [1] and [2] written in collaboration with Bisson,

we have defined such closed models in the category of directed graphs; one has the virtue to

characterize the Zeta function and the other is adapted to symbolic dynamic. It is an interesting

question to ask whether such a similar closed model characterizing the Ihara Zeta function

exists in the category of undirected graphs. In this paper, we answer negatively to this question.

The closed models defined in [1] and [2] are particular examples of closed models defined by

counting a family of objects (Xi)i∈I in a topos C; that is, the class of weak equivalences of

these models is the subclass W of the class of morphisms of C, such that for every f : X →

Y ∈W , and every i ∈ I, the map c f : HomC(Xi,X)→ HomC(Xi,Y ) defined by c f (h) = f ◦ h is

bijective. We start this paper by presenting properties of closed models defined by counting, in

particular, we determine their homotopy categories. We define closed models by counting in

subcategories of the category of undirected graphs, which characterize the Ihara Zeta function

of objects of a large subclass of their class of objects. A particular interesting example amongst

these closed models is defined in the category BCn, whose objects are n-colored graphs. This

category is equivalent to the category of Gn-sets where Gn is the group generated by a0, ...,an−1

such that a2
i = 1, i = 0, ...,n− 1. This category is studied by many authors, we can quote for

example Ladegaillerie [15] who has established an equivalence between BCn+1 and the category

of Galoisian n-complexes, we deduce the existence of closed models in these categories, and in

particular in the category of Galoisian 2-complexes which is related to dessins d’enfants.

1. Plan.

1. Introduction.

2. Closed models.

3. Closed models defined by counting.

4. Closed models defined by counting in the categories of directed graphs and undirected

graphs.

5. Closed models defined by counting in the category of undirected colored graphs.

6. Closed models defined by counting and topology.
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2. Closed models

In this section, we are going to present the basic properties of closed models defined by

counting; we start by the following definitions:

Definitions 2.1. A class W of morphisms of a category C satisfies the 2-3 property if and only

if for every morphisms f : X→Y and g : Y → Z of C, if two morphisms of the triple ( f ,g,g◦ f )

is an element of W , then the third is also an element of W .

We say that the morphism g : Y → T has the right lifting property with respect to h : X → Z,

and that h has the left lifting property with respect to g if and only if for every commutative

diagram:

X
p−→Y h ↓ g ↓ Z

q−→T

there exists a morphism l : Z→ Y such that l ◦h = p and g◦ l = q.

Let L and R be two classes of morphisms of C, we say that (L,R) is a weak factorization

system if and only if:

- Every morphism f ∈C can be written f = r ◦ l where l ∈ L, r ∈ R;

- L is the class of morphisms which has the left lifting property in respect of every morphism

of R;

- R is the class of morphisms which has the right lifting property in respect of every morphism

of L.

Let C be a category complete and cocomplete; we say that C is endowed with a closed model

if and only if there exist three classes of morphisms (Fib,Co f ,W ) such that:

- W satisfies the 2-3 property,

- Let Fib′ =W ∩Fib, (Co f ,Fib′) is a weak factorization system

- Let Co f ′ =W ∩Co f , (Co f ′,Fib) is a weak factorization system.

We start by the following general example:

Proposition 2.2. Let C be a category complete and cocomplete, let W be a class of morphisms

of C which satisfies the 2-3 property. Suppose that there exists a class of morphisms Co f of C

such that (Co f ,W ) is a weak factorization system. Then, there exists a closed model on C whose
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class of weak equivalences is W, its class of cofibrations is Co f , its class of weak cofibrations

Co f ′ is the class Iso(C) of isomorphisms of C, its class of fibrations Fib is the class Hom(C) of

all morphisms of C, and its class of weak fibrations Fib′ is W.

Proof. We have: (Co f ′,Fib) = (Iso(C),Hom(C)) and (Co f ,Fib′) = (Co f ,W ) are weak fac-

torization systems. We also have Fib∩W = Hom(C)∩W =W = Fib′, and Co f ∩W = Iso(C)

Since (Co f ,W ) is a factorization system. We deduce that (Hom(C),Co f ,W ) defines a closed

model on C.

3. Closed model defined by counting

We are going to apply the previous result to define closed models to count objects in cate-

gories. Let C be a category complete and cocomplete whose initial object is denoted by φ . For

every objects X and Y of C, we denote by X +Y the sum of X and Y . Let (Xi)i∈I be a family of

objects of C and li : φ → Xi the canonical morphism. There exist morphisms ji
1 : Xi→ Xi +Xi

and ji
2 : Xi→ Xi +Xi such that for every morphisms f : Xi→ Z and g : Xi→ Z, there exists a

unique morphism m( f ,g) : Xi +Xi→ Z such that m( f ,g)◦ ji
1 = f and m( f ,g)◦ ji

2 = g. We set

mi = m(IdXi, IdXi). Such a morphism is often called a folding morphism. We suppose that the

class of morphisms li,mi ∈ I admits the small element argument (see [11] 12.4.13). We denote

by WI the class of morphisms which are right orthogonal to every morphisms li and mi, i ∈ I.

Proposition 3.1. A morphism f : X→Y of C is an element of WI if and only if for every i∈ I, the

map ci
f : HomC(Xi,X)→ HomC(Xi,Y ) defined by ci

f (h) = f ◦h is bijective. We deduce that WI

satisfies the 2-3-property and there exists a closed model on C whose class of weak equivalences

is WI .

Proof. Let f : X →Y be a morphism of C, suppose that for every i ∈ I, f is orthogonal to li and

mi. Let h,h′ ∈ HomC(Xi,X) such that f ◦h = f ◦h′. The following diagram commutes:

Xi +Xi
h+h′−→Xmi ↓ f ↓ Xi

f◦h−→Y
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Since f is right orthogonal to mi, we deduce the existence of a morphism l : Xi → X such

that l ◦mi = h+ h′. We have l ◦mi ◦ ji
1 = l ◦mi ◦ ji

2 = l. We deduce that h = (h+ h′) ◦ ji
1 =

l ◦mi ◦ ji
1 = l ◦mi ◦ ji

2 = (h+h′)◦ ji
2 = h′.

Let h : Xi→ Y be any morphism, the following diagram commutes:

φ −→ X ↓↓ f Xi
h−→Y

thus it has a filler p : Xi→ X such that f ◦ p = h. This implies that ci
f is bijective.

We show now that WI satisfies the 2-3 property. Let f : X→Y and g : Y → Z be morphisms of

C, ci
g◦ f = ci

g ◦ci
f . Since ci

f ,c
i
g and ci

g◦ f are morphisms of sets, we deduce that if two morphisms

of the triple (ci
f ,c

i
g,c

i
g◦ f ) are bijective, so is the third.

Let cell(I) be the class of morphisms of C which are retracts of transfinite compositions of

pushouts of li,mi, i ∈ I, the propositions 12.4.14 and 12.4.20 of [11] imply that (cell(I),WI) is

a factorization system. We deduce from the proposition 2.2 the existence of a closed model on

C, whose class of weak equivalences is WI .

Remarks. Recall that a closed model (Fib,Co f ,W ) on a category is cofibrantly generated (see

[11] 13.2.2.) if there exist sets of morphisms ( fi)i∈I and (g j) j∈J both which allow the small

element argument, such that the class of fibrations is the class of morphisms which are right

orthogonal to every morphism of the family (g j) j∈J , and the class of weak fibrations is the class

of morphisms which are right orthogonal to every morphism of the family ( fi)i∈I . Thus, the

closed model defined by counting in the previous proposition is cofibrantly generated. In the

sequel, we will only consider such closed models defined by counting.

Let K be a subset of I, we denote by XK the sum of objects of the family (Xk)k∈K . The

morphism φ → XK is a cofibration, since it is transfinite composition of pushouts of elements

of (lk)k∈K .

The homotopy category of a closed model defined by counting.

One of the main purpose of the theory of closed models is to find a proper framework to

localize classes of morphisms. In this perspective, we are going to compute the homotopy

category of a closed model defined by counting. We start by remarking the fact that since every
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morphism is a fibration in a closed model defined by counting, every object is fibrant. Let us

determine now the cofibrant replacement of an object:

Proposition 3.2. Let U be a Grothendieck universe, and C be an U-category endowed with a

closed model defined by counting a set of objects (Xi)i∈I , where I is an U-set. Let Z be an object

of C, then Z has a cofibrant replacement QZ, isomorphic to a transfinite composition of a subset

of li,mi, i ∈ I.

Proof. Let IZ = { f ∈ HomC(Xi,Z), i ∈ I}. It is an U-set. We denote by XIZ the pushout of

elements of IZ , and by i f : Xi → XIZ the morphisms satisfying the universal property of the

pushout. There exists a morphism dZ : XIZ → Z such that for every f ∈ IZ , dZ ◦ i f = f . For

every i ∈ I, cdZ : HomC(Xi,XIZ)→ HomC(Xi,Z) defined by cdZ(g) = dZ ◦g is surjective since if

h ∈HomC(Xi,Z), we have dZ ◦ ih = h. Consider L(Z) the U-set whose elements are morphisms

pV : XIZ → V such that pV is a transfinite composition of pushouts of a subset of mi, i ∈ I, and

there exists a morphism fV : V → Z such that fV ◦ pV = dZ . There exist a relation of order

define on L(Z) such that pV ≥ pW if and only if there exists a morphism hV,W : W → V such

that pV = hV,W ◦ pW . Let (pV j) j∈J be an ordered family of L(Z); lim j∈J pV j is a lower bound

of (pV j) j∈J . The Zorn’s lemma implies that L(Z) has a maximal cZ : QZ→ Z which is a weak

equivalence.

Remark. In the rest of this section, we are going to suppose that the category C is U-small,

where U is a Grothendieck universe. Let V and W be objects of C, every morphism f : V →W

induces a morphism d( f ) : XIV → XIW ; d( f ) also induces a morphism Q f : QV →QW such that

f is a weak equivalence if and only if Q f is an isomorphism. (See also [6] Lemma 5.1).

Definitions 3.3. A path object of Z is an object ZI such that there exists a weak equivalence

iZ : Z→ ZI , a morphism pZ : ZI → Z×Z such that (idZ, idZ) = pZ ◦ iZ .

Two morphisms f ,g : Y → Z are right homotopic if and only if there exists a path object ZI ,

and a morphism H : Y → ZI such that ( f ,g) = pZ ◦H.

Proposition 3.4. Let C be a category endowed with a closed model defined by counting, and Y

a cofibrant object of C. Two morphisms f ,g : Y → Z of C are right homotopic if and only if they

are equal.
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Proof. If Y is cofibrant and f ,g are right homotopic, we can suppose that there exists a

path object ZI such that iZ : Z → ZI is an acyclic cofibration and ( f ,g) = pZ ◦H (See [6]

Lemma 4.15). Since iZ is an acyclic cofibration of a closed model defined by counting, it

is an isomorphism. We can thus suppose that ZI = Z and pZ = (idZ, idZ). This implies that

f = p1 ◦ pZ ◦H = p2 ◦ pZ ◦H = g where p1, p2 : Z×Z→ Z are the projections on the first and

second factors.

Remark. Let Y and Z be two objects of C, we denote by C(Y ) (resp. C(Z)) the cofibrant

replacement of Y (resp. Z). The objects C(Y ) and C(Z) are also fibrant. The homotopy category

of C is the category which have the same class of objects than C, and the set HomHot(Y,Z) of

morphisms of the homotopy category between the objects Y and Z is the set π(X ,Y ) whose

elements are right homotopy classes of morphisms between C(Y ) and C(Z). (See [6] 4.22 and

definition 5.6). We deduce:

Proposition 3.5. Let C be a category endowed with a closed model defined by counting, for

every objects X and Y of C, we have HomHot(Y,Z) = π(C(Y ),C(Z)) = HomC(C(Y ),C(Z)).

4. Closed models defined by counting in the categories of
directed graphs and undirected graphs

We will define now various closed models in different categories of graphs. We start by the

category of directed graphs.

Let CD be the category which has two objects that we denote by 0 and 1. We suppose that

HomCD(0,1) contains two elements s, t, HomCD(0,0), HomCD(1,1) contain one element and

HomCD(1,0) empty.

Definition 4.1. A directed graph is a presheaf defined on CD. Let X be such a presheaf; X is

defined by two sets X(0) and X(1), and two maps X(s),X(t) : X(1)→ X(0).

The set X(0) is called the space of nodes of X and the set X(1) the space of directed arcs of

X .
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Definition 4.2. A morphism f : X → Y between the graphs X and Y is a natural transformation

between the presheaves X and Y ; thus f is defined by a morphism f0 : X(0)→Y (0), f1 : X(1)→

Y (1) such that f0 ◦X(s) = Y (s)◦ f1, f0 ◦X(t) = Y (t)◦ f1 .

We denote by Gph the category of directed graphs. The category of directed graphs is com-

plete and cocomplete since it is a Grothendieck topos.

Examples of directed graphs are: the directed dot graph D. It is the graph such that D(0) is a

singleton and D(1) is empty.

The directed arc graph A is the graph defined by: A(0) = {u,v}, A(1) = {a} and A(s)(a) = u,

A(t)(a) = v.

Let p be a strictly positive integer. We denote by cp the graph whose set of nodes is Z/pZ,

let [n] be the class of the integer n in Z/p, there exists a unique arc an such that cp(s)(an) = [n]

and cp(t)(an) = [n+1].

We can define on Gph the closed model obtained by counting the elements of the set Cycl =

{cp, p ∈ N−{0}}.

Remark. The closed model obtained here have the same class of weak equivalences than the

closed model defined in [1], but the classes of cofibrations, weak cofibrations, fibrations, weak

fibrations of these closed models are different.

Definition 4.3. Let X be a directed graph, for every non zero integer p, we denote by np(X) the

cardinality of HomGph(cp,X). Suppose that for every strictly positive integer p, np(X) is finite.

The Zeta serie ZX(t) of X is:

exp(
p=∞

∑
p=1

np(X)
t p

p
).

Proposition 4.4. Let X and Y be two finite directed graphs, ZX(t) = ZY (t) if and only if there

exists an isomorphism f in HomHot(X ,Y ).

Proof. Let X and Y be two finite graphs; the proposition 3.5 implies that there exists an isomor-

phism in HomHot(X ,Y ) if and only if there exists an isomorphism of graphs f : C(X)→C(Y ).

The proposition 3.2 implies that the cofibrant replacement C(X) is a sum of cycles such that

ZX(t) = ZC(X)(t). We deduce that ZX(t) = ZC(X)(t) = ZC(Y )(t) = ZY (t).
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Undirected graphs.

It is natural to try to generalize this closed model to others categories of graphs, unfortunately

straightforward generalizations do not have the same natural properties, for example we do not

obtain the same characterization of the weak equivalences with the corresponding Zeta series.

We will consider the category UGph of undirected graphs.

Let CU be the category which has two objects that we denote by 0 and 1. We suppose

that HomCU (0,1) contains two elements s, t, HomCU (0,0) contains one element, HomCU (1,1)

contains the identity and an involution i such that i◦ s = t, and HomCU (1,0) is empty.

Definition 4.5. An undirected graph is a presheaf defined on CU . Let X be such a presheaf, X is

defined by two sets X(0) and X(1), two maps X(s),X(t) : X(1)→ X(0) and an involution X(i)

of X(1) such that X(s)◦X(i) = X(t).

The set X(0) is called the space of nodes, and the space X(1) the space of half-arcs. For an

half-arc a ∈ X(1), X(s)(a) is the source of a and X(t)(a) is the target of a.

Remark that X(i) is an involution of X(1), and the source of the half-arc a is the target of

X(i)(a) since i◦ s = t.

We have not assume that X(i) acts freely, this implies the existence of undirected graphs X

with degenerated loops; these are half-arcs fixed by X(i).

An arc of the graph X is defined by a couple (u,X(i)(u)) where u ∈ X(1). We denote by

Arc(X) the space of arcs of the undirected graph X . The source or the target of u will often be

called an end of the arc (u,X(i)(u)).

Geometrically, if the set of half arcs of an undirected graph X does not contain a degenerated

loop, it can be represented by a set of points corresponding to its nodes, and an arc (u,X(i)(u))

is an unoriented segment connecting X(s)(u) and X(t)(u).

Definition 4.6. A morphism f : X → Y between the undirected graphs X and Y is a natural

transformation between the presheaves X and Y ; thus f is defined by morphisms f0 : X(0)→

Y (0), and f1 : X(1)→Y (1) such that f0 ◦X(s) =Y (s)◦ f1, f0 ◦X(t) =Y (t)◦ f1 and f1 ◦X(i) =

Y (i)◦ f1.

The morphism of graphs f : X → Y induces a morphism a( f ) : Arc(X)→ Arc(Y ). If there is

no confusion, we will often denote a( f ) by f1.
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Examples of undirected graphs are: the undirected dot graph DU . It is the graph such that

DU(0) is a singleton and DU(1) is empty.

The undirected arc graph AU is the graph defined by AU(0) = {u1,u2}, AU(1) = {a1,a2} such

that AU(i)(a1) = a2, AU(s)(a1) = u1 and AU(t)(a1) = u2.

The graph VU is the graph defined by VU(0) = {v1,v2,v3}, VU(1) = {b1,b2,c1,c2} such that

VU(s)(b1) =VU(s)(c1) = v1, VU(t)(b1) = v2,VU(t)(c1) = v3, VU(i)(b1) = b2 and VU(i)(c1) = c2.

The path graph Pn is the graph whose set of nodes is {0, ...,n}, Pn(1) = {p+, p−, p= 0, ...,n−

1} such that Pn(s)(p+) = p,Pn(t)(p+) = p+1,Pn(i)(p+) = p−.

There is a morphism f : VU → AU such that f0(v1) = u1, f0(v2) = f0(v3) = u2, f1(b1) =

f1(c1) = a1. This morphism is called the elementary folding.

Let p be a strictly positive integer. We denote by cp
U the undirect graph whose set of nodes

is Z/pZ. Let [n] be the class of the integer n in Z/pZ, we have cp
U(1) = {[n]+, [n]−, [n] ∈ Z/p},

cp
U(s)([n]

+) = [n],cp
U(s)([n]

−) = [n+ 1], and cp
U(i)([n]

+) = [n]−. The graph cp
U is called the

undirected p-cycle.

Let X and Y two undirected graphs isomorphic to the 1-cycle c1
U . Remark that there exists a

unique morphism f : DU → X (resp. g : DU → Y ). The pushout of f and g is the eight graph.

Geometrically, it corresponds to two circles attached in one point.

Definition. 4.7. Let X be an undirected graph, a p-cycle of X is a morphism f : cp
U → X .

We say that the p-cycle f has a backtracking if and only if there exists an integer n such that

f1([n+1]+) = f1([n]−). We denote by Cyclp(X) the set of p-cycles of the undirected X without

a backtracking.

We denote by WU the class of morphisms of UGph such that for every f : X → Y in WU , for

every integer p > 0, the morphism cp( f ) : Hom(cp
U ,X)→ Hom(cp

U ,Y ) which sends the mor-

phism h to f ◦h induces a bijection on cycles without a backtracking. The class of morphisms

WU satisfies the 2-3-property.

Let X be a finite undirected graph, we denote by cp(X) the cardinality of the set of morphisms

cp
U → X without a backtracking. The Ihara zeta function of X is defined by:

exp(∑
p≥1

cp(X)

p
t p)
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Remark that if f : X → Y is a morphism between finite undirected graphs in WU , the graphs

X and Y have the same Ihara zeta function. We want to find a closed model for which WU is the

class of weak equivalences. We will see that such a model does not exist.

Remark. We can naively adapt the previous closed model defined in the category of di-

rected graphs to the category of undirected graphs: so, we define the closed model obtained

by counting elements of the family (cp
U)p∈N−{0}. A morphism f : X → Y of UGph is a weak

equivalence for this closed model if and only if for every strictly positive integer p, the map

Hom(cp
U ,X)→ Hom(cp

U ,Y ) induced by f is bijective. Thus, f induces a bijection between the

p-cycles of X , and the p-cycles of Y for every strictly positive integer, but the image of a cycle

without backtracking by f is not necessarily a cycle without backtracking. This closed model

is essentially trivial as shows the following result:

Proposition 4.8. A weak equivalence f : X → Y between two undirected finite and connected

graphs for the closed model defined by counting elements of the family (cp
U)p∈N−{0} is an iso-

morphism.

Proof. Firstly, we show that f1 : X(1)→ Y (1) is injective. Let a,b be two distinct arcs such

that f1(a) = f1(b). There exist morphisms hi : c2
U → X , i = 1,2 such that the image of h1 is a

and the image of h2 is b, the square diagram:

c2
U + c2

U
h1+h2−→ X ↓ j2 ↓ f c2

U
f◦h1−→Y

is commutative and does not have a filler this is a contradiction.

We show now that f1 is surjective. Let a be an arc of Y , there exists a morphism h : c2
U → Y

whose image is a. Since f is right orthogonal to i2 : φ → c2
U , we deduce the existence of a

morphism h′ : c2
U → X such that h = f ◦h′. This implies that f1 is surjective on arcs.

We show now that f0 : X(0)→ Y (0) is injective. Let x and y be two distinct nodes of X such

that f0(x) = f0(y). Since X is connected, there exists a path h between x and y, f (h) is a p-cycle

where p > 0. Since f induces a bijection on p-cycles, we deduce the existence of a p-cycle c of

X such that f (c) = f (h). This is in contradiction with the fact that f is bijective on arcs.

We show now that f0 is surjective.
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Let y be a node of Y since Y is connected, there exists an arc b of Y which has y as an end.

Since f1 is bijective, we deduce the existence of an arc a of X such that b = f1(a). This implies

that a has an end x such that f0(x) = y.

Theorem 4.9. There does not exist a closed model on UGph whose class of weak equivalences

is the class WU .

Proof. Suppose that such a closed model exists, then the elementary folding f : VU → AU would

be a weak equivalence, and we can write f = g◦h where h : VU → X is a weak cofibration and

g : X → AU is a fibration. The 2-3 property implies that g is a weak fibration.

Suppose that h1(b1) = h1(c1), and consider the morphism l : VU → c2
U defined by l0(v1) =

[0], l0(v2) = l0(v3) = [1], l1(b1) = [0]+ and l1(c1) = [1]−. We can define the pushout diagram:

VU
h−→Xl ↓ p ↓ c2

U
q−→Z

Remark that X does not have any cycle without backtracking since h is a weak equivalence

and VU does not have any cycle without backtrackings. We deduce that Z does not have any

cycle without backtrackings since Z is isomorphic to X . This implies that q is not a weak

equivalence. This is a contradiction with the fact that in a closed model, the pushout of a weak

cofibration is a weak cofibration. Thus h1(b1) is distinct of h1(c1). Remark that the image of

VU by h cannot be isomorphic to a 2-cycle since h is a weak equivalence; we deduce that this

image is isomorphic to VU .

Now, consider the morphism m : c2
U→AU defined by m0([0])= u1,m0([1])= u2 and m1([0]+)=

m1([1]−) = a1. Consider the pullback diagram:

U
p′−→Xq′ ↓ g ↓ c2

U
m−→AU

The morphism q′ : U→ c2
U must be a weak equivalence since in a closed model, the pullback

of a weak fibration must be a weak fibration. But, there exists a subgraph of U isomorphic to

the pullback of the elementary folding by m : c2
U → AU . Such a subgraph is isomorphic to the

graph obtained by identifying two nodes of two distinct unoriented 2-cycles. So q′ cannot be a

weak equivalence. This is a contradiction.
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5. Closed models defined by counting in the category of undi-
rected colored graphs

We are going to define closed models in subcategories of UGph, and in particular in the

category of undirected colored graphs.

Definitions 5.1. Let X be an undirected graph, for every node x of X , we denote by X(x,∗)

the set of arcs (u,X(i)(u)) such that X(s)(u) = x or X(t)(u) = x.

A morphism f : X → Y between undirected graphs is a covering if and only if for every

x∈ X0, the morphism fx : X(x,∗)→Y ( f0(x),∗) induced by f is bijective. Remark that for every

undirected graph, the morphism φ → X is a covering.

Let X be an undirected graph, we denote by CX the category whose objects are coverings

f : Y → X . A morphism between the objects f : Y → X and g : Z→ X is a covering morphism

h : Y → Z such that g◦h = f .

Proposition 5.2. Limits and colimits exist in CX .

Proof. The class Cov of covering morphisms of UGph is the class of morphisms which are

right orthogonal to the elementary folding fU : VU → AU and to iU : DU → AU . This implies

that the pullback of a covering morphism is a covering morphism. Since the products in CX

are pullbacks of covering morphisms, we deduce that products and pullbacks exist in CX , and

henceforth that limits exist in CX . (See SGA 4.1 proposition 2.3).

Let ( fi : Yi → X)i∈I be a family of elements of CX . The morphism f : ∑i∈I Yi → X whose

restriction to Yi is fi is a covering; this implies that sums exist in CX .

We show now that pushouts exist in CX . Let h : Z → X and h′ : Z′ → X be two objects of

CX ; consider an object p : Y → X , f : Y → Z and g : Y → Z′ two morphisms of CX . Without

restricting the generality, we can suppose that Y,Z and Z′ are connected. The morphisms f

and g are surjective on nodes and arcs since they are coverings and the pushout of f and g is

defined by the graph L whose set of nodes, L0 is the quotient of Z0
⋃

Z′0 by the equivalence

relation generated by: let x ∈ Z0 and x′ ∈ Z′0, x ' x′ if and only if there exists x” ∈ Y0 such that

f0(x”) = x and g0(x”) = x′; L1 is the quotient of Z1
⋃

Z′1 by the equivalence relation generated

by: let a ∈ Z1 and b ∈ Z′1, a ' b if and only if there exists c ∈ Y1 such that f1(c) = a and

g1(c) = b. We denote by pl : Y → L the quotient morphism. There exists a morphism l : L→ X
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such that p = l ◦ pl since p = h ◦ f = h′ ◦ g. The morphism l is a covering since f and g are

elements of CX ; it is the pushout of f and g.

We consider Rp
X the set of graphs in CX such that an element of Rp

X is obtained by attaching

a forest to a p-cycle. We define on CX the closed model obtained by counting elements of

RX = {Rp
X , p ∈ N−{0}}. Thus a morphism f : X → Y of CX is a weak equivalence if and only

if for every for every p > 0, for every Up ∈ Rp
X , HomCX (Up,X)→ HomCX (Up,Y ) is bijective.

Proposition 5.3. Let f : Y → X be an object of CX such that Y does not have loops, then for

every p-cycle h : cp
U → Y, p > 1, without backtrackings there exists an element U of Rp

X and a

morphism g : U → Y of CX whose restriction to the p-cycle is h.

Proof. Let h : cp
U → Y be a p-cycle. Since Y does not have loops, for every integer n, h1([n]+)

is distinct of h1([n+1]+). This implies that we can attach a tree to every node of cU
p to obtain a

graph U for which there exists a covering g : U → Y whose restriction to cU
p is h.

Remark. The previous proposition is not true if there are 1-cycles in Y . Consider the fol-

lowing example: X = Y is the 1-cycle, Consider the morphism defined by h : c2
U → X such that

h1([0]+) = h1([1]+). This cycle does not have backtracking, but it is impossible extend h to an

element of R2
X such that it becomes a covering, since the restriction of h1 to c2

U([1],∗) is not

injective.

Proposition 5.4. Let f : Y → X and g : Z→ X be objects of CX such that Y and Z are finite and

do not have loops. If there exists a weak equivalence between f and g, then Y and Z have the

same Ihara Zeta function.

Proof. A weak equivalence between f : Y → X and g : Z→ X is defined by a covering h : Y →

Z such that g ◦ h = f . We are going to show that h induces a bijection on p-cycles without

backtracking. Let u,u′ : cp
U → Y be two p-cycles of Y without backtrackings such that h ◦ u =

h ◦ u′. Since Z does not have loops, there exists an element v : V → X ∈ Rp
X and a morphism

between v and g whose restriction to the p-cycle of V coincide with h◦u. Since h is a covering,

we can lift v to morphisms v1 : V →Y (resp v2 : V →Y ) whose restriction the p-cycle is u (resp.

u′) and such that v1,v2 are morphisms of CX respectively between v and f . Since h is a weak

equivalence, we deduce that v1 = v2, and henceforth that u = u′. We deduce that h is injective



APPLICATIONS OF CLOSED MODELS 15

on p-cycles. The fact that f is surjective on p-cycles results from the fact that for every p-cycle

without backtracking l : cp
U → Z there exists an element v : V → X ∈ Rp

X and a morphism d of CX

between v and g whose restriction to the p-cycle of V is l. We can lift d : V → Z to a morphism

d′ : V → Y since h is a covering, the restriction of d′ to the p-cycle of V is a preimage of l.

Remarks. Let f : Y → X be an object of CX without loops. A p-cycle u : cp
U → Y without

backtracking, is primitive if and only if for every q-cycle u′ : cq
U → Y without backtracking, if

there exists a morphism f : cp
U → cq

U such that u = u′ ◦ f , then p = q. Two primitive p-cycles

u,u′ : cp
U → Y are equivalent if there exists an isomorphism f of cp

U such that u′ = u ◦ f . We

denote by Ep(Y ) the set whose elements are equivalence classes of primitive p-cycles without

backtracking, and by E(Y ) =
⋃

p∈N−{0}Ep(Y ). For a primitive p-cycle without backtracking

u : cp
U → Y , we will denote by [u] its equivalence class.

For every element [u] ∈ Ep(Y ), we choose an element u : cp
U → Y in this class, and consider

the element Vu of Rp
X such that there exists a morphism vu : Vu→ Y of CX whose restriction to

the cycle of Vu coincide with u. Let V be the direct summand of the graphs Vu, there exists a

covering c : V → Y whose restriction to Vu is v. The morphism c is a weak equivalence and the

morphism φ → c(Y ) is a cofibration, thus c(Y ) is a cofibrant replacement of Y .

Let Bn be the undirected graph which has one node ∗, and n undirected loops. Let X be an

undirected graph, there exists a covering f : X → Bn if and only if X is a n-regular graph and

the edges of X can be colored by n-distinct colors. The proposition 5.4 implies that there exists

a closed model on the category of n-regular graphs whose edges can be colored by n distinct

colors such that, if there exists a weak equivalence between two finite graphs without loops in

this category, then they have the same Zeta function.

Proposition 5.5. Suppose that X = Bn, let f : Y → X and g : Z → X be two objects of CX

such that Y and Z are finite and do not have loops. Moreover, suppose that Y and Z have the

same Zeta function, and there exist an isomorphism Hp : Ep(Y )→ Ep(Z) such that each element

[c]∈Ep(Y ) there exists a morphism c : cp
U→Y representing [c], such that f ◦c= g◦Hp(c) where

Hp(c) represents Hp([c]). Then there exists a graph L, coverings p : L→Y and p′ : L→ Z which

are weak equivalences.
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Proof. If Y → X and Z → X are two objects of CX such that the Zeta series of Y and Z are

equal, then any isomorphism between their respective sets of primitive cycles which respects

their colors as described above induces an isomorphism between their cofibrant replacements.

Remarks. Let X be an undirected graph; X is n-regular if and only if for every node x of X , the

cardinal of X(x,∗) is n. Remark that an n-colored graph is an n-regular but not every n-regular

graph is n-colored as shows the snark graph. The Quillen model that we have just defined in the

category of n-regular colored graphs cannot be naively extended to the category whose objects

are n-regular graphs and the morphisms are the coverings morphisms, since pushouts do not

exist in this category.

We are going to relate n-colored graphs to Cayley graphs. Let G be a group and S a set of

generators of G, for every G-set X , the Cayley graph C(X ,S,G) is the directed graph whose set

of nodes is X , and for every elements x and y of X , the set of arcs between x and y is in bijection

with {s ∈ S,s(x) = y}.

Let Gn be the group generated by Sn = {a0, ...,an} such that a2
i = 1 for every i = 0, ...,n. For

every Gn-set X , the Cayley graph C(X ,Sn,Gn) is endowed with the structure of an undirected

regular colored graph defined as follows: let x be a node of X , there exists an half edge between x

and ai(x) colored by ai. The symmetric of this half edge is the half edge defined by ai(ai(x))= x.

We denote by UCGn the category of Gn-sets.

Proposition 5.6. The correspondence C(Sn,Gn) which associates to X, C(X ,Sn,Gn) induces an

isomorphism between UCGn and the category of n+1-regular colored graphs CBn .

Proof. We have only to construct the inverse of C(Sn,Gn). Let X be an n+1-regular colored

graph. We assume that the colors are labeled by a0, ..,an. We associate to X its set of nodes X0

endowed with the action of Gn defined as follows: if x ∈ X0 and there exists an arc between x

and y colored by ai, we set ai(x) = y.

Remarks. The closed model defined on CBn induces a closed model on UCGn .

Let LUCGn be the full subcategory of UCGn such that for every object X of LUCGn , every

x ∈ X , and for every i = 0, ...,n, ai(x) 6= x. The functor C(Sn,Gn) establishes an isomorphism

between LUCGn and the category of n+1-regular colored graphs without a loop.
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Closed models can also be defined in others interesting comma categories associated to

UGph, here is an example:

Definition 5.7. The category of bipartite BUGph graphs is the comma category UGph/AU .

Thus a bipartite graph is a morphism f : X→ AU . A morphism between the objects f : X→ AU

and g : Y → AU of UGphn/AU is a morphism h : X → Y such that f = g◦h.

Consider the undirected graph Dn which has two nodes 0 and 1, and such that there exist

n+1-arcs a0, ...,an between 0 and 1. The category BCn =CDn of coverings of Dn is the category

of graphs which are bipartite and n+1-colored. We deduce the existence of a closed model on

BCn obtained by counting objects of BCn obtained by attaching a forest to a cycle.

6. Closed models by counting and topology

We are going to use the closed model defined on BCn to study the Galoisian complexes

introduced by Ladegaillerie [15]:

Definitions 6.1. Let S+n be the oriented standard affine n-simplex whose vertices are labeled

A0, ...,An. We denote by S−n the corresponding simplex with the opposite orientation. Let

I be a set (not necessarily numerable), and (S+i )i∈I a set of examples of S+n and (S−i )i∈I the

corresponding set of examples of S−n . The elements of (S+i )i∈I are called the direct simplexes,

and the elements of (S−i )i∈I are called the undirect simplexes. A Galoisian n-complex C is

obtained by gluing elements of (S+i )i∈I with elements of (S−i )i∈I such that the gluing respect

the labeling, affine structures and inverse orientations. Moreover,we suppose that each face of

C belongs to exactly two simplexes; one direct and the other undirect.

A morphism f : X→Y between two Galoisian n-complexes is a continuous map which sends

a direct simplex to a direct simplex, an undirect simplex to an undirect simplex, respects the

labelings, and the affine structures. This defines the category CGn, whose objects are Galoisian

n-complexes and the morphisms are morphisms between Galoisian n-complexes.

Let X be a Galoisian n-complex. We denote by Ω+
n (X) the union of elements of (S+i )i∈I ,

by Ω−n (X) the union of elements of (S−i )i∈I , and by Ωn(X) the union of Ω+
n (X) and Ω−n (X).

We can define s j, j = 0, ...,n the involution of Ω(X) such that for an element S+i of Ω+
n (X),
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a j(S+i ) is the unique undirected simplex of Ω−n (X) whose j-face is identified with the j-face of

S+i . If Gn is the group generated by {a0, ...,an} with the relations a2
j = 1, j = 0, ...,n, the proof

of Ladegaillerie [15] 1.2 shows that the correspondence Ωn between CGn and the category of

Gn-sets, which sends a Galoisian n-complex X to the Gn-set Ωn(X) endowed with the action

that we have just defined is an isomorphism between CGn and the category of Gn-sets. Remark

that the composition of C(Sn,Gn)◦Ωn defines an isomorphism between CGn and the category

of undirected n+1-colored bipartite graphs BCn. This shows the existence of a closed model on

CGn. We will denote by Ln(X) the Cayley graph of the Gn-set Ωn(X), defined by the generators

of Gn, a0, ...,an.

Remarks. Let X and Y be finite Galoisian complexes, since Ln(X) is a bipartite graph, it does

not have loops, we deduce that if there exists a weak equivalence Ln(X)→ Ln(Y ), then Ln(X)

and Ln(Y ) have the same Ihara Zeta function.

Question. Is it possible to provide a geometric interpretation of the coefficient of the Ihara Zeta

function of Ln(X) ?

The Galoisian complex Xn
0 defined by two elements S+n 0 and S−n 0 is homeomorphic to the

n-sphere Sn. For every complex X defined by Ω+
n (X)

⋃
Ω−n (X), there exists a morphism of Ga-

loisian complexes p : X → Xn
0 which identifies the elements of Ω+

n (X) to S+n 0, and the elements

of Ω−n (X) to S−n 0. This map is ramified at a (n−2)-subcomplex of C (see [15] 1.3).

The subgroup of Gn generated by {aian, i = 0, ..,n− 1} is isomorphic to the free subgroup

generated by n elements, Fn. Let X be a Galoisian n-complex defined by Ω(X)=Ω+
n (X)

⋃
Ω−n (X).

The previous action of Gn on Ω(X) induces an action of Fn on Ω+
n (X). The proof of Lade-

gaillerie [15] (p.1725-1726) shows this action induces an isomorphism between CGn and the

category of Fn-sets.

For every Fn-set X , we can define the Cayley graph L+
n (X) defined by the set of generators

a0a1, ...,a0an. The isomorphism between CGn and the category of Fn-sets EFn induces a closed

closed model on EFn . Others closed models can be defined on EFn . In the next section we are

going to present a general construction to transfer the closed model of Gph, to the category of

G-sets for any group G.

Closed model and G-sets.
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Let G be a group, consider the category CG which has only one object that we denote by ∗,

we suppose that HomCG(∗,∗) = G. An object of the category ĈG, of presheaves over CG is a set

E, endowed with an action of G. Thus, ĈG is the category of G-sets. We are going to transfer

the closed model defined at the section 4 in the category of directed graphs, to the category of

G-sets. On this purpose, we firstly recall the definition of some canonical functors.

The category CD (see section 4) can be embedded in ĈD by using the Yoneda embedding as

follows: to 0, we associate the presheaf 0̂ defined by 0̂(0)=HomCD(0,0), 0̂(1)=HomCD(1,0).We

see that 0̂ is DD the dot graph. To 1, we associate the presheaf 1̂ defined by 1̂(0)=HomCD(0,1), 1̂(1)=

HomCD(1,1). We remark that 1̂ is the arc graph AD. Let X be a directed graph, we denote by

CD/X the category whose objects are morphisms of presheaves between the objects of CD and

X . The objects of CD/X are morphisms DD → X and AD → X . Thus, the class of objects of

CD/X can be identified with the union of the set of nodes of X , and its set of arcs. Let f : U→ X

and g : V → X be two objects of CD/X , a morphism between f and g is a morphism h : U →V

such that f = g◦h. Let a be an arc of X , there exists a morphism fa : AD→ X whose image is

a. We also have morphisms sa : DD→ s(a)→ X and ta : DD→ t(a)→ X , where s(a) and t(a)

are respectively the source and the target of a. The source and the target morphisms DD→ AD

induces morphisms of CD/X between sa and fa and between ta and fa. Remark that if a is a

loop these two morphisms are distinct.

Let A be a set of generators of G. For every G-set S, recall that we have denoted by C(A,G)(S)

the Cayley graph of S associated to G and A.

Let U be the terminal object of the category of G-sets. U is the G-set which has a unique

element n. We denote by BA the Cayley graph of U defined by A. The objects of the category

CD/BA are the unique morphism ia : DD→ BA and the morphisms ca : AD→ BA which sends

AD to the loop of BA corresponding to a. The morphisms of CD/BA are the isomorphisms and

the morphisms ŝa : ia → ca induced by ŝ : 0̂→ 1̂ and t̂a : ia → ca induced by t̂. We have a

functor FA : CD/BA→CG such that FA(ia) = FA(ca) = ∗, FA(ŝa) = Id, FA(t̂a) = a. In [8] p. 33,

Grothendieck defines an equivalence of categories eBA : ˆCD/BA→ Gph/BA.
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Proposition 6.2. The composition: eBA ◦ F̂A : ĈG→ Gph/BA is the functor which associates to

a G-set S, the canonical morphism C(A,G)(S)→ BA and henceforth D(A,G) = eBA ◦ F̂A, has a

left adjoint.

Proof. Let EG be a G-set, we denote by E the image of EG by the forgetful functor G-Sets→

Set. We have: F̂A(EG)(iA) = F̂A(EG)(ca) = E. The construction in [8] 5.10.1 shows that:

eBA ◦ F̂A(EG)(0) = E,

and

eBA ◦ F̂A(EG)(1) =
⋃
a∈A

F̂A(EG(ca)) =
⋃
a∈A

Ea,

where Ea = E. This shows that the set of nodes (resp. the set of arcs ) of the Cayley graph of

EG coincide with the set of nodes (resp. the set of arcs) of eBA ◦ F̂A(E).

The restriction of eBA ◦ F̂A(EG)(s) to Ea is the identity, and the restriction of eBA ◦ F̂A(EG)(t)

to Ea is the multiplication by a. This shows that the Cayley graph of EG is eBA ◦ F̂A(EG).

We deduce that the functor D(A,G) has a left and right adjoint since eBA is an equivalence of

categories and F̂A has left and right adjoint see [8] proposition 5.1.

Remark. The existence of a left adjoint of D(A,G) can be shown directly, by showing that

D(A,G) commutes with limits. The functor ĈG→Gph which sends a G-set to its Cayley graph

does not have always a left adjoint since it does not commutes always with limits.

We consider the closed model defined on Gph/BA obtained by counting the object cn→ BA,

where cn is an n-cycle.

We present now the transfer theorem that we are going to use see [5] theorem 3.3. Let C and

D be categories in which limits and colimits exist. Suppose that C is endowed with a closed

model. We denote by WC the class of weak equivalences, Co fC the class of cofibrations and

FibC the class of fibrations of this closed model. Suppose that there exists a functor F : C→ D

which has a right adjoint functor G.

We denote WD the class of morphisms of D such that for every morphism f ∈WD, G( f ) is a

weak equivalence,

We denote FibD the class of morphisms of D such that for every f ∈ FibD, G( f ) is a fibration,

We denote by Fib′D the intersection of WD and FibD.
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An arrow of D is a cofibration if and only if it has the left lifting property with respect to

every element of Fib′D. We denote by Co fD the class of cofibrations.

Theorem 6.3. With the notations above, suppose that D allows the small object argument,

and suppose that for every morphism d of D which is a transfinite composition of pushouts of

coproducts of morphisms F(c) where c is a weak cofibration, G(d) is a weak equivalence. Then,

there exists a closed model on D whose class of weak equivalences is WD, the class of fibrations

is FibD and the class of cofibrations is Co fD.

We can deduce the following result:

Corollary 6.4. Let G be a group, A a set of generators of G and ĈG the category of G-sets. There

exists a closed model on ĈG such that the morphism of G-sets f : X → Y is a weak equivalence

if and only if D(A,G)( f ) : D(X ,A,G)→ D(Y,A,G) is a weak equivalence.

Proof. To show this result, we apply the theorem 6.4 to transfer the model defined on the

category of directed graphs at paragraph 4 with the functor D(A,G). The category of G-sets

allows the small object argument. Let F be the left adjoint of D(A,G) and d be a morphism of

ĈG which is a transfinite composition of pushouts of coproducts of morphisms F(c), where c

is a weak cofibration. Since weak cofibrations in Gph are isomorphisms, we deduce that d and

D(A,G)(d) are isomorphisms.

We are going to apply this construction to the free group Fn. Let An = {a1, ...,an} be a set

of generators of Fn; we denote by Rn the set of Fn-sets such that for every Fn-set X in Rn,

C(An,Fn)(X) is obtained by attaching a forest to a sum of cycles.

Proposition 6.5. A Fn-set X is cofibrant for the closed model obtained by transferring the closed

model of Gph/BA to the category of Fn-sets with D(An,Fn) if and only if it is an element of Rn.

Proof. Let X be a cofibrant Fn-set. The source of the cofibrant replacement X ′ of D(An,Fn)(X)

is the sum ∑i∈I X ′i of cycles. Let hi be the restriction of the cofibrant morphism h : X ′ →

D(An,Fn)(X) to X ′i . There exists an element of Rn, Yi = D(An,Fn)(Xi), a morphism gi : Xi→ X

such that hi is the restriction of D(An,Fn)(gi) to the cycle of Yi. To see this, consider xi
1, ...,x

i
in

be the nodes of X ′i . We suppose that there exists an arc between xi
i j

and xi
i j+1

if i j < in and

an arc between xi
in and xi

1. There exists a generator ai j such that ai j(h(x
i
i j
)) = h(xi

i j+1
), i j <
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in and ain(h(x
i
in) = h(xi

1). The set Fn-set Xi is the unique set which contains the elements

xi
1, ..,x

i
in ,ai j(x

i
i j
) = xi

i j+1
, j < n and ain(x

i
in) = xi

1 and the Cayley graph of Xi is obtained by

attaching a minimal forest to the cycle (xi
1, ..,x

i
in). The sum ∑i∈I gi is a weak equivalence.

Consider the commutative diagram:

φ−→∑
i∈I

Xi ↓↓∑
i∈I

giX
IdX−→X

Since ∑i∈I hi is a weak equivalence or equivalently a weak fibration, we deduce that the

existence of a morphism f : X → ∑i∈I Xi which fills the previous commutative diagram. This

implies that X is an element of Rn.

Conversely, let X be an element of Rn, let f : Y → Z be a weak equivalence or equivalently a

weak fibration such that there exists a commutative diagram:

φ−→Y ↓↓ f X
g−→Z

Since the source of D(An,Fn)(X) is obtained by attaching a forest to a union of cycles, and f

is a weak equivalence the morphism D(An,Fn)(g) can be lifted to a morphism D(An,Fn)(h) :

D(An,Fn)(X)→ D(An,Fn)(Y ) which is the image by the functor D(An,Fn) of a morphism h :

X → Y which makes the previous diagram commutes.

Remarks. Let X and Y be Fn-sets, if c(X) is a cofibrant replacement of X , it is also a fibrant

replacement of X since every morphism of Fn-sets is a fibration.

There exists a functor c : Fn-sets→ Fn-sets such that c(X) is a cofibrant replacement of X . To

construct c(X), consider a cofibrant replacement c(X) of X and suppose that every connected

component of C(An,Fn)(c(X)) is not isomorphic to a tree.

Proposition. 6.6. Let X and Y be Fn-sets, the set of morphisms HomHot(X ,Y ) between X and

Y in the homotopy category is HomFn−sets(c(Y ),c(Y )) where c(Y ) and c(Y ) are respectively

cofibrant replacements of X and Y .

Proof. We are going to show that the category Hotn whose objects are Fn-sets and such that for

every objects X and Y of Hotn, HomHotn(X ,Y ) = HomFn−sets(c(X),c(Y )) is a localization of the
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category of Fn-sets by the class of weak equivalences. The morphism f : X→Y is a weak equiv-

alence between Fn-sets if and only if c( f ) : c(X)→ c(Y ) is a weak equivalence. This is equiva-

lent to saying that D(Fn,An)(c( f )) is a weak equivalence. Since the sources of D(Fn,An)(c(X))

and D(Fn,An)(c(Y )) are sum of cycles, this is equivalent to say that D(Fn,An)(c( f )) and c( f )

are isomorphisms. We deduce that Hotn is a localization of the closed model that we have de-

fined on the category of Fn-sets. We can conclude by using the remark at the first line of [6]

p.29.

Closed model and Dessins d’enfants.

In this section, we are going to recall the definition of a dessin d’enfant and see how it is a

particular case of the construction above.

Let FCG2 be the category of finite Galoisian 2-complexes, and X an object of FCG2. The

morphism pX : X → S2 is a covering of the 2-sphere ramified at three elements that we denote

A0,A1 and A2. We can identify S2−{A0,A1,A2} with C−{0,1}, the complex line without two

points. Let [0,1] be the segment drawn between 0 and 1 in the complex line, XC = p−1
X ([0,1])

is an undirected graph. Remark that p induces a morphism XC → [0,1]; thus XC is a bipartite

graph.

Let U0
X = p−1

X (0) and U1
X = p−1

X (1). The fundamental group F2 of π1(C−{0,1}) is the free

group generated by two elements. We denote by s0 and s1 its generators. Without restricting

the generality, we suppose that for each x ∈ p−1
X (0), the monodromy of s0 induces an action

on XC(x,∗) and for every x ∈ p−1
X (1) the monodromy of s1 induces an action on XC(x,∗). This

action is nothing but the restriction of the action of F2 on Ω+(X) (see [17]). A bipartite graph

endowed with such an action of F2 is called a dessin d’enfant. Conversely, any finite F2-set

define a dessin d’enfant. Let FS2 be the category of finite F2-sets; the functor F : FCG2→ FS2

which associates to a finite Galoisian 2-complex the F2-set defined by its dessin d’enfant induces

an isomorphism between FCG2 and FS2 (see [17]).

There exists a one to one correspondence between finite dessin d’enfants and algebraic curves

defined over the algebraic closure Q̄ of the field of rational numbers. The action of the Galois

group Gal(Q̄/Q) on algebraic curves defined over Q̄ induces an action of Gal(Q̄/Q) on dessins

d’enfants.
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We denote by Hot(FS2) the homotopy category of the closed model defined on FS2-sets.

Remark. Let D0 be the Dessin d’enfant whose underlying graph is AU and such that F2 acts

trivially on the nodes. The Cayley graph Cal(D0) associated to this action is B2: the graph

which has one node n an two loops a,b.

We denote by D1 the dessin d’enfant whose underlying graph is P2. Let s1 and s2 be the

generators of F2. We suppose that s1 acts trivially on the arcs of P2 and s2 defines a non trivial

involution on them. The Cayley graph Cal(D1) associated to this action is a directed graph

which has two nodes x and y, there exists one directed arc u between x and y, one loop ux at x,

one directed arc v between y and x and one loop vy at y. The morphism f : Cal(D1)→Cal(D0)

defined by f0(x) = f0(y) = n, f1(u) = f1(ux) = a, f1(v) = f1(vy) = b is a weak equivalence for

the closed model defined on Gph by counting the cycles but not an isomorphism. This implies

that D0 and D1 are weak equivalent.

Questions. Is the action of Gal(Q̄/Q) on the category of dessins d’enfant induces an action of

Gal(Q̄/Q) on the image of FS2 in the homotopy category of the closed model defined on the

category of F2-sets ?

We have constructed (see p. 15) a closed model in CG2 induced by the closed model defined

on the category of colored 3-regular graphs. Is the action of Gal(Q̄/Q) on dessins d’enfant

induces an action on the image of the category of finite Galoisian 2-complexes in the homotopy

category of this closed model ?
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