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Abstract. The notions of left (resp. right)- f -derivations of type I and of left (resp. right)- f -derivations of type II of

UP-algebras are introduced, some useful examples are discussed, and related properties are investigated. Moreover,

we show that the kernel of right- f -derivations of type I and of right- f -derivations of type II of UP-algebras is a

UP-subalgebra, and also give examples to show that the the kernel of left (resp. right)- f -derivations of type I and

of left (resp. right)- f -derivations of type II of UP-algebras is not a UP-ideal, the fixed set of right- f -derivations of

type I and of left (resp. right)- f -derivations of type II of UP-algebras is not a UP-subalgebra, and the fixed set of

left- f -derivations of type I of UP-algebras is not a UP-ideal in general.
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1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Ex-

amples of these are BCK-algebras [14], BCI-algebras [15], BCH-algebras [11], KU-algebras
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[34], SU-algebras [19] and others. They are strongly connected with logic. For example, BCI-

algebras introduced by Iséki [15] in 1966 have connections with BCI-logic being the BCI-

system in combinatory logic which has application in the language of functional programming.

BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and

Iséki [14, 15] in 1966 and have been extensively investigated by many researchers. It is known

that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

In the theory of rings and near rings, the properties of derivations is an important topic to

study [32, 22]. In 2004, Jun and Xin [18] applied the notions of rings and near rings theory to

BCI-algebras and obtained some properties. Zhan and Liu [38] introduced the notion of left-

right (resp. right-left) f -derivations of BCI-algebras, investigated some related properties by

using the idea of regular f -derivations and they gave characterizations of p-semisimple BCI-

algebras. Several researches were conducted on the generalizations of the notion of derivations

and application to many logical algebras such as: In 2005, Zhan and Liu [38] introduced the

notion of left-right (resp. right-left) f -derivations of BCI-algebras. In 2006, Abujabal and Al-

shehri [1] studied derivations of p-semisimple BCI-algebras and proved that for any derivations

d1,d2 of a p-semisimple BCI-algebra X , d1 ◦ d2 is also a derivation of X , d1 ◦ d2 = d2 ◦ d1 and

d1∗d2 = d2∗d1. In 2007, Abujabal and Al-shehri [2] introduced the notion of left derivations of

BCI-algebras, investigated regular left derivations and studied left derivations on p-semisimple

BCI-algebras. In 2009, Javed and Aslam [17] studied derivations of p-semisimple BCI-algebras

and proved that for any f -derivations d f , d′f of a p-semisimple BCI-algebra X , d f ◦ d′f is also an

f -derivation of X and d f ◦ d′f = d′f ◦d f . Nisar [31] introduced the notions of right F-derivations

and left F-derivations of BCI-algebras. Nisar [30] characterized f -derivations of BCI-algebras.

Prabpayak and Leerawat [33] studied left-right derivations and right-left derivations of BCC-

algebras and also considered regular derivations of BCC-algebras. In 2010, Al-shehri [4] ap-

plied the notion of derivations in ring and near-ring theory to MV-algebras and investigated

some of its properties. They introduced additive derivations of MV-algebras, investigated sev-

eral properties and proved that an additive derivation of a linearly ordered MV-algebra is an iso-

tone by used the notion of an isotone derivation and characterized derivations of MV-algebras.
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Kim [20] introduced the notion of f -derivations which is a generalization of derivations in sub-

traction algebras, and some related properties are investigated. In 2011, Thomys [36] described

f -derivations of weak BCC-algebras in which the condition (xy)z=(xz)y for any x,y,z in a BCI-

algebra X when x,y belong to the same branch. In 2012, Al-shehri and Bawazeer [5] studied the

notion of left-right (resp. right-left) t-derivations of BCC-algebras, investigated some properties

on t-derivations of BCC-algebras and considered t-regular, t-derivations and the dt-invariant on

ideals of BCC-algebras. Lee and Kim [23] considered the properties of f -derivations of BCC-

algebras and also characterized Kerd by f -derivations. Muhiuddin and Al-roqi [27] introduced

the notion of t-derivations of BCI-algebras and proved that for any t-derivation dt of a BCI-

algebra X , dt ◦d′t is also a t-derivation of X and dt ◦d′t = d′t ◦dt , and for any t-derivation dt of a

p-semisimple BCI-algebra X , dt ∗d′t = d′t ∗dt . Muhiuddin and Al-roqi [26] introduced the notion

of (regular) (α,β )-derivations of BCI-algebras. In 2013, Bawazeer, Al-shehri and Babusal [9]

introduced the notion of generalized derivations of BCC-algebras. Lee [21] introduced a new

kind of derivations of BCI-algebras. Ardekani and Davvaz [6] extend the notion of derivations

of MV-algebras, introduced the notion of f -derivations and ( f ,g)-derivations of MV-algebras

and investigated some properties of them. Muhiuddin, Al-roqi, Jun and Ceven [29] introduced

the notion of symmetric left bi-derivations of BCI-algebras. Ghorbani, Torkzadeh and Mo-

tamed [10] introduced the notion of (�,⊕)-derivations and (	,�)-derivations for MV-algebras

and studied the connection between these derivations on MV-algebras. They characterized the

isotone (�,⊕)-derivations and proved that (	,�)-derivations are isotone. And they determined

the relationship between (�,⊕)-derivations and (	,�)-derivations for MV-algebras. Leerawat

and Bunphan [24] introduced the notion of f -derivations of Boolean algebras, namely Boolean

f -derivations, investigated some related properties and proved that the fixed set and the kernel

of Boolean f -derivations are ideals in Boolean algebras. Torkzadeh and Abbasian [37] defined

the concept of studied (�,∨)-derivations for BL-algebras and discussed some related results,

studied (�,∨)-derivations on boolean center B(A) of a BL-algebras A, investigated some prop-

erties of isotone (�,∨)-derivations on a BL-algebras A and characterized the (�,∨)-derivations

on the Gödel structure [0,1]. In 2014, Al-roqi [3] introduced the notion of generalized (regu-

lar) (α,β )-derivations of BCI-algebras. Muhiuddin and Al-roqi [28] introduced the notion of
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generalized left derivations of BCI-algebras. Ardekani and Davvaz [7] introduced the notion

of ( f ,g)-derivations of BCI-algebras. Min, Xioao-long and Yi-jun [25] introduced the notion

of f -derivations and g-derivations of MV-algebras. In 2015, Asawasamrit [8] introduced the

notion of f -derivations of KK-algebras and investigated some related properties. Jana, Senap-

ati and Pal [16] introduced the notion of left-right (resp. right-left) derivations, f -derivations,

generalized derivations of KUS-algebras and proved that (Der(X),∧) refers to a semigroup for

any p-semisimple KUS-algebra X and defined the relationship between left-right derivations,

right-left derivations and generalized derivations of KUS-algebras. In 2016, Sawika, Intasan,

Kaewwasri and Iampan [35] introduced the notions of (l,r)-derivations, (r, l)-derivations and

derivations of UP-algebras and investigated some related properties. Iampan [12] introduced the

notion of f -derivations of UP-algebras which is the generalization of the notion of derivations

[35].

The notion of derivations play an important role in studying the many logical algebras. In

this paper, we introduce the notions of left (resp. right)- f -derivations of type I and of left (resp.

right)- f -derivations of type II of UP-algebras, some useful examples are discussed, and related

properties are investigated.

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1. [13] An algebra A = (A; ·,0) of type (2,0) is called a UP-algebra if it satisfies

the following axioms: for any x,y,z ∈ A,

(UP-1): (y · z) · ((x · y) · (x · z)) = 0,

(UP-2): 0 · x = x,

(UP-3): x ·0 = 0, and

(UP-4): x · y = y · x = 0 implies x = y.

From [13], we know that the notion of UP-algebras is a generalization of KU-algebras.

Example 1.2. [13] Let X be a universal set. Define a binary operation · on the power set of X by

putting A ·B = B∩A′ = A′∩B = B−A for all A,B ∈P(X). Then (P(X); ·, /0) is a UP-algebra

and we shall call it the power UP-algebra of type 1.
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Example 1.3. [13] Let X be a universal set. Define a binary operation ∗ on the power set of X

by putting A∗B = B∪A′ = A′∪B for all A,B ∈P(X). Then (P(X);∗,X) is a UP-algebra and

we shall call it the power UP-algebra of type 2.

Example 1.4. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 3 4
2 0 1 0 0 3
3 0 1 3 0 3
4 0 1 3 0 0

Then (A; ·,0) is a UP-algebra.

In what follows, let A and B denote UP-algebras unless otherwise specified. The following

proposition is very important for the study of UP-algebras.

Proposition 1.5. [13] In a UP-algebra A, the following properties hold: for any x,y,z ∈ A,

(1) x · x = 0,

(2) x · y = 0 and y · z = 0 imply x · z = 0,

(3) x · y = 0 implies (z · x) · (z · y) = 0,

(4) x · y = 0 implies (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,

(6) (y · x) · x = 0 if and only if x = y · x, and

(7) x · (y · y) = 0.

On a UP-algebra A = (A; ·,0), we define a binary relation ≤ on A [13] as follows: for all

x,y ∈ A,

x≤ y if and only if x · y = 0.

Proposition 1.6. [13] In a UP-algebra A, the following properties hold: for any x,y,z ∈ A,

(1) x≤ x,

(2) x≤ y and y≤ x imply x = y,
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(3) x≤ y and y≤ z imply x≤ z,

(4) x≤ y implies z · x≤ z · y,

(5) x≤ y implies y · z≤ x · z,

(6) x≤ y · x, and

(7) x≤ y · y.

Definition 1.7. [13] A nonempty subset B of A is called a UP-ideal of A if it satisfies the

following properties:

(1) the constant 0 of A is in B, and

(2) for any x,y,z ∈ A,x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.

Clearly, A and {0} are UP-ideals of A.

Definition 1.8. [13] A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in

S, and (S; ·,0) it self forms a UP-algebra. Clearly, A and {0} are UP-subalgebras of A.

Proposition 1.9. [13] A nonempty subset S of a UP-algebra A = (A; ·,0) is a UP-subalgebra of

A if and only if S is closed under the · multiplication on A.

Definition 1.10. [13] Let (A; ·,0) and (A′; ·′,0′) be UP-algebras. A mapping f from A to A′ is

called a UP-homomorphism if

f (x · y) = f (x) ·′ f (y) for all x,y ∈ A.

A UP-homomorphism f : A→ A′ is called a UP-endomorphism of A if A′ = A.

Definition 1.11. [35] For any x,y ∈ A, we define a binary operation ∧ on A by x∧ y = (y · x) · x.

Definition 1.12. [35] A UP-algebra A is called meet-commutative if x∧y = y∧x for all x,y∈ A,

that is, (y · x) · x = (x · y) · y for all x,y ∈ A.

Proposition 1.13. [35] In a UP-algebra A, the following properties hold : for any x ∈ A,

(1) 0∧ x = 0,

(2) x∧0 = 0, and

(3) x∧ x = x.
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2. Left- f -derivations and right- f -derivations of type I

In this section, we first introduce the notion of left (resp. right)- f -derivations of type I of

A and study some of their basic properties. Finally, two subsets Kerd(A) and Fixd(A) for left

(resp. right)- f -derivation d of type I of A are studied.

Definition 2.1. Let A be a UP-algebra and let f be a UP-endomorphism of A. A self-map

d : A→ A is called a left- f -derivation of type I (in short, an l- f -derivation of type I) of A if

it satisfies the identity d(x · y) = (d(x) · f (y))∧ (x · y) for all x,y ∈ A. Similarly, a self-map

d : A→ A is called a right- f -derivation of type I (in short, an r- f -derivation of type I) of A if

is satisfies the identity d(x · y) = ( f (x) · d(y))∧ (x · y) for all x,y ∈ A. Moreover, if d is both a

left- f -derivation and a right- f -derivation of type I of A, it is called an f -derivation of type I of

A.

By using Microsoft Excel, we have all examples.

Example 2.2. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 0 0
2 0 1 0 3
3 0 1 2 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 1, f (2) = 3, and f (3) = 2.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 0, and d(3) = 0.

Then d is an l- f -derivation of type I of A.
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Example 2.3. Let A = {0,1,2} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2

0 0 1 2
1 0 0 2
2 0 0 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 0, and f (2) = 1.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1, and d(2) = 1.

Then d is an r- f -derivation of type I of A.

Example 2.4. Let A = {0,1,2,3,4} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 0 0 0
2 0 1 0 3 0
3 0 1 0 0 0
4 0 1 2 3 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 1, f (2) = 2, f (3) = 3, and f (4) = 0.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 2,d(3) = 3, and d(4) = 0.

Then d is an f -derivation of type I of A.

Definition 2.5. An l- f -derivation (resp. r- f -derivation, f -derivation) d of type I of A is called

regular if d(0) = 0.

Theorem 2.6. In a UP-algebra A, the following statements hold:

(1) every l- f -derivation of type I of A is regular, and

(2) every r- f -derivation of type I of A is regular.
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Proof. (1) Assume that d is an l- f -derivation of type I of A. Then

d(0) = d(x ·0)(By UP-3)

= (d(x) · f (0))∧ (x ·0)(By Definition 2.1)

= (d(x) ·0)∧0(By UP-3)

= 0∧0(By UP-3)

= 0.(By Proposition 1.13 (3))

Hence, d is regular.

(2) Assume that d is an r- f -derivation of type I of A. Then

d(0) = d(0 ·0)(By UP-3)

= ( f (0) ·d(0))∧ (0 ·0)(By Definition 2.1)

= (0 ·d(0))∧0(By UP-3)

= d(0)∧0(By UP-2)

= 0.(By Proposition 1.13 (2))

Hence, d is regular. �

Corollary 2.7. Every f -derivation of type I of A is regular.

Theorem 2.8. In a UP-algebra A, the following statements hold:

(1) if d is an l- f -derivation of type I of A, then d(x) = f (x)∧ x for all x ∈ A, and

(2) if d is an r- f -derivation of type I of A, then d(x) = d(x)∧ x for all x ∈ A.

Proof. (1) Assume that d is an l- f -derivation of I of A. Then, for all x ∈ A,

d(x) = d(0 · x)(By UP-2)

= (d(0) · f (x))∧ (0 · x)(By Definition 2.1)

= (0 · f (x))∧ (0 · x)(By Theorem 2.6 (1))

= f (x)∧ x.(By UP-2)
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(2) Assume that d is an r- f -derivation of type I of A. Then, for all x ∈ A,

d(x) = d(0 · x)(By UP-2)

= ( f (0) ·d(x))∧ (0 · x)(By Definition 2.1)

= (0 ·d(x))∧ x(By UP-2)

= d(x)∧ x.(By UP-2)

�

Corollary 2.9. If d is an f -derivation of type I of A, then d(x) = f (x)∧ x = d(x)∧ x for all

x ∈ A.

Proposition 2.10. Let d be an l- f -derivation of type I of A. Then the following properties hold:

for any x,y ∈ A,

(1) f (x)≤ d(x),

(2) d(x) · f (y)≤ d(x · y),

(3) d(x · f (x)) · f ( f (x))≤ d(d(x)),

(4) d(x) · f (d(x))≤ d(x ·d(x)),

(5) d(d(x)) · f (x)≤ d(d(x) · x),

(6) d(y · x) · f (x)≤ d(x∧ y), and

(7) d(x) = d(x)∧ f (x).

Proof. (1) For all x ∈ A,

f (x) ·d(x) = f (x) · ( f (x)∧ x)(By Theorem 2.8 (1))

= f (x) · ((x · f (x)) · f (x))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, f (x)≤ d(x) for all x ∈ A.
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(2) For all x,y ∈ A,

(d(x) · f (y)) ·d(x · y) = (d(x) · f (y)) · ((d(x) · f (y))∧ (x · y)(By Definition 2.1)

= (d(x) · f (y)) · (((x · y) · (d(x) · f (y)))·

(d(x) · f (y)))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, d(x) · f (y)≤ d(x · y) for all x,y ∈ A.

(3) For all x ∈ A,

(d(x · f (x)) · f ( f (x))) ·d(d(x)) = (d(x · f (x)) · f ( f (x)))·

(d( f (x)∧ x))(By Definition 2.1)

= (d(x · f (x)) · f ( f (x)))·

(d((x · f (x)) · f (x)))(By Definition 1.11)

= (d(x · f (x)) · f ( f (x)))·

((d((x · f (x)) · f ( f (x)))∧

((x · f (x)) · f (x))))(By Definition 2.1)

= (d(x · f (x)) · f ( f (x)))·

((d((x · f (x)) · f ( f (x)))∧

( f (x)∧ x)))(By Definition 1.11)

= (d(x · f (x)) · f ( f (x)))·

((( f (x)∧ x) · (d(x · f (x)) · f ( f (x))))·

(d(x · f (x)) · f ( f (x))))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, d(x · f (x)) · f ( f (x))≤ d(d(x)) for all x ∈ A.
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(4) For all x ∈ A,

(d(x) · f (d(x)) ·d(x ·d(x)) = (d(x) · f (d(x)))·

((d(x) · f (d(x)))∧ (x ·d(x)))(By Definition 2.1)

= (d(x · f (d(x)))·

(((x ·d(x) · (d(x) · f (d(x))))·

(d(x) · f (d(x))))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, d(x) · f (d(x))≤ d(x ·d(x)) for all x ∈ A.

(5) For all x ∈ A,

(d(d(x)) · f (x)) ·d(d(x) · x) = (d(d(x)) · f (x))·

((d(d(x)) · f (x))∧ (d(x) · x))(By Definition 2.1)

= (d(d(x)) · f (x))·

(((d(x) · x) · (d(d(x)) · f (x)))·

(d(d(x)) · f (x)))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, d(d(x)) · f (x)≤ d(d(x) · x) for all x ∈ A.
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(6) For all x,y ∈ A,

(d(y · x) · f (x)) ·d(x∧ y) = (d(y · x) · f (x)) ·d((y · x) · x)(By Definition 1.11)

= (d(y · x) · f (x))·

((d(y · x) · f (x))∧ ((y · x) · x))(By Definition 2.1)

= (d(y · x) · f (x))·

((d(y · x) · f (x))∧ (x∧ y))(By Definition 1.11)

= (d(y · x) · f (x))·

(((x∧ y) · (d(y · x) · f (x)))·

(d(y · x) · f (x)))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, d(y · x) · f (x)≤ d(x∧ y) for all x,y ∈ A.

(7) For all x ∈ A,

d(x) = 0 ·d(x)(By UP-2)

= ( f (x) ·d(x)) ·d(x)(By Proposition 2.10 (1))

= d(x)∧ f (x).(By Definition 1.11)

Hence, d(x) = d(x)∧ f (x) for all x ∈ A. �

Proposition 2.11. Let d be an r- f -derivation of type I of A. Then the following properties hold:

for any x,y ∈ A,

(1) f (x) ·d(y)≤ d(x · y),

(2) f (x ·d(x)) ·d(d(x))≤ d(d(x)),

(3) f (d(x)) ·d(x)≤ d(d(x) · x),

(4) f (x) ·d(d(x))≤ d(x ·d(x)), and

(5) f (y · x) ·d(x)≤ d(x∧ y).
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Proof. (1) For all x,y ∈ A,

( f (x) ·d(y)) ·d(x · y) = ( f (x) ·d(y)) · (( f (x) ·d(y))∧ (x · y))(By Definition 2.1)

= ( f (x) ·d(y)) · (((x · y) · ( f (x) ·d(y)))·

( f (x) ·d(y)))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, f (x) ·d(y)≤ d(x · y) for all x,y ∈ A.

(2) For all x ∈ A,

( f (x ·d(x)) ·d(d(x))) ·d(d(x)) = ( f (x ·d(x)) ·d(d(x)))·

d(d(x)∧ x)(By Theorem 2.8 (2))

= ( f (x ·d(x)) ·d(d(x)))·

d((x ·d(x)) ·d(x))(By Definition 1.11)

= ( f (x ·d(x)) ·d(d(x)))·

(( f (x ·d(x)) ·d(d(x)))∧

((x ·d(x)) · x))(By Definition 2.1)

= ( f (x ·d(x)) ·d(d(x)))·

((((x ·d(x)) · x) · ( f (x ·d(x)) ·d(d(x))))·

( f (x ·d(x)) ·d(d(x))))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, f (x ·d(x)) ·d(d(x))≤ d(d(x)) for all x ∈ A.
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(3) For all x ∈ A,

( f (d(x)) ·d(x)) ·d(d(x) · x) = ( f (d(x)) ·d(x))·

(( f (d(x)) ·d(x))∧ (d(x) · x))(By Definition 2.1)

= ( f (d(x)) ·d(x))·

(((d(x) · x) · ( f (d(x)) ·d(x)))·

( f (d(x)) ·d(x)))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, f (d(x)) ·d(x)≤ d(d(x) · x) for all x ∈ A.

(4) For all x ∈ A,

( f (x) ·d(d(x))) ·d(x ·d(x)) = ( f (x) ·d(d(x)))·

(( f (x) ·d(d(x)))∧ (x ·d(x)))(By Definition 2.1)

= ( f (x) ·d(d(x)))·

(((x ·d(x)) · ( f (x) ·d(d(x)))·

( f (x) ·d(d(x))))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, f (x) ·d(d(x))≤ d(x ·d(x)) for all x ∈ A.
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(5) For all x,y ∈ A,

( f (y · x) ·d(x)) ·d(x∧ y) = ( f (y · x) ·d(x)) ·d((y · x) · x)(By Definition 1.11)

= ( f (y · x) ·d(x))·

(( f (y · x) ·d(x))∧ ((y · x) · x))(By Definition 2.1)

= ( f (y · x) ·d(x))·

((((y · x) · x) · ( f (y · x) ·d(x)))·

( f (y · x) ·d(x))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, f (y · x) ·d(x)≤ d(x∧ y) for all x,y ∈ A. �

Definition 2.12. Let d be an l- f -derivation (resp. r- f -derivation, f -derivation) of type I of A.

We define a subset Kerd(A) of A by

Kerd(A) = {x ∈ A | d(x) = 0}.

Theorem 2.13. In a UP-algebra A, if d is an r- f -derivation of type I of A, then

(1) y∧ x ∈ Kerd(A) for all y ∈ Kerd(A) and x ∈ A, and

(2) x · y ∈ Kerd(A) for all y ∈ Kerd(A) and x ∈ A.

Proof. (1) Assume that d is an r- f -derivation of type I of A. Let y ∈ Kerd(A) and x ∈ A. Then

d(y) = 0. Thus

d(y∧ x) = d((x · y) · y)(By Definition 1.11)

= ( f (x · y) ·d(y))∧ ((x · y) · y)(By Definition 2.1)

= ( f (x · y) ·0)∧ ((x · y) · y)

= 0∧ ((x · y) · y)(By UP-3)

= 0.(By Proposition 1.13 (1))

Hence, y∧ x ∈ Kerd(A).
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(2) Assume that d is an r- f -derivation of type I of A. Let y ∈ Kerd(A) and x ∈ A. Then

d(y) = 0. Thus

d(x · y) = ( f (x) ·d(y))∧ (x · y)(By Definition 2.1)

= ( f (x) ·0)∧ (x · y)

= 0∧ (x · y)(By UP-3)

= 0.(By Proposition 1.13 (1))

Hence, x · y ∈ Kerd(A). �

Theorem 2.14. In a meet-commutative UP-algebra A, if d is an r- f -derivation of type I of A

and for any x,y ∈ A is such that y≤ x and y ∈ Kerd(A), then x ∈ Kerd(A).

Proof. Assume that y≤ x and y ∈ Kerd(A), then we get y · x = 0 and d(y) = 0. Thus

d(x) = d(0 · x)(By UP-2)

= d((y · x) · x)

= d((x · y) · y)(By Definition 1.12)

= ( f (x · y) ·d(y))∧ ((x · y) · y)(By Definition 2.1)

= ( f (x · y) ·0)∧ (y∧ x)(By Definition 1.11)

= 0∧ (y∧ x)(By UP-3)

= 0.(By Proposition 1.13 (1))

Hence, x ∈ Kerd(A). �

Theorem 2.15. In a UP-algebra A, if d is an r- f -derivation of type I of A, then Kerd(A) is a

UP-subalgebra of A.
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Proof. Assume that d is an r- f -derivation of type I of A. By Theorem 2.6 (2) , we have d(0) = 0

and so 0 ∈ Kerd(A) 6= /0. Let x,y ∈ Kerd(A). Then d(x) = 0 and d(y) = 0. Thus

d(x · y) = ( f (x) ·d(y))∧ (x · y)(By Definition 2.1)

= ( f (x) ·0)∧ (x · y)

= 0∧ (x · y)(By UP-3)

= 0.(By Proposition 1.13 (1))

Hence, x · y ∈ Kerd(A), so Kerd(A) is a UP-subalgebra of A. �

On an l- f -derivation (resp. r- f -derivation and f -derivation) of type I of A, we can show that

Kerd(A) is not a UP-ideal of A, by the following examples.

Example 2.16. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 0 0 3
3 0 0 2 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 1, f (2) = 3, and f (3) = 2.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 0, and d(3) = 0.

Then d is an l- f -derivation of type I of A and Kerd(A) = {0,2,3}. Since 0 · (2 · 1) = 0 ∈

Kerd(A),2 ∈ Kerd(A) but 0 ·1 = 1 /∈ Kerd(A), we have Kerd(A) is not a UP-ideal of A.

Example 2.17. Form Example 2.16, we have d is an r- f -derivation of type I of A and Kerd(A)=

{0,2,3}. Since 0 · (3 ·1) = 0 ∈ Kerd(A),3 ∈ Kerd(A) but 0 ·1 = 1 /∈ Kerd(A), we have Kerd(A)

is not a UP-ideal of A.

Example 2.18. Form Example 2.16 and 2.17, we have d is an f -derivation of type I of A and

Kerd(A) is not a UP-ideal of A.
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Definition 2.19. Let d be an l- f -derivation (resp. r- f -derivation, f -derivation) of type I of A.

We define a subset Fixd(A) of A by

Fixd(A) = {x ∈ A | d(x) = x}.

On an r- f -derivation of type I of A, we can show that Fixd(A) is not a UP-subalgebra of A by

the following example.

Example 2.20. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 3 3
2 0 0 0 0
3 0 1 2 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 2, f (2) = 2, and f (3) = 0.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 2, and d(3) = 0.

Then d is an r- f -derivation of type I of A and Fixd(A) = {0,1,2}. Since 1,2 ∈ Fixd(A) but

1 ·2 = 3 /∈ Fixd(A), we have Fixd(A) is not a UP-subalgebra of A.

On an l- f -derivation of type I of A, we can show that Fixd(A) is not a UP-ideal of A, by the

following example.

Example 2.21. Let A = {0,1,2,3,4} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 0 4
2 0 0 0 0 3
3 0 3 2 0 4
4 0 0 1 0 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:



20 T. TIPPANYA, N. IAM-ART, P. MOONFONG, A. IAMPAN

f (0) = 0, f (1) = 0, f (2) = 2, f (3) = 0,and f (4) = 2.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 0,d(2) = 2,d(3) = 0, and d(4) = 2.

Then d is an l- f -derivation of type I of A and Fixd(A)= {0,2}. Since 0·(2 ·1)= 0∈Fixd(A),2∈

Fixd(A) but 0 ·1 = 1 /∈ Fixd(A), we have Fixd(A) is not a UP-ideal of A.

3. Left- f -derivations and right- f -derivations of type II

In this section, we first introduce the notion of left (resp. right)- f -derivations of type II of

A and study some of their basic properties. Finally, two subsets Kerd(A) and Fixd(A) for left

(resp. right)- f -derivation d of type II of A are studied.

Definition 3.1. Let A be a UP-algebra and let f be a UP-endomorphism of A. A self-map

d : A→ A is called a left- f -derivation of type II (in short, an l- f -derivation of type II) of A

if it satisfies the identity d(x · y) = (x · y)∧ (d(x) · f (y)) for all x,y ∈ A. Similarly, a self-map

d : A→ A is called a right- f -derivation of type II (in short, an r- f -derivation of type II) of A if

is satisfies the identity d(x · y) = (x · y)∧ ( f (x) · d(y)) for all x,y ∈ A. Moreover, if d is both a

left- f -derivation and a right- f -derivation of type II of A, it is called an f -derivation of type II of

A.

By using Microsoft Excel, we have all examples.

Example 3.2. Let A = {0,1,2,3,4} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 3 3
2 0 1 0 0 4
3 0 1 3 0 4
4 0 1 3 0 0

Then (A; ·,0) is a UP-algebra. Let f be an identity map on A. Then f is a UP-endomorphism.

We define a self-map d : A→ A as follows:
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d(0) = 0,d(1) = 0,d(2) = 2,d(3) = 3, and d(4) = 4.

Then d is an l- f -derivation of type II of A.

Example 3.3. Let A = {0,1,2,3,4} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 0 0 0
2 0 1 0 3 4
3 0 1 0 0 4
4 0 1 2 3 0

Then (A; ·,0) is a UP-algebra. Let f be an identity map on A. Then f is a UP-endomorphism.

We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 0,d(2) = 0,d(3) = 0, and d(4) = 4.

Then d is an r- f -derivation of type II of A.

Example 3.4. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 2
2 0 1 0 1
3 0 0 0 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 1, f (2) = 0, and f (3) = 1.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 0, and d(3) = 1.

Then d is an f -derivation of type II of A.

Definition 3.5. An l- f -derivation (resp. r- f -derivation, f -derivation) d of type II of A is called

regular if d(0) = 0.

Theorem 3.6. In a UP-algebra A, the following statements hold:
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(1) every l- f -derivation of type II of A is regular, and

(2) every r- f -derivation of type II of A is regular.

Proof. (1) Assume that d is an l- f -derivation of type II of A. Then

d(0) = d(x ·0)(By UP-3)

= (x ·0)∧ (d(x) · f (0))(By Definition 3.1)

= 0∧ (d(x) ·0)(By UP-3)

= 0∧0(By UP-3)

= 0.(By Proposition 1.13 (3))

Hence, d is regular.

(2) Assume that d is an r- f -derivation of type II of A. Then

d(0) = d(0 ·0)(By UP-3)

= (0 ·0)∧ ( f (0) ·d(0))(By Definition 3.1)

= 0∧ (0 ·d(0))(By UP-3)

= 0∧d(0)(By UP-2)

= 0.(By Proposition 1.13 (1))

Hence, d is regular. �

Corollary 3.7. Every f -derivation of type II of A is regular.

Theorem 3.8. In a UP-algebra A, the following statements hold:

(1) if d is an l- f -derivation of type II of A, then d(x) = x∧ f (x) for all x ∈ A, and

(2) if d is an r- f -derivation of type II of A, then d(x) = x∧d(x) for all x ∈ A.
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Proof. (1) Assume that d is an l- f -derivation of type II of A. Then, for all x ∈ A,

d(x) = d(0 · x)(By UP-2)

= (0 · x)∧ (d(0) · f (x))(By Definition 3.1)

= (0 · x)∧ (0 · f (x))(By Theorem 3.6 (1))

= x∧ f (x).(By UP-2)

(2) Assume that d is an r- f -derivation of type II of A. Then, for all x ∈ A,

d(x) = d(0 · x)(By UP-2)

= (0 · x)∧ ( f (0) ·d(x))(By Definition 3.1)

= x∧ (0 ·d(x))(By UP-2)

= x∧d(x).(By UP-2)

�

Corollary 3.9. If d is an f -derivation of type II of A, then d(x) = x∧ f (x) = x∧ d(x) for all

x ∈ A.

Proposition 3.10. Let d be an l- f -derivation of type II of A. Then the following properties hold:

for any x,y ∈ A,

(1) x≤ d(x),

(2) x · y≤ d(x · y),

(3) x∧ y≤ d(x∧ y), and

(4) d(x) = d(x)∧ x.

Proof. (1) For all x ∈ A,

x ·d(x) = x · (x∧ f (x))(By Theorem 3.8 (1))

= x · (( f (x) · x) · x)(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, x≤ d(x) for all x ∈ A.
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(2) For all x,y ∈ A,

(x · y) ·d(x · y) = (x · y) · ((x · y)∧ (d(x) · f (y)))(By Definition 3.1)

= (x · y) · (((d(x) · f (y)) · (x · y)) · (x · y))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, x · y≤ d(x · y) for all x,y ∈ A.

(3) For all x,y ∈ A,

(x∧ y) ·d(x∧ y) = (x∧ y) ·d((y · x) · x)(By Definition 1.11)

= (x∧ y) · (((y · x) · x)∧ (d(y · x) · f (x)))(By Definition 3.1)

= (x∧ y) · ((x∧ y)∧ (d(y · x) · f (x)))(By Definition 1.11)

= (x∧ y) · (((d(y · x) · f (x))·

(x∧ y)) · (x∧ y))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, x∧ y≤ d(x∧ y) for all x,y ∈ A.

(4) For all x ∈ A,

d(x) = 0 ·d(x)(By UP-2)

= (x ·d(x)) ·d(x)(By Proposition 3.10 (1))

= d(x)∧ x.(By Definition 1.11)

Hence, d(x) = d(x)∧ x for all x,y ∈ A. �

Proposition 3.11. Let d be an r- f -derivation of type II of A. Then the following properties

hold: for any x,y ∈ A,

(1) x≤ d(x),

(2) x · y≤ d(x · y),

(3) x∧ y≤ d(x∧ y), and

(4) d(x) = d(x)∧ x.
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Proof. (1) For all x ∈ A,

x ·d(x) = x · (x∧d(x))(By Theorem 3.8 (2))

= x · ((d(x) · x) · x)(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, x≤ d(x) for all x ∈ A.

(2) For all x,y ∈ A,

(x · y) ·d(x · y) = (x · y) · ((x · y)∧ ( f (x) ·d(y)))(By Definition 3.1)

= (x · y) · ((( f (x) ·d(y)) · (x · y)) · (x · y))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, x · y≤ d(x · y) for all x,y ∈ A.

(3) For all x,y ∈ A,

(x∧ y) ·d(x∧ y) = (x∧ y) ·d((y · x) · x)(By Definition 1.11)

= (x∧ y) · (((y · x) · x)∧ ( f (y · x) ·d(x)))(By Definition 3.1)

= (x∧ y) · ((x∧ y)∧ ( f (y · x) ·d(x)))(By Definition 1.11)

= (x∧ y) · ((( f (y · x) ·d(x))·

(x∧ y)) · (x∧ y))(By Definition 1.11)

= 0.(By Proposition 1.5 (5))

Hence, x∧ y≤ d(x∧ y) for all x,y ∈ A.

(4) For all x ∈ A,

d(x) = 0 ·d(x)(By UP-2)

= (x ·d(x)) ·d(x)(By Proposition 3.11 (1))

= d(x)∧ x.(By Definition 1.11)

Hence, d(x) = d(x)∧ x for all x,y ∈ A. �
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Corollary 3.12. Let d be an f -derivation of type II of A. Then the following properties hold:

for any x,y ∈ A,

(1) x≤ d(x),

(2) x · y≤ d(x · y),

(3) x∧ y≤ d(x∧ y), and

(4) d(x) = d(x)∧ x.

Definition 3.13. Let d be an l- f -derivation (resp. r- f -derivation, f -derivation) of type II of A.

We define a subset Kerd(A) of A by

Kerd(A) = {x ∈ A | d(x) = 0}.

Theorem 3.14. In a UP-algebra A, if d is an r- f -derivation of type II of A, then

(1) y∧ x ∈ Kerd(A) for all y ∈ Kerd(A) and x ∈ A, and

(2) x · y ∈ Kerd(A) for all y ∈ Kerd(A) and x ∈ A.

Proof. (1) Assume that d is an r- f -derivation of type II of A. Let y ∈ Kerd(A) and x ∈ A. Then

d(y) = 0. Thus

(.y∧ x) = d((x · y) · y)(By Proposition 1.11)

= ((x · y) · y)∧ ( f (x · y) ·d(y))(By Definition 3.1)

= (y∧ x)∧ ( f (x · y) ·0)(By Proposition 1.11)

= (y∧ x)∧0(UP-3)

= 0.(By Proposition 1.13 (2))

Hence, y∧ x ∈ Kerd(A).
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(2) Assume that d is an r- f -derivation of type II of A. Let y ∈ Kerd(A) and x ∈ A. Then

d(y) = 0. Thus

(.x · y) = (x · y)∧ ( f (x) ·d(y))(By Definition 3.1)

= (x · y)∧ ( f (x) ·0)

= (x · y)∧0(By UP-3)

= 0.(By Proposition 1.13 (2))

Hence, x · y ∈ Kerd(A). �

Theorem 3.15. In a meet-commutative UP-algebra A, if d is an r- f -derivation of type II of A

and for any x,y ∈ A is such that y≤ x and y ∈ Kerd(A), then x ∈ Kerd(A).

Proof. Assume that y≤ x and y ∈ Kerd(A), then we get y · x = 0 and d(y) = 0. Thus

d(x) = d(0 · x)(By UP-2)

= d((y · x) · x)

= d((x · y) · y)(By Definition 1.12)

= ((x · y) · y)∧ ( f (x · y) ·d(y))(By Definition 3.1)

= (y∧ x)∧ ( f (x · y) ·0)(By Definition 1.11)

= (y∧ x)∧0(By UP-3)

= 0.(By Proposition 1.13 (1))

Hence, x ∈ Kerd(A). �

Theorem 3.16. In a UP-algebra A, if d is an r- f -derivation of type II of A, then Kerd(A) is a

UP-subalgebra of A.
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Proof. Assume that d is an r- f -derivation of type II of A. By Theorem 3.6 (2), we have d(0) = 0

and so 0 ∈ Kerd(A) 6= /0. Let x,y ∈ Kerd(A). Then d(x) = 0 and d(y) = 0. Thus

d(x · y) = (x · y)∧ ( f (x) ·d(y))(By Definition 3.1)

= (x · y)∧ ( f (x) ·0)

= (x · y)∧0(By UP-3)

= 0.(By Proposition 1.13 (2))

Hence,x · y ∈ Kerd(A), so Kerd(A) is a UP-subalgebra of A. �

On an l- f -derivation (resp. r- f -derivation and f -derivation) of type II of A, we can show that

Kerd(A) is not a UP-ideal of A, by the following examples.

Example 3.17. Form Example 2.16, we have d is an l- f -derivation of type II of A and Kerd(A)

is not a UP-ideal of A.

Example 3.18. Form Example 2.17, we have d is an r- f -derivation of type II of A and Kerd(A)

is not a UP-ideal of A.

Example 3.19. Form Example 3.17 and 3.18, we have d is an f -derivation of type II of A and

Kerd(A) is not a UP-ideal of A.

Definition 3.20. Let d be an l- f -derivation (resp. r- f -derivation, f -derivation) of type II of A.

We define a subset Fixd(A) of A by

Fixd(A) = {x ∈ A | d(x) = x}.

On an l- f -derivation (resp. r- f -derivation) of type II of A, we can show that Fixd(A) is not a

UP-subalgebra of A by the following examples.
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Example 3.21. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 2
2 0 1 0 3
3 0 0 0 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 1, f (2) = 0, and f (3) = 1.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 0, and d(3) = 1.

Then d is an l- f -derivation of type II of A and Fixd(A) = {0,1,3}. Since 1,3 ∈ Fixd(A) but

1 ·3 = 2 /∈ Fixd(A), we have Fixd(A) is not a UP-subalgebra of A.

Example 3.22. Let A = {0,1,2,3} be a set with a binary operation · defined by the following

Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 0 0
2 0 1 0 3
3 0 2 2 0

Then (A; ·,0) is a UP-algebra. We define a self-map f : A→ A as follows:

f (0) = 0, f (1) = 1, f (2) = 0, and f (3) = 1.

Then f is a UP-endomorphism. We define a self-map d : A→ A as follows:

d(0) = 0,d(1) = 1,d(2) = 0, and d(3) = 3.

Then d is an r- f -derivation of type II of A and Fixd(A) = {0,1,3}. Since 1,3 ∈ Fixd(A) but

3 ·1 = 2 /∈ Fixd(A), we have Fixd(A) is not a UP-subalgebra of A.
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