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Abstract: Let R and S be k -algebras with characteristic zero. Let QL(R ®;S) and
Qi (R®yS) are first and second order universal differential modules over R @y S,
respectively. The main result of this paper asserts that in which cases QL(R ®; S)
and Q2 (R ®; S) can be free modules by using symmetric derivation.
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1. INTRODUCTION

Let R be k-algebra. The module of Kahler differentials of R is defined by H. Osborn [1]. J.
Johnson has given differential module structures on particular modules of Kahler differentials [2].
In [3] the author give fundamental theories for the computation of high order derivations. Hart has
studied on higher derivations and universal differential operators [10]. Olgun and Erdogan study
universal modules on R @, S and examine the homological dimension of QF(R & S) in [4].
In [5], author show that regularity of any affine local k-algebra is equivalent to freeness of QZ(R).
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In [11], the author states that projective dimension of Q7 (S)@®S is one or smaller than one where
S 1s hypersurface. On the other hand, Barajas and Duarte have studied the module of differentials
of order n using the high order Jacobian matrix and they have proved projective dimension

of Q¢ (R) is one or smaller than one in the case of hypersurfaces [12].
Throughout this paper, R is commutative algebra over an algebraically closed field k with
characteristic zero. We will examine in which cases first and second order universal differential
modules of R @ S can be free R @ S-modules using symmetric derivation. We will give a

relationship between regularity of rings and projectivity of Q1 (R ®; S) and Qi(R ®y S).

2. PRELIMINARIES

Let R and S be k-algebras. R @, S is a commutative ring and with the multiplication of
Qin®s)Xjk ® L) =%, ;1ik; @ s;l;. In this section, we will give some conclusions about
universal differential modules on R @, S and certain properties of symmetric power modules.
Proposition 2.1. [6] Let R and S be affine k-algebras. If R and S are integral domain, then
R ®; S is integral domain.
Proposition 2.2. [6] Let f:R — R’ and g: S — S’ be homomorphism of k-algebras. Then

fR®gG:RQS— R QS isahomomorphism of k-algebras.
Theorem 2.1. [3] Let R and S be k-algebras. Then there existsa R & S-module isomorphism:
QR S) = Ok (R) ®r S ® 0 (S) Qx ROU
where U is a submodule of Q,(R ®; S) satisfied the universal mapping property.
Corollary 2.1. [3] For n = 1, there exists a R @ S-module isomorphism
Q%R @ S) = Q(R) kS ® R Qr %i(S)
Theorem 2.2.[7]Let R and S be k-algebras. Then there existsa R & S-module isomorphism
QR ®k S) = Qk(R) B S ® Qi(S) ®x R ® Q) (R) ® Qi (S)

Definition 2.1. Let R be a commutative ring with an unit element. Let M and N be R-modules.
If a R-multilinear map f: M™ — N is unchanged under all permutations of the arguments, then

it is called symmetric.
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Definition 2.2. Let M be a R-module. A universal symmetric R-multilinear map
fiM™ — S™(M) is defined by f(xq,x3,...,xp) = X1X5 ... X, Then S™(M) is called the n-th
order symmetric power of M. S™(M) can be constructed as factor modules of @™ M by
submodule generated by all elements of the forms
X Q®x Q.0 YV RZR ..Ox, —xR0x, X ...RzRYR ... Q xp,
Example 2.1. Let M be a R-module. Then S?(M) is expressed

MQiM

2 _
$T(M) = <xXQy-yQx>

forall x,y € M. In particular, S°(M) = R and S'(M) = M.
Proposition 2.3. Let M be a free R-module with rank r. Then the n-order symmetric power

module S™(M) is free R-module with rank ("1*71).
r—1

Lemma 2.1. [8] Let M and N be R-modules. Let 6: M™ — N be a multilinear map. Then
there exists a unique R-module homomorphism f: S™(M) — N such that the following diagram
is commutative:
M" — N
I 7
S*(M)
Proposition 2.3. [8] Let T be R-algebra and M be R-module. Then there exists a R-module
isomorphism:
S"(M) Qr T = S™(M QR T)
Now, we give definition of symmetric derivation of first order Kahler differential module of R
over k.
Definition 2.3. [1] Let R be any k-algebra. R — Qi (R) be a first order Kahler derivation of R
and S(Qi(R)) be the symmetric algebra @SP(Q(R)) generated over R by Qi(R). A
symmetric derivation is any linear map D of S(Q%(R)) into itself such that
i, D(SP(QL(R)) € SP*(QL(R))
ii. D isafirst order derivation over k
iii.  Therestrictionof D to R (R =~ S°QL(R)) is Kahler derivation d;: R — Qi (R).

In [5], he has generalized this definition to g-th order Kahler differential module of R.
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Theorem 2.3. [1] Let R be an affine k-algebra. Then there exists a short exact sequence of R-

modules
7]
0 — SZ(QL(R)) — Q2(R) > QL(R) — 0
such that 8(d,(f)) = d;(f) and kerf ~ S2(Q%(R)).

Proposition 2.4. [9] Let M and N be R-modules. Then there is a natural isomorphism

SP(MO®N) = @psn=pS™(M) g S™(N)
Example 2.2. Let M and N be R-modules. Then we obtain the following isomorphism:

S2(M®N) = @ 4n=2S™(M) Qg S™(N)

S2(M®N) = R @z S2(N)BS' (M) ®5 S'(N)BS*(M) @ N
S?(M@®N) = R Qg S?(N)OM Q@ N®S*(M) ®r N

Corollary 2.2. Let R and S be affine k-algebras. Suppose that M is a R-module and N is a
S-module. Then there exists a natural isomorphism:

SP(M®N) = @min=pS™ (M) ®j S™(N)
Proof. Since M is a R-module, M is a k-module. Similarly, N is a k-module when N is a
S-module. Then we have a natural isomorphism from Proposition 2.4

SP(M®N) = @min=pS™ (M) Q) S™(N)

Thus, the proof is completed.

3. MAIN RESULTS

In this section, we will show in which cases QL(R ®; S) and QZ(R ® S) are free R Q@ S-
module by using symmetric power modules. We give the relationships between the freeness of
QR(R Qi S) (forn=1andn = 2) and regularity of the k-algebras R andS.

Theorem 3.1. Let R and S be affine local k-algebras. S(Qi(R)) has at least one symmetric
derivation. If QL(R) and Qi(S) are free modules, then QL(R ®; S) is a free module.

Before proof, we need some information.

Lemma 3.1. [S] Let R be an affine domain with dimension s. QZ (R) is afree R-module if and
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only if S?2(Q}(R)) is a free R-module.

Lemma 3.2. Let R and S be affine local k-algebras, S(Qi(R)) and S(Q(S)) have atleast one

symmetric derivation. Then there exists the following isomorphism:
S2(Qk(R ®1 S) = R @, S @y [R @, 5?(Q4(9))® Q4(R) @ A(S) @ S ®; 52(Ah(R))]

We can try to write the symmetric power module S?(Q%(R ® S)) using the isomorphism in
Corollary 2.1. Then we have the following isomorphism
SZ(QR (R ®k ) = S2(Q:(R) @k S D Q1(S) ®k R) (2.1)
We have
S2(M®N) = Opn=2S™(M) & S™(N)

If we use this isomorphism in (2.1), then we obtain that
52(04(R ®« 9)) = R ®yc S @ S2(R @ A(S)) @ QL(R) @ S @ 4 (S)
®: ROR @ S O S2(S @1 04(R))

Since R is a k-algebra and QL(S) is a k-module, then by Proposition 2.3. we have the

following isomorphism:
52(R @ OL(S)) = R @y S2(}(S))
Similarly, we have 52(5 ®i QL(R)) = S ®y S2(QE(R)). If we use these isomorphisms, we
obtain that
S2(QL(R ®cS)) = R ®y S @1 R @ 5?(01(5)) ® R ®c S @i S ®c S2(Qk(R))
O R Qi S ®kx U(R) B 2% (S)

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Qi(R) and Qi(S) are free modules if and only if S Z(Q (R)) and
S? (Q (s )) are free modules by Lemma 3.1. By Lemma 3.2, we have the following isomorphism

(AR ® ) = R @S @ R @y S2(2(S)) © R @1 S @ S @ 5?2 (R))
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O R QS Qi U(R) B Qi (S)

Thus, we can write the symmetric power module S 2(Q,l((R Xk S)) as a direct sum of free

modules. Then we obtain that S 2(911( (R Qy S)) is a free R @ S-module. In Lemma 3.1., we

say QL(R ® S) isafree R ®) S-module.

Corollary 3.1. Let R and S be affine k-algebras. If QL(R) and Q(S) are projective
modules, then QL(R ®, S) is a projective module.

Corollary 3.2. Let R and S be affine regular k-algebras. Then Qr(R ®; S) is a projective
module.

Theorem 3.2. Let R and S be affine local k- algebras. S(Q%(R)) has at least one symmetric
derivation. Q2(R), Q2(S) and S?(QL(R) ® Qi(S)) are free modules, then QZ(R ® S) is
free module.

Lemma 3.3. [5] Let R affine local k- algebra. S(Q%(R)) has at least one symmetric derivation.
Q1+ (R) is afree R-module if and only if QZ(R) is a free R-module.

Lemma 3.4. Let R and S be affine local k- algebras and S(QZ(R)) and S(Q2(S)) have at

least one symmetric derivation.

S2QE(R ®kS) =R Qi S Ak R Qi S @ S205(S) ®x ROR @ S Ak R @y S @
520%(R) ®x SOR Qi S Qi Qi (R) R S Qi Q1 (S) ® RO
R ®p S ®r S2(Q%(R)) ®r 24())® 24 (R) @ 04(S) ®x
Q% (R) Qi S ®r Q% (S) ® R
Proof. We have the following isomorphism
Q2R ®;S) = Q(R) @ SD Q%(S) ®r R D QL (R) @ Q%(S)

Then we have obtained that

S2(QE(R @k $)) = S*(Q%(R) i S © Qi (S) @k R ® U (R) Qi 24 (S))
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Let M= QL (R) ®, QL(S) and N := QZ(R) ®, S ® Q2(S) Q¢ R.
After that, we will try to write S2(Q2(R ®y S)) as a direct sum of modules.
SPQ Rk S)) =Rk SRk S’ (N) ®R Q) S ®k S2 (2% (R)) @k (O M Q) N
S2(N) = S*(Q{(R) ®i S ® Qi (S) ® R)
S?(N) = [R ® S ®i S?(Qk(R) Ry D[R Q1 S Oy
S2(Q7(S) @k R [2%(R) Ok S Bk Qi (S) B R]
S2(Q(R ®k S)) = R Qi S Qi R ® S ) S*(Q(S) ®x RIBR Qi S @k R @ S @
S2(Q(R) B S)BR By S @k Qi (R) Ok S B 24 (S) @k RO
R Qi S ®r S*[Q%(R)) Qi Q($)]D Qi (R) ®y 0 (S) B
02(R) @y S ®r Q2(S) O R (22)
Then we have the following isomorphism:
S2(Q%(S) ®k R) = S?(Q%(S)) Bk R and S*(QF(R) B ) = S?(QR(R)) ®y S
We can write again the isomorphism in (2.2) by using the isomorphism above.
S?(Q%(R Bk ) = R QxS i R ®; S ®x S*(Q4(S)) @ ROR Ry S Bk R ®; S @

S2(Q5(R)) B SR @1 S @ Q% (R) Bk S Ak Q4 (S) @k RP

R Qi S Qk S*[Qk(R)) Rk 2, (1D 0k (R) Q 2 (S) R
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Qi(R) @ S ®p Q2(S) @k R

Proof of Theorem 3.2. Suppose that QZ(R), Qz(S) and S2(Qi(R)) ® Qk(S)) are free
modules. If QZ(R) and Q%(S) are free modules, then QL(R) and Qi(S) are free modules
[Lemma 3.3.]. So S2(Q2(R)) and S2(Q2(S)) are free modules by Lemma 3.1. Using Lemma
3.4., since we can write the symmetric power module S?(Qz(R ®y S)) as direct sums of free
modules, S?(QZ(R ®; S) is afree R ®; S-modules. Thus we can conclude that QZ(R ®; S)
is a free module by Lemma 3.1.

Corollary 3.3. Let R and S be affine k-algebras. S(QL(R)) has at least one symmetric
derivation. Q2(R), Qz(S) and S?(QL(R) ® Q5 (S))are projective modules, then QZ(R Q) S)
is projective module.

Corollary 3.4. Suppose that S(QL(R)) has at least one symmetric derivation. Let
S2(Qr(R) ® Qi(S)) be a projective module. If R and S are affine regular k-algebras, then
Q2(R ®; S) is projective module.

Proof. Suppose that S2(Q}(R) ® Qi(S)) is a projective module. R and S are affine regular
k-algebras if and only if QZ(R) and QZ(S) are projective modules (this was proved by Olgun in
[5]). By Corollary 3.3., Q2(R ®, S) is a projective module.

Example 3.1. Let R = k[x] and S =k[y,z] be polynomial algebras. Since R Q, S =
k[x,y,z], then R ®, S is a polynomial algebra with dimension 3. QL(R) =< {d;(x)} > isa
free R-module with rank 1 and Qi(S) =< {d;(y),d;(2)}> is a free S-module with rank 2.

Then 52(9,1((1?)) =< {d,(x) Vdi(x)} > and

52(9,1( (5)) =< {d,(y)V dy(y),d;(y) V dy(2),d1(2) V dy(2)} > are free modules.

Thus, the second order symmetric power module of Qf(R ®, S) can be written as a direct sum
of free modules (Lemma 3.2.). Therefore, Qi (R ®; S) isafree R @ S-module (Theorem 3.1).
In other way, since R @ S = k[x,y,z] is a regular ring, then the first universal differential

module of R @, S will be a free module.
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Q%(R) =< {d,(x),d,(x?)} > is a free R-module with rank 2 and
Q2(S) ={d,(y),d,(y?),d,(yz),d,(2),d,(z%) } is a free S-module with rank 5.
52 (Q,Zc (R)) is a free module generated by the set
{dy(x) v dy(x),dy (%) V dy(x?),dp(x*) V dy(x*)} and

52 (Qi (S )) is a free module generated by the following set

{d, () vd(3),d,(0) V d,(y?), d2(¥) V da(y2), d, (¥) V d3(2), da(y) V dy(22), dr (y?) V
dy(y%),d,(y*) Vdy(yz),d,(y*) V dy(2), dy(y*) Vdy(22),d,(yz) vV dy(yz),d,(yz) v
d,(2),d,(yz) V d,(22), dy(2) V dy(2),d,(2) V dy(22),d,(2%) V dy(2%)}.

Thus, S?2(Q2(R ®; S)) can be written as a direct sum of free modules (Lemma 3.4.). Then

Qi (R Qi S) isafree R Q) S-module by Theorem 3.2.

Example 3.2. Let R = k[z] and = klx, y]/

<yZ—x3>"
Then R ®; S = k[x'y’Z]/< y2 —x3 >

[6]. The first order universal differential module
Q+(R ® S) is not free module. By Theorem 3.1. Q(R) or Q1(S) can not be free module.
Weknow R isaregularring,so QL(R) isafree module. Thus QL(S) cannotbe a free module.
Similarly, by examining the second order universal differential module Q% (R ®), S), we can show

that QZ2(S) is not free module.
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