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Abstract. The catenary degree is an invariant that measures the distance between factorizations of elements within

a numerical semigroup. In general, all possible catenary degrees of the elements of the numerical semigroups

occur as the catenary degree of one of its Betti elements. In this study, Betti elements of some telescopic numerical

semigroup families with embedding dimension three were found and formulated. Then, with the help of these

formulas, Frobenius numbers and genus of these families were obtained. Also, the catenary degrees of telescopic

numerical semigroups were found with the help of factorizations of Betti elements of these semigroups.
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1. INTRODUCTION

Let N be the set of nonnegative integers. A numerical semigroup is a nonempty subset S

of N that is closed under addition, contains the zero element, and whose complement in N is

finite. If a1, . . . ,ae are positive integers with gcd{a1, . . . ,ae} = 1, then the set 〈a1, . . . ,ae〉 =

{λ1a1 + · · ·+ λeae : λ1, · · · ,λe ∈ N} is a numerical semigroup. Every numerical semigroup

is in this form [8]. Let S be a numerical semigroup and A = {a1,a2, . . . ,ae} ⊂ N such that
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gcd{a1,a2, . . . ,ae}= 1, where e≥ 1 and a1 < a2 < · · ·< ae. The set A is a system of generators

of S if there are η1,η2, . . . ,ηe ∈ N for all s ∈ S and s =
e

∑
i=1

ηiai. If there are no η1, . . . ,ηk−1

elements in the form ak =
k−1

∑
i=1

ηiai for all k = 2, . . . ,e, then the set A = {a1,a2, . . . ,ae} is a

minimal system of generators and we denote by S= 〈A〉. Let A = {a1,a2, . . . ,ae} be the set of

minimal generators of the numerical semigroup S. Then the number a1 is called multiplicity of

S, denoted by µ(S), and the cardinality of A is called embedding dimension of S, denoted by

e(S) [8].

If S is a numerical semigroup, the largest integer not belonging to S is called Frobenius

number of S, denoted by F(S). We say that a positive integer x is a gap of S if x /∈ S. The set of

all the gaps of S is denoted by G(S). The cardinality of G(S) is called the genus of S, denoted

by g(S) [2].

Let S be a numerical semigroup minimally generated by {a1, . . . ,ae}. The homomorphism

φ : Ne→ S, φ(η1, . . . ,ηe) = η1a1 + . . .+η1ae

is the factorization homomorphism of S. Then S is isomorphic to Ne/kerφ , where kerφ is kernel

congruence, which means that (x,y)∈ kerφ if φ(x) = φ(y) [4]. The set of factorizations of a∈ S

is defined by

Z(a) = φ
−1(a) = {(η1, . . . ,ηe) ∈ Ne : η1a1 + · · ·+η1ae = a}.

If a factorization has a positive entry in the e-tuple, we say that the element is supported on the

component corresponding to that generator. The length of a is |a|= η1+ . . .+ηe. For x,y∈Ne,

with x = (x1, . . . ,xe) and y = (y1, . . . ,ye). The greatest common divisor of x and y is defined as

gcd{x,y}= (min{x1,y1}, · · · ,min{xe,ye}).

The distance between x and y is

dist{x,y}= max{|x−gcd{x,y}|, |y−gcd{x,y}|}.

Given a positive integer N, an N-chain of factorizations from x to y is a sequence k0, . . . ,ke ∈

Z(a) such that x = k0,y = ke and dist{ki,ki+1} ≤ N for all i. The catenary degree of a, denoted



BETTI ELEMENTS AND CATENARY DEGREE OF TELESCOPIC NUMERICAL SEMIGROUP FAMILY 3

by c(a), is the minimal N ∈N∪{∞} such that for any two factorizations x,y ∈ Z(a), there is an

N-chain from x to y.

Fix a finitely generated numerical semigroup S. For each a ∈ S\{0}, consider the graph ∇a

with vertex set Z(a) in which two vertices x,y ∈ Z(a), share an edge if gcd{x,y} 6= 0. If ∇a is

not connected, then a is called a Betti element of S. We write

Betti(S) = {y ∈ S : ∇a is disconnected}

for the set of Betti elements of S.

Let S be numerical semigroup and a ∈ S, x,y ∈ Z(a) and N ∈ N. In this case, the catenary

degree of a, denoted by c(a), is the smallest of the existing N-chains. Furthermore, the set of

catenary degrees of S is the set C(S) = {c(s) : s ∈ S}, and the catenary degree of S is the supre-

mum of this set, namely c(S) = supC(S) [1, 3, 7].

Calculating the Beti elements of a numerical semigroup have complex properties. It is known

that the maximum catenary degree of the numerical semigroup is reached with the help of an

element called the Betti element. Also, it knows that the numerical semigroups with embedding

dimension three have at most three Betti elements [4].

Let (a1, . . . ,ae) be a sequence of positive integers with a1 < · · ·< ae and such that their great-

est common divisor is 1. Define di = gcd{a1, . . . ,ai} and Ai = {a1/d1, . . . ,ai/di} for i= 1, . . . ,e.

Let Si be the semigroup generated by Ai. If ai/di ∈ Si−1 for i= 2, . . . ,e, we call that the sequence

(a1, . . . ,ae) is telescopic. A numerical semigroup is telescopic if it is generated by a telescopic

sequence [6]. Specially, let 〈a1,a2,a3〉 be a numerical semigroup. If a3 ∈ 〈a1/d,a2/d〉, then S

is called triply-generated telescopic semigroup, where d = gcd{a1,a2} [5].

An element of a numerical semigroup is expressed in different ways as a linear combination

with non-negative integer coefficients of its generators. This expression is known as a factor-

ization of that element. The catenary degree of the element of the numerical semigroup is a

combinatorial constant that describes the relationships between differing irreducible factoriza-

tions of the element. The supremum of all catenary degrees of all the elements in the numerical

semigroup is the catenary degree of the numerical semigroup itself. While the set of factoriza-

tions for a numerical semigroup is a perfect invariant, it is often stodgy to compute and encode.

We focus on invariants obtained by passing from factorizations to their lengths. Many of the
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arguments that compute the maximal catenary degree c(S) for a numerical semigroup S focus

on the Betti elements of S. The factorizations of Betti elements contain enough information

about the set of factorizations of S to give sharp bounds on the catenary degrees occurring in

C(S).

Conaway et al., O’Neil et al. and Chapman et al. presented a study on how to find some Betti

elements in a numerical semigroup with three generations in their works[3, 4, 7]. Süer and Ilhan

have found and proved some telescopic numerical semigroup families in their work[9].

The paper is organized as follows. In Section 2, we will find the Betti elements of the tele-

scopic numerical semigroup families found by Süer and Ilhan [9], using the advantages of [3],

[4], and [7]. Later we will find and prove some formulas for the Betti elements of these tele-

scopic numerical semigroup families. Furthermore, with the help of the obtained results, we

will find some formulas for the Frobenius numbers and genus of these families. In Section 3,

we will obtain the factorizations of Betti elements of these semigroups. And we will calculate

the catenary degrees of telescopic numerical semigroups with the help of factorizations of Betti

elements of these semigroups.

2. THE SET OF BETTI ELEMENTS OF THE TELESCOPIC NUMERICAL SEMIGROUP

FAMILIES

In this section, we will find the set of Betti elements of the telescopic numerical semigroup

families obtained in [9].

Proposition 2.1. [[4], Proposition 4.1] Let S= 〈u1,u2,u3〉 be a numerical semigroup minimally

generated. An element β ∈ S is a Betti element if β = xiui for some i = 1,2,3 where xi = min{x :

xui ∈ 〈a j,ak〉 where{ j,k}= {1,2,3}\{i}}.

Theorem 2.2. [[9], 2.4. Theorem] Let S be a numerical semigroup with embedding dimension

three and multiplicity four. The numerical semigroup S is telescopic if only if S is a member of

the family Φ = {〈4,4α +2,m〉 : α ∈ N, m ∈ No and m > 4α +2} ( where No denotes the set

of positive odd integers ).
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Theorem 2.3. [[9], 2.7. Theorem] Let S be a numerical semigroup with embedding dimension

three and multiplicity six. The numerical semigroup S is telescopic if only if S is a member of

the following families:

i) ∏ = {〈6,6α +2,m〉 : α ∈ N, m ∈ No and m > 6α +2},

ii) Ω = {〈6,6α +3,n〉 : α,n ∈ N, 3 - n and n > 6α +3},

iii) Ψ = {〈6,6α +4, p〉 : α ∈ N, p ∈ No and p > 6α +4}.

Theorem 2.4. If S be a member of the telescopic numerical semigroup family Φ given in The-

orem 2.2, then the set of Betti elements of S is Betti(S) = {8α +4,2m}.

Proof. Let S be an element of the telescopic numerical semigroup family Φ in Theorem 2.2.

Then, x1 = min{x : 4x ∈ 〈4α + 2,m〉} is written by Proposition 2.1. Also, 4x = η1(4α + 2)+

η2m (η1,η2 ∈ N) is written by the definition of the numerical semigroup. To obtain the

smallest value of x, we must write η1 = 2 and η2 = 0 in the given equation. Hence, if 4x =

2(4α +2)+0m, then it is obtained as x = 2α +1. Then, it is found as β1 = 4(2α +1) = 8α +4

by Proposition 2.1.

Similary, from Proposition 2.1, x2 = min{x : x(4α +2) ∈ 〈4,m〉} is written. Besides, x(4α +

2) = λ14+λ2m (λ1,λ2 ∈N) is written by the definition of the numerical semigroup. To obtain

the smallest value of x, we must write λ1 = 2α +1 and λ2 = 0 in the given equation. Then, if

4α + 2 = 4(2α + 1)+ 0m, then it is obtained as x = 2. Thus, it is found as β2 = 2(4α + 2) =

8α +4 = β1 by Proposition 2.1.

Again, x3 = min{x : mx ∈ 〈4,4α +2〉} is written by Proposition 2.1. Since S is telescopic nu-

merical semigroup, we can write gcd{4,4α +2}= 2 and m ∈ 〈2,2α +1〉. There are µ1,µ2 ∈N

such that m = 2µ1 +(2α +1)µ2 by the definition of the numerical semigroup. Hence, it is ob-

tained as 2m = 4µ1 +(4α +2)µ2. The smallest positive integer x that satisfies these conditions

is 2. Then, it is found as β3 = 2m by Proposition 2.1.

As a result, the telescopic numerical semigroup S in the family Φ has got two different Betti

elements. The set of Betti elements of the telescopic numerical semigroup S in the family Φ in

Theorem 2.2 is in the form Betti(S) = {8α +4,2m}. �
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Corollary 2.5. Let the numerical semigroup S be a member of the telescopic numerical semi-

group family Φ in Theorem 2.2. While β1 = β2 = 8α +4 and β3 = 2m,

i) F(S) = β1+β3
2 −4,

ii) g(S) = β1+β3
4 − 3

2 .

Theorem 2.6. Let S be a member of the telescopic numerical semigroup families given in The-

orem 2.3.

i) If S be a member of the telescopic numerical semigroup family ∏ given in Theorem 2.3,

then the set of Betti elements of S is in the form Betti(S) = {18α +6,2m}.

ii) If S be a member of the telescopic numerical semigroup family Ω given in Theorem 2.3,

then the set of Betti elements of S is in the form Betti(S) = {12α +6,3n}.

iii) If S be a member of the telescopic numerical semigroup family Ψ given in Theorem 2.3,

then the set of Betti elements of S is in the form Betti(S) = {18α +12,2p}.

Proof. Assume that S is a member of the telescopic numerical semigroup families given in

Theorem 2.3.

i) If S be a member of the telescopic numerical semigroup family ∏ given in Theorem

2.3, then x1 = min{x : 6x ∈ 〈6α +2,m〉} is written by Proposition 2.1. From definition

of the numerical semigroup, we can write 6x = ϕ1(6α +2)+ϕ2m where ϕ1,ϕ2 ∈N. To

obtain the smallest value of x, we obtain two different situations according to the value

of m, 6α +2 = 2(3α +1)< m6 3(3α +1) = 9α +3 or m > 9α +3:

a) If 6α +2 < m≤ 9α +3, then again there are two situations: 3|m and 3 - m:

If 6α +2 < m≤ 9α +3 and 3|m, then when we chose ϕ1 = 0 and ϕ2 = 2, we obtain

the smallest value of. If 6x = 0(6α + 2)+ 2m, then x = m
3 is obtained. Then, it is

found as β1 = 6 · m
3 = 2m.

If 6α+2<m≤ 9α+3 and 3 -m, then when we chose ϕ1 = 3 and ϕ2 = 0, we obtain

the smallest value of x. If 6x = 3(6α +2)+0m, then it is obtained as x = 3α +1.

Then, it is found as β1 = 6(3α +1) = 18α +6.



BETTI ELEMENTS AND CATENARY DEGREE OF TELESCOPIC NUMERICAL SEMIGROUP FAMILY 7

b) If m > 9α +3, then we get the smallest value of x when we choose ϕ1 = 3 and ϕ2 =

0 in the given equation. If 6x = 3(6α +2)+0m, then it is obtained as x = 3α +1.

Then, it is found as β1 = 6(3α +1) = 18α +6.

From Proposition 2.1, x2 = min{x : (6α + 2)x ∈ 〈6,m〉} is written. From definition

of the numerical semigroup, we can write (6α + 2)x = γ16 + γ2m where γ1,γ2 ∈ N.

when we chose γ1 = 3α + 1 and γ2 = 0, we obtain the smallest value of x. Hence,

If (6α + 2)x = 6(3α + 1) + 0m, then x = 3 is obtained. Then, it is found as β2 =

3(6α +2) = 18α +6 = β1 by Proposition 2.1..

From Proposition 2.1, x3 = min{x : mx ∈ 〈6,6α + 2〉} is written. Since S is a tele-

scopic numerical semigroup, we can write gcd{6,6α + 2} = 2 and m ∈ 〈3,3α + 1〉.

There are ϑ1,ϑ2 ∈ N such that m = 3ϑ1 +(3α + 1)ϑ2 by the definition of the numeri-

cal semigroup. Hence, 2m = 6ϑ1 +(6α + 2)ϑ2 is obtained. The smallest nonnegative

integer x that satisfies these conditions is 2. Then, it is found as β3 = 2m by Proposition

2.1.

As a result, the telescopic numerical semigroup S in the family ∏ given in Theo-

rem 2.3 has got two different Betti elements at most. The set of Betti elements of

the telescopic numerical semigroup S in the family ∏ in Theorem 2.3 is in the form

Betti(S) = {β1 = β2 = 18α +6,β3 = 2m} or Betti(S) = {β2 = 18α +6,β1 = β3 = 2m}.

ii) If S be a member of the telescopic numerical semigroup family Ω given in Theorem

2.3, then x1 = min{x : 6x ∈ 〈6α + 3,n〉} is written by Proposition 2.1. 6x = ω1(6α +

3)+ω2n (ω1,ω2 ∈ N) is written by the definition of the numerical semigroup. When

we choose ω1 = 2 and ω2 = 0 in the given equation, the smallest value of x is obtained.

Then, 6x = 2(6α + 3) + 0n and x = 2α + 1. Then, it is found as β1 = 6(2α + 1) =

12α +6 by Proposition 2.1.

Again, from Proposition 2.1, x2 = min{x : (6α +3)x∈ 〈6,n〉} is written. (6α +3)x =

ψ16+ψ2n (ψ1,ψ2 ∈N) is written by the definition of the numerical semigroup. Thus,

when ψ1 = 2α +1 and ψ2 = 0, the smallest value of x is obtained. Hence, (6α +3)x =

(2α +1)6+0n and x = 2. As a result, β2 = 2(6α +3) = 12α +6 = β1 by Proposition

2.1.
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x3 = min{x : (nx ∈ 〈6,6α +3〉} is written by Proposition 2.1. Since S is a telescopic

numerical semigroup, we can write gcd{6,6α +3} = 3 and n ∈ 〈2,2α +1〉. There are

φ1,φ2 ∈N such that n = 2φ1+(2α +1)φ2 by the definition of the numerical semigroup.

Thus, 3n = 6φ1+(6α +3)φ2 can be written. Then, it is found as β3 = 3n by Proposition

2.1.

Consequently, the telescopic numerical semigroup S in the family Ω given in The-

orem 2.3 has got two different Betti elements at most. The set of Betti elements of

the telescopic numerical semigroup S in the family Ω in Theorem 2.3 is in the form

Betti(S) = {β1 = β2 = 12α +6,β3 = 3n}.

iii) If S be a member of the telescopic numerical semigroup family Ψ given in Theorem 2.3,

then x1 = min{x : 6x ∈ 〈6α +4, p〉} is written by Proposition 2.1. There are η1,η2 ∈ N

such that 6x= η1(6α+4)+η2 p is written by the definition of the numerical semigroup.

To obtain the smallest value of x, we obtain two different situations according to the

value of p, 6α +4 = 2(3α +2)< p6 3(3α +2) = 9α +6 or m > 9α +6:

a) If 6α +4 < p≤ 9α +6, then again there are two situations: 3|p and 3 - p:

If 6α +4 < p≤ 9α +6 and 3|p, then when we chose η1 = 0 and η2 = 2, we obtain

the smallest value of x. If 6x = 0(6α +4)+2p, then x = p
3 is obtained. Then, it is

found as β1 = 6 · p
3 = 2p.

If 6α +4 < p≤ 9α +6 and 3 - p, then when we chose η1 = 3 and η2 = 0, we obtain

the smallest value of x. If 6x = 3(6α +4)+0p, then it is obtained as x = 3α +2.

Then, it is found as β1 = 6(3α +2) = 18α +12.

b) If m > 9α +6, then we get the smallest value of x when we choose η1 = 3 and η2 =

0 in the given equation. If 6x = 3(6α +4)+0p, then it is obtained as x = 3α +2.

Then, it is found as β2 = 6(3α +2) = 18α +12.

x2 = min{x : (6α + 4)x ∈ 〈6, p〉} is written by Proposition 2.1. There are γ1,γ2 ∈ N

such that (6α +4)x = γ16+γ2 p is written by the definition of the numerical semigroup.

When we choose γ1 = 3α +2 and γ2 = 0 in the given equation, the smallest value of x

is calculated. Thus, (6α +4)x = (3α +2)6+0p and x = 3 is obtained. So it is found as

β2 = 3(6α +4) = 18α +12 = β1 by Proposition 2.1.
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Similarly, x3 = min{x : px ∈ 〈6,6α +4〉} is written by Proposition 2.1. Since S is a

telescopic numerical semigroup, we can write gcd{6,6α +4}= 2 and p ∈ 〈3,3α +2〉.

There are δ1,δ2 ∈ N such that p = 3δ1 +(3α +2)δ2 by the definition of the numerical

semigroup. Thus, 2p = 6δ1 +(6α +4)δ2 can be written. The smallest positive integer

x that satisfies these conditions is 2. Then, it is found as β3 = 2p by Proposition 2.1.

As a result, the telescopic numerical semigroup S in the family Ψ given in Theorem

2.3 has got two different Betti elements at most. The set of Betti elements of the tele-

scopic numerical semigroup S in the family Ψ in Theorem 2.3 is in the form Betti(S) =

{β1 = β2 = 18α +12,β3 = 2p} or Betti(S) = {β2 = 18α +12,β1 = β3 = 2p}.

�

Corollary 2.7. Let the numerical semigroup S be a member of the telescopic numerical semi-

group family ∏ in Theorem 2.3. While β2 = 18α +6 and β3 = 2m,

i) F(S) = β2+β3
2 − (5−3α),

ii) g(S) = β2+β3
4 − (3α−4

2 ).

Corollary 2.8. Let the numerical semigroup S be a member of the telescopic numerical semi-

group family Ω in Theorem 2.3. While β2 = 12α +6 and β3 = 3n,

i) F(S) = β2+β3
2 − (12−n

2 ),

ii) g(S) = β2+β3
4 +(n−10

4 ).

Corollary 2.9. Let the numerical semigroup S be a member of the telescopic numerical semi-

group family Ψ in Theorem 2.3. While β2 = 18α +12 and β3 = 2p,

i) F(S) = β2+β3
2 − (4−3α),

ii) g(S) = β2+β3
4 − (24p+3p+21

2 ).

3. THE CATENARY DEGREE OF TELESCOPIC NUMERICAL SEMIGROUPS

In this section, we will find the factorizations of Betti elements of the telescopic numerical

semigroup families obtained in [9]. We will calculate the catenary degrees of these telescopic

numerical semigroups.
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Theorem 3.1. Let S be a member of the telescopic numerical semigroup family Φ given in The-

orem 2.2, and β1,β2,β3 be Betti elements of the numerical semigroup S. In this case, the factor-

izations of β1 = β2 are (2α +1,0,0) and (0,2,0); the factorizations of β3 are (m−k·(2α+1)
2 ,k,0)

and (0,0,2) for k ∈ No and k ≤ m
2α+1 .

Proof. Assume that S is a member of the telescopic numerical semigroup family given in The-

orem 2.2. According to the proof of Theorem 2.4, the Betti elements of S are respectively

β1 = β2 = 8α +4 and β3 = 2m. Firstly, we will find the factorizations of β1 = β2 = 8α +4. We

write β1 = β2 = 4x1+(4α+2)x2+mx3 (x1,x2,x3 ∈N) by definition the factorizations. In this

case, since β1 = β2 = 8α +4 is a positive even integer, β1 = β2 = 4x1+(4α +2)x2+mx3 must

be a positive even integer, too. Since m is a positive odd integer, x3 must be a nonnegative even

integer. Furthermore, it should be x3 = 0 since m > 4α +2. Thus, 8α +4 = 4x1 +(4α +2)x2

is obtained. In this case, since x2 = 2− 2x1
2α+1 and x2 ∈N, x1 = 0 or x1 = 2α +1 is obtained. As

a result, the factorizations of β1 = β2 are (2α +1,0,0) and (0,2,0).

Now, we will find the factorizations of β3 = 2m. We write β3 = 2m = 4x1 +(4α + 2)x2 +

mx3 (x1,x2,x3 ∈N) by definition the factorizations. From here it is clear that x3 = 0 or x3 = 1

or x3 = 2. If x3 = 0, then 2m = 4x1 +(4α + 2)x2 and x2 = m−2x1
2α+1 are obtained. In this case,

since x2 ∈ N, we write 2α + 1|m− 2x1. Also, since 2α + 1 and m− 2x1 are odd integers, x2

must be an odd integer. Thus, x1 = m−k·(2α+1)
2 and k ≤ m

2α+1 for x2 = k ∈ No. So, if x3 = 0,

the factorization of β3 is (m−k·(2α+1)
2 ,k,0) for k ∈ No and k ≤ m

2α+1 . If x3 = 1, then m =

4x1 +(4α + 2)x2 is obtained. But this contradicts the fact that m is a positive odd integer. If

x3 = 2, then 4x1 +(4α +2)x2 = 0 is obtained. Since x1 and x2 are nonnegative integers, x1 and

x2 must be 0. Thus, the factorizations of β3 is (0,0,2). �

Theorem 3.2. Let S be a member of the telescopic numerical semigroup family Φ given in

Theorem 2.2. The catenary degree of Betti elements of S is following that:

i) c(β1) = c(β2) = c(8α +4) = 2α +1

ii) c(β3) = c(2m) = max{2α +1, m−max{k}·(2α−1)
2 } for k ≤ m

2α+1 and k ∈ No.



BETTI ELEMENTS AND CATENARY DEGREE OF TELESCOPIC NUMERICAL SEMIGROUP FAMILY 11

Proof. Assume that S is a member of the telescopic numerical semigroup family Φ given in

Theorem 2.2. The factorizations of the Betti elements of the numerical semigroup S are given

in Theorem 3.1.

i) The factorizations of β1 = β2 = 8α +4 are (2α +1,0,0) and (0,2,0). In this case, the

distance of the edge between these factorizations is found as

gcd{(2α +1,0,0),(0,2,0)}= (0,0,0)

and

dist{(2α +1,0,0),(0,2,0)}= 2α +1.

The factorization points that we found are vertices and the path that are connecting these

vertices are edges. Hence, if we draw the graph in Figure 1 which consists of these ver-

tices and edge, the catenary degree of β1 = β2 = 8α +4 is 2α +1.

(2α +1,0,0) (0,2,0)2α +1

FIGURE 1. The catenary graph of β1 = β2 = 8α +4

ii) we will find the catenary degree of β3 = 2m. From Theorem 3.1, the factorizations of

β3 = 2m are (m−k·(2α+1)
2 ,k,0) and (0,0,2) for k ≤ m

2α+1 and k ∈ No. In this case, the

distances of the edges between these factorizations are found as follows:

Since there will be an edge for every nonnegative integer k, let’s show that the edge

corresponding to each ki with ai such that ai = (m−ki·(2α+1)
2 ,ki,0) for i ∈ {1,2, . . . ,n}.

Where k1 < k2 < · · ·< kn

gcd{ai,(0,0,2)}= (0,0,0)

and

dist{ai,(0,0,2)}=
m− ki · (2α +1)

2
+ ki =

m− ki · (2α−1)
2

Let i ∈ {1,2, . . . ,n−1} and j ∈ {2,3, . . . ,n} such that i < j.

gcd{ai,a j}= (
m− k j · (2α +1)

2
,ki,0)
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and

dist{ai,a j}= max{|
(k j− ki) · (2α +1)

2
|, |k j− ki|}=

(k j− ki) · (2α +1)
2

Moreover, it is clear that ki = k1+2(i−1) and | (k j−ki)·(2α+1)
2 |> |k j−ki|. The following

equations can easily be seen from these obtained above:

min{dist{a1,(0,0,2)},dist{a2,(0,0,2)}, . . . ,dist{an,(0,0,2)}}= min{m− k1 · (2α−1)
2

,

m− k2 · (2α−1)
2

, . . . ,
m− kn · (2α−1)

2
}= m− kn · (2α−1)

2
= dist{an,(0,0,2)}

for i ∈ {1,2, . . . ,n}

min{dist{ai,a1},dist{ai,a2}, . . . ,dist{ai,ai−1},dist{ai,ai+1}, . . . ,dist{ai,an}}=

min{|(ki− k1) · (2α +1)
2

|, |(ki− k2) · (2α +1)
2

|,

. . . , |(ki− ki−1) · (2α +1)
2

|, |(ki+1− ki) · (2α +1)
2

|,

. . . , |(kn− ki) · (2α +1)
2

|}= |(ki− ki−1) · (2α +1)
2

|

= |(ki+1− ki) · (2α +1)
2

|= [(k1 +(i−1) ·2)− (k1 +(i−1−1) ·2)] · (2α +1)
2

=
[(k1 +(i+1−1) ·2)− (k1 +(i−1) ·2)] · (2α +1)

2
= 2α +1

When each vertex is labeled with one of the factorizations of β3 = 2m and each edge

is labeled with distance between the factorizations of β3 = 2m at either end, we get

Figure 2 (a). If vertices with maximal length are removed from the connected graph

in Figure 2 (a), then Figure 2 (b) is obtained. So, the catenary degree of β3 = 2m is

max
(

2α +1, m−kn·(2α−1)
2

)
, where kn = max{k} for k ≤ m

2α+1 and k ∈ No.

�

Corollary 3.3. Let S be a member of the telescopic numerical semigroup family Φ given in

Theorem 2.2. The catenary degree of S is following that:

c(S) = max
(

2α +1,
m−max{k} · (2α−1)

2

)
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(0,0,2) a1

ai−1

aiai+1

an

(a)
(0,0,2) a1

a2

aian−1

an

(b)

m−kn·(2α−1)
2

2α +1

2α +1

FIGURE 2. The catenary graph of β3 = 2m

for k ≤ m
2α+1 and k ∈ No.

Example 3.4. Let S = 〈4,10,23〉 ∈ Φ. Then β1 = β2 = 20 and β3 = 46. The factorizations of

β1 = β2 = 20 are (5,0,0) and (0,0,2); the factorizations of β3 = 46 are (9,1,0), (4,3,0) and

(0,0,2). However, c(β1) = c(β2) = c(20) = 5 and c(β3) = c(46) = 7. Thus, c(S) = 7.

Theorem 3.5. Let S be a member of the telescopic numerical semigroup family ∏ given in

Theorem 2.3 such that β1,β2 and β3 be Betti elements of the numerical semigroup S. In this

case,

i) If 6α+2<m≤ 9α+3 and 3|m, then the factorizations of β1 = 2m are (m−k·(3α+1)
3 ,k,0)

and (0,0,2) for k≤ m
3α+1 , 3|m−k · (3α +1) and k ∈N. If other, then the factorizations

of β1 = 18α +6 are (3α +1,0,0) and (0,3,0).

ii) If 6α+2<m≤ 9α+3 and 3|m, then the factorizations of β2 = 18α+6 are (9α+3−m
3 ,0,2),

(3α + 1,0,0) and (0,3,0). If other, then the factorizations of β2 = 18α + 6 are (3α +

1,0,0) and (0,3,0).

iii) The factorizations of β3 = 2m are (m−k·(3α+1)
3 ,k,0) and (0,0,2) for k≤ m

3α+1 , 3|m−k ·

(3α +1) and k ∈ N.

Proof. The Betti elements of the numerical semigroup S given in Theorem 2.3 are β1,β2 and β3

in the proof of Theorem 2.6. According to Theorem 2.6,

i) Firstly, we will find the factorizations of β1.

a) If 6α + 2 < m ≤ 9α + 3 and 3|m, then the factorizations of β1 = 2m. We write

β1 = 2m = 6x1 +(6α + 2)x2 +mx3 (x1,x2,x3 ∈ N). In this case, it clear that x3

is one of 0,1 or 2. If x3 = 0, then x1 = m−(3α+1)·x2
3 , x2 = m−3x1

3α+1 and x1,x2 ∈ N.
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Assume that x2 = k ∈ N, then it must be 3|m− k · (3α +1) and k ≤ m
3α+1 . Thus, if

x3 = 0, then the factorization of β1 = 2m is (m−k·(3α+1)
3 ,k,0). If x3 = 1, then the

equation m = 6x1 +(6α +2)x2 is obtained. But this contradicts that m is a positive

odd integer. If x3 = 2, then we write 0 = 6x1 +(6α + 2)x2. Hence, it is clear that

x1 = 0 and x2 = 0. Thus, the factorization of β1 = 2m is (0,0,2).

b) In other cases, β1 = 18α + 6. We can write β1 = 18α + 6 = 6x1 +(6α + 2)x2 +

mx3 (x1,x2,x3 ∈ N). Since 18α + 6 is a positive even integer, x3 must be a non-

negative even integer. Furthermore, since m > 6α +2, it should be x3 = 0 or x3 = 2.

If x3 = 0, then x2 = 3− 3x1
3α+1 . So, x1 must be 0 or 3α +1. Therefore, if x3 = 0, then

the factorizations of β1 = 18α + 6 are (3α + 1,0,0) and (0,3,0). If x3 = 2, then

x2 = 3− 3x1+m
3α+1 . Thus, the fraction 3x1+m

3α+1 is one of 0,1,2, or 3. If 3x1+m
3α+1 = 0, then

m =−3x1. But this statement contradicts the acceptance of x1 and m. If 3x1+m
3α+1 = 1,

then x1 = 3− (3α+1)−m
3 . But, since m > 6α + 2, this statement contradicts the

acceptance of x1. If 3x1+m
3α+1 = 2 and 3x1+m

3α+1 = 3, then a similar contradictions are

obtained.

ii) Now, we will find the factorizations of β2 = 18α + 6. We can write β2 = 18α + 6 =

6x1 +(6α + 2)x2 +mx3 (x1,x2,x3 ∈ N). Since 18α + 6 is a positive even integer, x3

must be a nonnegative even integer. Since m > 6α +2, it should be x3 = 0 or x3 = 2. If

x3 = 0, then the factorizations of β2 = 18α+6 are obtained as (3α+1,0,0) and (0,3,0)

as in item i)-b). If x3 = 2, then x2 = 3− 3x1+m
3α+1 . And, the fraction 3x1+m

3α+1 is one of 0,1,2,

or 3. When the fraction 3x1+m
3α+1 is one of 0,1, or 2, there are similar contradictions as

in item i)-b). But, if 3x1+m
3α+1 = 3, then x1 = 9α+3−m

3 . So x1 is a nonnegative integer if

and only if 6α +2 < m≤ 9α +3 and 3|m. Under these conditions, the factorization of

β2 = 18α +6 is (9α+3−m
3 ,0,2)

iii) Let’s find the factorizations of β3 = 2m. We write β3 = 2m = 6x1 + (6α + 2)x2 +

mx3 (x1,x2,x3 ∈ N). In this case, it is clear that x3 is one of 0,1 or 2. If x3 = 0,

then x1 =
m−(3α+1)·x2

3 and x2 =
m−3x1
3α+1 . Assume that x2 = k ∈ N, then 3|m− k · (3α +1)

and k ≤ m
3α+1 . Thus, If x3 = 0, then the factorization of β3 = 2m is (m−k·(3α+1)

3 ,k,0).

If x3 = 1, then the equation m = 6x1 +(6α +2)x2 is obtained. But this contradicts that
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m is a positive odd integer. If x3 = 2, then we write 0 = 6x1 +(6α +2)x2. Hence, it is

clear that x1 = 0 and x2 = 0. Thus, the factorization of β3 = 2m is (0,0,2).

�

Theorem 3.6. Let S be a member of the telescopic numerical semigroup family ∏ given in

Theorem 2.3. The catenary degrees of Betti elements of S are as follows:

i)

c(β1) =


m
3

if 6α +2 < m≤ 9α +3 and 3|m

3α +1 if other

ii)

c(β2) =


m
3

if 6α +2 < m≤ 9α +3 and 3|m

3α +1 if other

iii) c(β3) = max{3α +1, m−max{k}·(3α−2)
3 } for 3|m− k(3α +1), k ≤ m

3α+1 and k ∈ N.

Proof. Assume that S is a member of the telescopic numerical semigroup family ∏ given in

Theorem 2.3. From the proof of Theorem 2.6, we know the Betti elements of S. Moreover, the

factorizations of the Betti elements of the numerical semigroup S are given in Theorem 3.5.

i) Firstly, we will find the catenary degree of β1.

a) From Theorem 3.5, if 6α + 2 < m ≤ 9α + 3 and 3|m, then the factorizations of

β1 = 2m are (0,0,2) and (m−k·(3α+1)
3 ,k,0) for k ≤ m

3α+1 , 3|m− k · (3α + 1) and

k ∈ N. If 6α + 2 < m < 9α + 3 and 3|m, then k = 0. And the factorizations of

β1 = 2m are (0,0,2) and (
m
3
,0,0). If m = 9α + 3, then k = 0 or k = 3. And the

factorizations of β1 = 2m are (0,0,2), (
m
3
,0,0) and (0,3,0). Thus, the distances of

the edge between these factorizations are found as follows:

gcd{(0,0,2),(m
3
,0,0)}= (0,0,0)

gcd{(0,0,2),(0,3,0)}= (0,0,0)

gcd{(0,3,0),(m
3
,0,0)}= (0,0,0)

and

dist{(0,0,2),(m
3
,0,0)}= m

3
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dist{(0,0,2),(0,3,0)}= 3

dist{(0,3,0),(m
3
,0,0)}= m

3

When each vertex is labeled with one of the factorizations of β1 = 2m and each

edge is labeled with distance between the factorizations of β1 = 2m at either end,

we get Figure 3 and Figure 4. Hence, if we draw the graphs in Figure 3 and Figure

4 which consist of these vertices and edges, then the catenary degree of β1 = 2m is
m
3

.

When 6α +2 < m≤ 9α +3 and 3|m, we get Figure 3

(0,0,2) (
m
3
,0,0)

m
3

FIGURE 3. The catenary graph of β1 = 2m with factorizations (0,0,2) and (
m
3
,0,0)

When m = 9α +3, we get Figure 4

(0,3,0) (0,0,2)

3

(
m
3
,0,0)

m
3

m
3

(a)
(0,3,0) (0,0,2)

(
m
3
,0,0)

m
3

m
3

(b)

FIGURE 4. The catenary graph of β1 = 2m with factorizations (0,0,2), (0,3,0)

and (
m
3
,0,0)

b) From Theorem 3.5, we know that the factorizations of β1 = 18α + 6 are (3α +

1,0,0) and (0,3,0) if other cases. In this case, the distance of the edge between

these factorizations is found as

gcd{(3α +1,0,0),(0,3,0)}= (0,0,0)

dist{(3α +1,0,0),(0,3,0)}= 3α +1.
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Hence, if we draw the graph in Figure 5 which consist of these vertice and edge,

then the catenary degree of β1 = 18α +6 is 3α +1.

(0,3,0) (3α +1,0,0)3α +1

FIGURE 5. The catenary graph of β1 = 18α +6 with factorizations (0,3,0) and

(3α +1,0,0)

ii) Now, we will find the catenary degree of β2.

a) From Theorem 3.5, if 6α+2<m≤ 9α+3 and 3|m, then the factorizations of β2 =

18α + 6 are (9α+3−m
3 ,0,2), (3α + 1,0,0) and (0,3,0). In this case, the distances

of the edges between these factorizations are found as follows:

gcd{(9α +3−m
3

,0,2),(3α +1,0,0)}= (0,0,0)

gcd{(0,3,0),(3α +1,0,0)}= (0,0,0)

gcd{(9α +3−m
3

,0,2),(0,3,0)}= (0,0,0)

and

dist{(9α +3−m
3

,0,2),(3α +1,0,0)}= m
3

dist{(0,3,0),(3α +1,0,0)}= 3α +1

dist{(9α +3−m
3

,0,2),(0,3,0}= 3+3α− m
3

When each vertex is labeled with one of the factorizations of β2 = 18α + 6 and

each edge is labeled with distance between the factorizations of β2 = 18α +6 at ei-

ther end, we get Figure 6. Thus, if we draw the graph in Figure 6, which consist of

these vertices and edges, then the catenary degrees of β2 = 18α +6 is
m
3

. Because

3α +1 >
m
3
≥ 3+3α− m

3
for all α ∈ N and m ∈ No.
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(3α +1,0,0) (0,3,0)

3α +1

(9α+3−m
3 ,0,2)

m
3 3+3α− m

3

(a)
(3α +1,0,0)

(0,3,0)

(9α+3−m
3 ,0,2)

m
3 3+3α− m

3

(b)

FIGURE 6. The catenary graph of β2 = 18α + 6 with factorizations

(9α+3−m
3 ,0,2), (3α +1,0,0) and (0,3,0)

b) From Theorem 3.5, we know that the factorizations of β2 = 18α + 6 are (3α +

1,0,0) and (0,3,0) if other cases. The proof is as in item i)-b). Namely, the cate-

nary degrees of β2 = 18α +6 is 3α +1.

iii) Finally, we will find the catenary degree of β3. From Theorem 3.5, the factorizations of

β3 = 2m are (0,0,2) and (m−k·(3α+1)
3 ,k,0) for k≤ m

3α+1 , 3|m−k ·(3α+1) and k ∈N. In

this case, the distances of the edges between these factorizations are found as follows:

Since there will be an edge for every nonnegative integer k, let’s show that the edge

corresponding to each ki with ai such that ai = (m−ki·(3α+1)
3 ,ki,0) for i ∈ {1,2, . . . ,n}.

Where k1 < k2 < · · ·< kn

gcd{ai,(0,0,2)}= (0,0,0)

and

dist{ai,(0,0,2)}=
m− ki · (3α +1)

3
+ ki =

m− ki · (3α−2)
3

Let i ∈ {1,2, . . . ,n−1} and j ∈ {2,3, . . . ,n} such that i < j.

gcd{ai,a j}= (
m− k j · (3α +1)

3
,ki,0)

and

dist{ai,a j}= max{|
(k j− ki) · (3α +1)

3
|, |k j− ki|}

It is clear that k j = k1 +3( j−1) and | (k j−ki)(3α+1)
3 |> |k j− ki|. Thus,

dist{ai,a j}=
(k j− ki) · (3α +1)

3
.
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The following equations can easily be seen from these obtained above:

min{dist{a1,(0,0,2)},dist{a2,(0,0,2)}, . . . ,dist{an,(0,0,2)}}= min{m− k1 · (3α−2)
3

,

m− k2 · (3α−2)
3

, . . . ,
m− kn · (3α−2)

3
}= m− kn · (3α−2)

3
= dist{an,(0,0,2)}

for i ∈ {1,2, . . . ,n}

min{dist{ai,a1},dist{ai,a2}, . . . ,dist{ai,ai−1},dist{ai,ai+1}, . . . ,dist{ai,an}}=

min{|(ki− k1) · (3α +1)
3

|, |(ki− k2) · (3α +1)
3

|,

. . . , |(ki− ki−1) · (3α +1)
3

|, |(ki+1− ki) · (3α +1)
3

|,

. . . , |(kn− ki) · (3α +1)
3

|}= |(ki− ki−1) · (3α +1)
3

|

= |(ki+1− ki) · (3α +1)
3

|= [(k1 +(i−1)3)− (k1 +(i−1−1)3)] · (3α +1)
3

=
[(k1 +(i+1−1)3)− (k1 +(i−1)3)] · (3α +1)

3
= 3α +1

When each vertex is labeled with one of the factorizations of β3 = 2m and each edge

is labeled with distance between the factorizations of β3 = 2m at either end, we get

Figure 7(a). If vertices with maximal length are removed from the connected graph

in Figure 7(a), then Figure7(b) is obtained. So, the catenary degree of β3 = 2m is

max
(

3α +1, m−kn(3α−2)
3

)
, where kn = max{k} for 3|m− k(3α + 1), k ≤ m

3α+1 and

k ∈ N.

(0,0,2) a1

ai−1

aiai+1

an

(a)
(0,0,2) a1

a2

aian−1

an

(b)

m−kn·(3α−2)
3

3α +1

3α +1

FIGURE 7. The catenary graph of β3 = 2m
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�

Corollary 3.7. Let S be a member of the telescopic numerical semigroup family ∏ given in

Theorem 2.3. The catenary degrees of S are as follows:

c(S) = max{3α +1,
m−max{k} · (3α−2)

3
}

for 3|m− k(3α +1), k ≤ m
3α+1 and k ∈ N.

Example 3.8. Let S= 〈6,14,21〉 ∈∏. Then β1 = β2 = β3 = 42. The factorizations of β1 = β2 =

β3 = 42 are (7,0,0), (0,0,3) and (0,0,2). Also, c(β1) = c(β2) = c(β3) = 7. Thus, c(S) = 7.

Theorem 3.9. Let S be a member of the telescopic numerical semigroup family Ω given in

Theorem 2.3 such that β1 = β2 = 12α + 6 and β3 = 2n be Betti elements of the numerical

semigroup S. In this case, the factorizations of β1 = β2 = 12α+6 are (2α+1,0,0) and (0,2,0);

the factorizations of β3 = 3n are (n−k·(2α+1)
2 ,k,0) and (0,0,3) for k≤ n

2α+1 and 2|n−k · (2α +

1) for k ∈ N.

Proof. The Betti elements of the numerical semigroup S, which is a member of the telescopic

numerical semigroup family Ω given in Theorem 2.3, are β1 = β2 = 12α + 6 and β3 = 3n

in the proof of Theorem 2.6. Let’s find the factorizations of β1 = β2 = 12α + 6. We write

β1 = β2 = 12α +6 = 6x1 +(6α +3)x2 +nx3 (x1,x2,x3 ∈N). In this case, it should be x3 = 0

or x3 = 1 since x3 > 6α +3. If x3 = 0, then the equality 12α +6 = 6x1+(6α +3)x2 is obtained.

Hence, x2 = 2− 2x1
2α+1 . And since x1,x2 ∈N, x1 = 0 or x1 = 2α+1. Therefore, if x3 = 0, then the

factorizations of β1 = β2 = 12α +6 are (2α +1,0,0) and (0,2,0). If x3 = 1, then the equality

12α +6 = 6x1 +(6α +3)x2 +n is obtained. In this case, x2 = 2− 6x1+n
6α+3 . And since x1,x2 ∈ N,

it is obtained that (6α + 3)|(6x1 + n). But this contradicts 3 - n. Thus, any factorizations of

β1 = β2 = 12α +6 can not be found for x3 = 1.

Now let’s find the factorizations of β3 = 3n. We write β3 = 3n = 6x1 + (6α + 3)x2 +

nx3 (x1,x2,x3 ∈ N). In this case, x3 is equal to 0,1,2, or 3. If x3 = 0, then the equal-

ity 3n = 6x1 + (6α + 3)x2. Hence, x2 = n−2x1
2α+1 and x1 = n−k·(2α+1)

2 . Since x1,x2 ∈ N, x2 ≤
n

2α+1 and 2|n− k · (2α + 1) for x2 = k ∈ N. Thus, one of the factorizations of β3 = 3n is

(n−k·(2α+1)
2 ,k,0) for k ∈ N and k ≤ n

2α+1 . If x3 = 1, then 2n = 6x1 +(6α + 3)x2. Thus, we
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write n = 3(x1 +αx2 +
x2
2 ). But this expression contradicts 3 - n for n ∈ N. If x3 = 2, then the

equality n = 6x1 +(6α +3)x2 is obtained. We can write that n = 3(2x1 +(2α +1)x2). But this

expression contradicts 3 - n for n ∈ N, too. If x3 = 3, then the equality 0 = 6x1 +(6α + 3)x2

is obtained. Hence, it is clear that x1 = x2 = 0. Thus, in the case of x3 = 3, the other of the

factorizations of β3 = 3n is (0,0,3). �

Theorem 3.10. Let S be a member of the telescopic numerical semigroup family Ω given in

Theorem 2.3. The catenary degree of Betti elements of S is following that:

i) c(β1) = c(β2) = c(12α +6) = 2α +1

ii) c(β3) = c(2n) =max{2α+1, n−max{k}n−k·(2α+1)(2α−1)
2 } for k≤ n

2α+1 , 2|n−k ·(2α+1)

and k ∈ N

Proof. Assume that S is a member of the telescopic numerical semigroup family Ω given in

Theorem 2.3. From the proof of Theorem 2.6, we know the Betti element of the numerical

semigroup S. Moreover, the factorizations of the Betti elements of S is given in Theorem 3.9.

i) we will find the catenary degree of β1 = β2 = 12α +6. The length of the edge between these

factorizations is found as

gcd{(2α +1,0,0),(0,2,0)}= (0,0,0),

dist{(2α +1,0,0),(0,2,0)}= 2α +1.

The factorization points that we found are vertices and the path that are connecting these ver-

tices are edges. Hence, if we draw the graph in Figure 8, which consists of these vertices and

edge, the catenary degree of β1 is 2α +1.

(2α +1,0,0) (0,2,0)2α +1

FIGURE 8. The catenary graph of β1 = β2 = 12α +6

ii) We will find the catenary degree of β3 = 3n. The factorizations of β3 = 3n are (n−k·(2α+1)
2 ,k,0)

and (0,0,3) for k≤ n
2α+1 and 2|n−k ·(2α +1) for k ∈N. In this case, the distances of the edges

between these factorizations are found as follows:
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Since there will be an edge for every nonnegative integer k, let’s show that the edge cor-

responding to each ki with ai such that ai = (n−ki·(2α+1)
2 ,ki,0) for i ∈ {1,2, . . . ,n}. Where

k1 < k2 < · · ·< kn

gcd{ai,(0,0,3)}= (0,0,0)

and

dist{ai,(0,0,3)}=
n− ki · (2α +1)

2
+ ki =

n− ki · (2α−1)
2

Let i ∈ {1,2, . . . ,n−1} and j ∈ {2,3, . . . ,n} such that i < j.

gcd{ai,a j}= (
n− k j(2α +1)

2
,ki,0)

and

dist{ai,a j}= max{|
(k j− ki)(2α +1)

2
|, |k j− ki|}=

(k j− ki)(2α +1)
2

The following equations are resulted from those obtained above:

for i ∈ {1,2, . . . ,n}.

min{dist{a1,(0,0,3)},dist{a2,(0,0,3)}, . . . ,dist{an,(0,0,3)}}= min{n− k1 · (2α−1)
2

,

n− k2 · (2α−1)
2

, . . . ,
n− kn · (2α−1)

2
}= n− kn · (2α−1)

2
= dist{an,(0,0,3)}

and

min{dist{ai,a1},dist{ai,a2}, . . . ,dist{ai,ai−1},dist{ai,ai+1}, . . . ,dist{ai,an}}=

min{|(ki− k1)(2α +1)
2

|, |(ki− k2)(2α +1)
2

|, . . . , |(ki− ki−1)(2α +1)
2

|, |(ki− ki+1)(2α +1)
2

|,

. . . , |(kn− ki)(2α +1)
2

|}= |(ki− ki−1)(2α +1)
2

|= |(ki+1− ki)(2α +1)
2

|

= 2α +1 = dist{ai,ai−1}= dist{ai,ai+1}

When each vertex is labeled with one of the factorizations of β3 = 2n and each edge is labeled

with distance between the factorizations of β3 = 2n at either end, we get Figure 9 (a). If vertices

with maximal length are removed from the connected graph in Figure 9 (a), then Figure9 (b) is

obtained. Thus, the catenary degree of β3 = 2n is max{(2α +1, n−max{k}(2α−1)
2 )}.
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(0,0,2) a1

ai−1

aiai+1

an

(a) (0,0,3) a1

a2

aian−1

an

(b)

m−kn·(2α−1)
2

2α +1

2α +1

FIGURE 9. The catenary graph of β3 = 2n

�

Corollary 3.11. Let S be a member of the telescopic numerical semigroup family Ω given in

Theorem 2.3. The catenary degree of S is following that:

c(S) = max
(

2α +1,
n−max{k} · (2α−1)

2

)
for k ≤ n

2α+1 , 2|n− k · (2α +1) and k ∈ N.

Example 3.12. Let S= 〈6,27,83〉 ∈Ω. Then β1 = β2 = 54 and β3 = 249. The factorizations of

β1 = β2 = 54 are (9,0,0) and (0,0,2); the factorizations of β3 = 249 are (37,1,0), (28,3,0),

(19,5,0), (10,7,0), (1,9,0) and (0,0,3). However, c(β1) = c(β2) = c(54) = 9 and c(β3) =

c(249) = 10. Thus, c(S) = 10.

Theorem 3.13. Let S be a member of the telescopic numerical semigroup family Ψ given in

Theorem 2.3 such that β1,β2 and β3 be Betti elements of the numerical semigroup S. In this

case,

i) If 6α+4< p≤ 9α+6 and 3|p, then the factorizations of β1 are (0,0,2) and ( p−k·(3α+2)
3 ,k,0)

for k ≤ p
3α+2 , 3|p− k · (3α + 2) and k ∈ N. If other, then the factorizations of β1 are

(3α +2,0,0) and (0,3,0).

ii) If 6α+4< p≤ 9α+6 and 3|p, then the factorizations of β2 = 18α+12 are ( (9α+6−p)
3 ,0,2),

(3α +2,0,0) and (0,3,0). If other, then the factorizations of β2 are (3α +2,0,0) and

(0,3,0).
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iii) The factorizations of β3 = 2p are ( p−k·(3α+2)
3 ,k,0) and (0,0,2) for k ≤ p

3α+2 , 3|p− k ·

(3α +2) and k ∈ N.

Proof. The Betti elements of the numerical semigroup S, which is a member of the telescopic

numerical semigroup family Ψ given in Theorem 2.3, are β1,β2 and β3 in the proof of Theorem

2.6.

i) Firstly, we will find the factorizations of β1.

a) If 6α + 4 < p ≤ 9α + 6 and 3|p, then the factorizations of β1 = 2p. We write

β1 = 2p = 6x1 +(6α +4)x2 + px3 (x1,x2,x3 ∈ N). In this case, it clear that x3 is

one of 0,1 or 2. If x3 = 0, then x1 =
p−(3α+2)·x2

3 , x2 =
p−3x1
3α+2 , since x1 and x2 are

nonnegative integers, x2 = k ∈ N such that 3|p− k · (3α +2) and k ≤ p
3α+2 . Thus,

If x3 = 0, then the factorization of β3 = 2p is ( p−k·(3α+2)
3 ,k,0). If x3 = 1, then the

equation p = 6x1 +(6α + 4)x2 is obtained. But this contradicts that p is an odd

integer. If x3 = 2, then we write 0 = 6x1+(6α +4)x2. Hence, it is clear that x1 = 0

and x2 = 0. Thus, the factorization of β1 = 2p is (0,0,2).

b) If 6α +4 < p≤ 9α +6 and 3|p, then the factorizations of β1 = 18α +12. We write

Thus, β1 = 18α +12 = 6x1 +(6α +4)x2 + px3 (x1,x2,x3 ∈ N). Since 18α +12

is a nonnegative even integer, x3 must be a positive even integer, too. Furthermore,

since p > 6α +4 it should be x3 = 0 or x3 = 2. If x3 = 0, then x2 = 3− 3x1
3α+2 . Since

x1,x2 ∈ N, x1 = 0 or x1 = 3α + 2. Therefore, if x3 = 0, then the factorizations of

β1 = 18α +12 are (3α +2,0,0) and (0,3,0). If x3 = 2, then x2 = 3− 3x1+p
3α+2 . Since

x1,x2 ∈ N, the fraction 3x1+p
3α+2 is one of 0,1,2, or 3. If 3x1+p

3α+2 = 0, then p = −3x1.

But this statement contradicts the acceptance of x1 and p. If 3x1+p
3α+2 = 1, then x1 =

3− (3α+2)−p
3 . But since p > 6α + 4, x1 /∈ N is a contradiction. If 3x1+p

3α+2 = 2 and
3x1+p
3α+2 = 3, then the similar contradiction is obtained.

ii) We will find the factorizations of β2 = 18α+12. We write β2 = 18α+12= 6x1+(6α+

4)x2+ px3 (x1,x2,x3 ∈N). Since 18α +12 is a nonnegative even integer, x3 must be a

positive even integer, too. Furthermore, since p > 6α +4 it should be x3 = 0 or x3 = 2.

If x3 = 0, then x2 = 3− 3x1
3α+2 . Since x1,x2 ∈ N, x1 = 0 or x1 = 3α + 2. Therefore, if

x3 = 0, then the factorizations of β1 = 18α+12 are (3α+2,0,0) and (0,3,0). If x3 = 2,
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then x2 = 3− 3x1+p
3α+2 . Since x1,x2 ∈N, the fraction 3x1+p

3α+2 is one of 0,1,2, or 3. When the

fraction 3x1+p
3α+2 is one of 0,1, or 2. If 3x1+p

3α+2 = 3, then x1 =
(9α+6)−p

3 . So, x1 ∈ N if and

only if 6α +4 < p ≤ 9α +6 and 3|p. Thus, if 6α +4 < p ≤ 9α +6 and 3|p, then the

factorizations of β2 = 18α +12 is ( (9α+6−p)
3 ,0,2).

iii) Now let’s find the factorizations of β3 = 2p. We write β3 = 2p = 6x1 +(6α + 4)x2 +

px3 (x1,x2,x3 ∈N). In this case, it is clear that x3 is one of 0,1 or 2. If x3 = 0, then x1 =

p−(3α+2)x2
3 and x2 =

p−3x1
3α+2 . Since x1 and x2 are nonnegative integers, x2 = k ∈ N such

that 3|p− k · (3α +2) and k ≤ p
3α+2 . Thus, If x3 = 0, then the factorization of β3 = 2p

is ( p−k·(3α+2)
3 ,k,0). If x3 = 1, then the equation p = 6x1 +(6α +4)x2 is obtained. But

this contradicts that p is an odd integer. If x3 = 2, then we write 0 = 6x1 +(6α +4)x2.

Hence, it is clear that x1 = 0 and x2 = 0. Thus, the factorization of β3 = 2p is (0,0,2).

�

Theorem 3.14. Let S be a member of the telescopic numerical semigroup family Ψ given in

Theorem 2.3. The catenary degree of S is following that:

i)

c(β1) =


p
3

if 6α +4 < p≤ 9α +6 and 3|p

3α +2 if other

ii)

c(β2) =


p
3

if 6α +4 < p≤ 9α +6 and 3|p

3α +2 if other

iii) c(β3) = max{3α +2, p−max{k}·(3α−1)
3 } for k ≤ p

3α+2 , 3|p− k · (3α +2) and k ∈ N.

Proof. Assume that S is a member of the telescopic numerical semigroup family Ψ given in

Theorem 2.3. From the proof of Theorem 2.6, we know the Betti element of the numerical

semigroup S. Moreover, the factorizations of the betti elements of S are given in Theorem 3.13.

i) We will find the catenary degree of β1.

a) From Theorem 3.13, 6α +4 < p≤ 9α +6 and 3|p, then the factorizations of β1 =

2p are ( p−k·(3α+2)
3 ,k,0) and (0,0,2) for k ≤ p

3α+2 , 3|p− k · (3α + 2) and k ∈ N.

If 6α + 4 < p < 9α + 6 and 3|p, then k = 0. Thus, then the factorizations of
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β1 = 2p are (0,0,2) and ( p
3 ,0,0). If p = 9α +6, then k = 0 or k = 3. Accordingly,

the factorizations of β1 = 2p are (0,0,2), (0,3,0) and ( p
3 ,0,0). In this case, the

lengths of the edges between these factorizations are as follows:

gcd{(0,0,2),( p
3
,0,0)}= (0,0,0)

gcd{(0,0,2),(0,3,0)}= (0,0,0)

gcd{(0,3,0),( p
3
,0,0)}= (0,0,0)

and

dist{(0,0,2),( p
3
,0,0)}= p

3

dist{(0,0,2),(0,3,0)}= 3

dist{(0,3,0),( p
3
,0,0)}= p

3

When each vertex is labeled with one of the factorizations of β1 = 2p and each

edge is labeled with distance between the factorizations of β1 = 2p at either end,

we get Figure 10 and Figure 11. Hence, if we draw the graphs in Figure 10 and

Figure 11 which consist of these vertices and edges, then the catenary degree of

β1 = 2p is
p
3

.

When 6α +4 < p < 9α +6 and 3|p, we get Figure 10

(0,0,2) (
p
3
,0,0)

p
3

FIGURE 10. The catenary graph of β1 = 2p with factorizations (0,0,2) and (
p
3
,0,0)

When p = 9α +6, we get Figure 11
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(0,3,0) (0,0,2)

3

(
p
3
,0,0)

p
3

p
3

(a)

(0,3,0) (0,0,2)

(
p
3
,0,0)

p
3

p
3

(b)

FIGURE 11. The catenary graph of β1 = 2p with factorizations (0,0,2), (0,3,0)

and (
p
3
,0,0)

b) From Theorem 3.13, if other, then the factorizations of β1 = 18α + 12 are (3α +

2,0,0) and (0,3,0). In this case, the lengths of the edges between these factoriza-

tions are as follows:

gcd{(3α +2,0,0),(0,3,0)}= (0,0,0)

and

dist{(3α +2,0,0),(0,3,0)}= 3α +2.

When we draw the graph in Figure 12 which is constituted by edges these connect

vertices points, the catenary degree of β1 is 3α +2.

(3α +2,0,0) (0,3,0)3α +2

FIGURE 12. The catenary graph of β1 = 18α + 12 with factorizations (3α +

1,0,0) and (0,3,0)

ii) We will find the catenary degree of β2 = 18α +12.

a) If 6α + 4 < p ≤ 9α + 6 and 3|p, then the factorizations of β2 = 18α + 12 are

( (9α+6−p)
3 ,0,2), (3α + 2,0,0) and (0,3,0). In this case, the lengths of the edges

between these factorizations are as follows:

gcd{((9α +6− p)
3

,0,2),(3α +2,0,0)}= (
(9α +6− p)

3
,0,0)
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dist{((9α +6− p)
3

,0,2),(3α +2,0,0)}= p
3

and

gcd{((9α +6− p)
3

,0,2),(0,3,0)}= (0,0,0)

dist{((9α +6− p)
3

,0,2),(0,3,0)}= 4+3α− p
3

and

gcd{(3α +2,0,0),(0,3,0)}= (0,0,0)

dist{(3α +2,0,0),(0,3,0)}= 3α +2.

When each vertex is labeled with one of the factorizations of β2 = 18α + 12 and

each edge is labeled with distance between the factorizations of β2 = 18α + 12 at

either end, we get Figure 13 (a). Hence, if we draw the graph in Figure 13 (a),

which consists of these vertices and edges, the catenary degree of β2 = 18α +12 is
p
3 by Figure 13 (b). Because 3α +2≥ p

3 > 4+3α− p
3 for all α ∈ N and p ∈ No.

(3α +2,0,0) (0,3,0)

3α +2

(
(9α+6−p)

3 ,0,2
)

p
3 4+3α− p

3

(a)
(3α +2,0,0)

(0,3,0)

(
(9α+6−p)

3 ,0,2
)

p
3 4+3α− p

3

(b)

FIGURE 13. The catenary graph of β2 = 18α + 12 with factorizations

( (9α+6−p)
3 ,0,2), (3α +2,0,0) and (0,3,0)

b) If other, then the factorizations of β2 = 18α +12 are (3α +2,0,0) and (0,3,0) by

Theorem 3.13. In this case, the length of the edge between these factorizations is

found as

gcd{(3α +2,0,0),(0,3,0)}= (0,0,0)
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dist{(3α +2,0,0),(0,3,0)}= 3α +2.

When we draw the graph in Figure 14 which is constituted by edges these connect

vertices points, the catenary degree of β2 is 3α +2.

(3α +2,0,0) (0,3,0)3α +2

FIGURE 14. The catenary graph of β1 = 18α + 12 with factorizations (3α +

1,0,0) and (0,3,0)

iii) Finally, we will find catenary degree β3 = 2p. The factorizations of β3 = 2p are

( p−k·(3α+2)
3 ,k,0) and (0,0,2) for k ≤ p

3α+2 , 3|p− k · (3α + 2) and k ∈ N by Theorem

3.13. Thus, in this case, the length of the edge between these factorizations is found as:

Since there will be an edge for every nonnegative integer k, let’s show that the edge

corresponding to each ki with ai such that ai = ( p−ki(3α−2)
3 ,ki,0) for i ∈ {1,2, . . . ,n}.

Where k1 < k2 < · · ·< kn

gcd{ai,(0,0,2)}= (0,0,0)

and

dist{ai,(0,0,2)}=
p− ki(3α +2)

3
+ ki =

p− ki(3α−1)
3

Let i ∈ {1,2, . . . ,n−1} and j ∈ {2,3, . . . ,n} such that i < j.

gcd{ai,a j}= (
p− k j(3α +2)

3
,ki,0)

and

dist{ai,a j}= max{|
(k j− ki)(3α +2)

3
|, |k j− ki|}=

(k j− ki)(3α +2)
3
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The following equations are resulted from those obtained above:

for i ∈ {1,2, . . . ,n}.

min{dist{a1,(0,0,2)},dist{a2,(0,0,2)}, . . . ,dist{an,(0,0,2)}}= min{ p− k1(3α−1)
3

,

p− k2(3α−1)
3

, . . . ,
p− kn(3α−1)

3
}= p− kn(3α−1)

3
= dist{an,(0,0,2)}

and

min{dist{ai,a1},dist{ai,a2}, . . . ,dist{ai,ai−1},dist{ai,ai+1}, . . . ,dist{ai,an}}=

min{|(ki− k1)(3α +2)
3

|, |(ki− k2)(3α +2)
3

|, . . . , |(ki− ki−1)(3α +2)
3

|, |(ki− ki+1)(3α +2)
3

|,

. . . , |(kn− ki)(3α +2)
3

|}= |(ki− ki−1)(3α +2)
3

|= |(ki+1− ki)(3α +2)
3

|

= 3α +2 = dist{ai,ai−1}= dist{ai,ai+1}

When each vertex is labeled with one of the factorizations of β3 = 2p and each edge is

labeled with distance between the factorizations of β3 = 2p at either end, we get Fig-

ure 15(a). If vertices with maximal length are removed from the connected graph in

Figure 15(a), then Figure15(b) is obtained. Thus, the catenary degree of β3 = 2p is

max
(

3α +2, p−max{k}(3α−1)
3

)
for k ≤ p

3α+2 , 3|p− k · (3α +2) and k ∈ N.

(0,0,2) a1

ai−1

aiai+1

an

(a)
(0,0,2) a1

a2

aian−1

an

(b)

p−max{k}(3α−1)
3

3α +2

3α +2

FIGURE 15. The catenary graph of β3 = 2p

�
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Corollary 3.15. Let S be a member of the telescopic numerical semigroup family Ψ given in

Theorem 2.3. The catenary degree of S is following that:

c(S) = max
(

3α +2,
p−max{k} · (3α−1)

3

)
for k ≤ p

3α+2 , 3|p− k · (3α +2) and k ∈ N.

Example 3.16. Let S = 〈6,34,39〉 ∈Ψ. Then β1 = β3 = 78 and β2 = 102. The factorizations

of β1 = β3 = 78 are (13,0,0) and (0,0,2); the factorizations of β2 = 102 are (17,0,0), (4,0,2)

and (0,0,3). However, c(β1) = c(β2) = c(β3) = 13. Thus, c(S) = 13.
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