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Abstract. Representation of a semigroup has to do with obtaining a homomorphism that maps the semigroup into 

the full transformation semigroup. The representation is said to be faithful when it is an embedding. It is an existing 

result that ample monoid is embeddable into an inverse semigroup. This result has been extended to translational 

hulls and, in effect, a faithful representation of translational hull of ample semigroup is also an existing result. This 

faithful representation will be called categorical if we can establish that it is a class consisting of systems of the 

same type, referred to as objects and between any pair of objects 𝐴 and 𝐵 in the class, there are arrows 𝑓: 𝐴 → 𝐵 

and each arrow is a structure preserving map referred to as morphism. In this paper, therefore, we want to carry out 

categorical analysis of faithful representation of translational hull of ample semigroup. The commutative diagrams 

of the faithful representation of translational hull of ample semigroups shall be very useful tools in the analysis. 
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1.   INTRODUCTION AND PRELIMINARIES 

Let 𝑋  be a set, and denote by 𝑇𝑋  the set of all functions 𝛼 ∶  𝑋 →  𝑋 . 𝑇𝑋   is called the 

full transformation semigroup  on 𝑋 with the operation of composition of functions. A 
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homomorphism 𝜙: 𝑆 → 𝑇𝑋  is a representation  of the semigroup 𝑆 . We say that 𝜙  is a 

faithful representation, if it is an embedding.  

It is well known from [16] that the set of all partial one-one maps of any non-empty set 𝑋 is an 

inverse semigroup and it is called symmetric inverse semigroup usually denoted by 𝔗𝑋 .   

 Let  𝑎, 𝑏 be elements of a semigroup  𝑆, we  define  𝑎 ℛ∗𝑏  if and only if for all 𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 =

𝑦𝑎 ⇔ 𝑥𝑏 = 𝑦𝑏. Dually we define the relation ℒ∗. Let 𝑆 be a semigroup and 𝑎 𝜖 𝑆. The elements 

 𝑎†( resp.  𝑎∗) will denote an idempotent element in  ℛ∗( resp.  ℒ∗)-class  𝑅𝑎
∗  (resp.  𝐿𝑎

∗ ).  

A semigroup  𝑆 with a semilattice of idempotents  𝐸(𝑆) is said to be an adequate semigroup if 

each ℛ∗-class and ℒ∗-class contain an idempotent.  

With  𝐸(𝑆) being a semilattice such an idempotent is unique. A left adequate semigroup is said 

to be a left ample (formerly left type A) if for all  𝑒 𝜖 𝐸(𝑆) and 𝑎 𝜖 𝑆, 𝑎𝑒 = (𝑎𝑒)†𝑎  (see [9]) 

and dually for right ample (formerly right type A) semigroups. A semigroup  𝑆 is said to be an 

ample (formerly a type A) semigroup if it is both left and right type ample. For more results on 

ample semigroups, see [6], [7], [10], [14], [17] and [18].  

It is important to note that from Fountain [9] that every ample semigroup is essentially a special 

subsemigroup of an inverse semigroup through an embedding, thus several results in ample 

semigroups are analogous to those of an inverse semigroup. In fact, Offor et al [22] extended this 

embedding to translational hulls. Other results for translational hulls of a semigroup exist in the 

literature, for example, see [5], [12], [13], [21], [23], [24], [25] and [26]. 

A map 𝜆 from a semigroup 𝑆  to itself is a left translation of 𝑆  if for all elements  𝑎, 𝑏 ∈ 𝑆 , 

𝜆(𝑎𝑏) = (𝜆𝑎)𝑏. A map 𝜌  from a semigroup 𝑆  to itself is a right translation of 𝑆  if (𝑎𝑏)𝜌 =

𝑎(𝑏𝜌)  for all elements 𝑎, 𝑏 ∈ 𝑆.  A left translation 𝜆  and a right translation 𝜌  are linked if 

𝑎(𝜆𝑏) = (𝑎𝜌)𝑏 for all  𝑎, 𝑏 ∈ 𝑆. The set of all linked pairs (𝜆, 𝜌) of left and right translations is 

called the translational hull  of 𝑆  and it is denoted by 𝛺(𝑆) . We denote the set of all the 

idempotents of 𝛺(𝑆) by 𝐸𝛺(𝑆).  The set of the left translations of 𝑆 is denoted by 𝛬(𝑆) and the set 

of the right translations of 𝑆 is denoted by 𝛲(𝑆).  𝛺(𝑆) is a subsemigroup of the direct product 

𝛬(𝑆) × 𝛲(𝑆) . For (𝜆, 𝜌)(𝜆′, 𝜌′)  ∈ 𝛺(𝑆)  , the multiplication is given by (𝜆, 𝜌)(𝜆′, 𝜌′) =

 (𝜆𝜆′, 𝜌𝜌′) where 𝜆𝜆′ denotes the composition of the left maps 𝜆 and 𝜆′ (that is, first 𝜆′ and then 𝜆) 

and 𝜌𝜌′ denotes the composition of the right maps 𝜌 and 𝜌′ (that is, first 𝜌 and then 𝜌′). For each 

𝑎  in 𝑆 , there is a linked pair (𝜆𝑎, 𝜌𝑎)  within 𝛺(𝑆) defined by 𝜆𝑎𝑥 = 𝑎𝑥  and  𝑥𝜌𝑎 = 𝑥𝑎, and 

called the inner part of 𝛺(𝑆) and for all 𝑎, 𝑏 ∈ 𝑆, the following is obvious (𝜆𝑎, 𝜌𝑎)(𝜆𝑏 , 𝜌𝑏) =
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 (𝜆𝑎𝑏 , 𝜌𝑎𝑏) . 𝑎 ↦ (𝜆𝑎, 𝜌𝑎)  is a map of 𝑆  into 𝛺(𝑆) is denoted by 𝛱𝑆 .  𝛱𝑆(𝑆) = {(𝜆𝑎, 𝜌𝑎)│𝑎 ∈

𝑆, 𝜆𝑎𝑥 = 𝑎𝑥, 𝑥𝜌𝑎 = 𝑥𝑎, ∀𝑥 ∈ 𝑆}  

Theorem 1.2 [1]: Translational hull of an inverse semigroup is an inverse semigroup.  

For (𝜆, 𝜌) ∈ 𝛺(𝑆), the inverse (𝜆, 𝜌)−1 is denoted by (𝜆−1, 𝜌−1) and satisfies the property  that 

  𝜆−1𝑥 =  (𝑥−1𝜌)−1 ,   and   𝑥𝜌−1 = (𝜆𝑥−1 )−1∀𝑥 ∈ 𝑆 

Lemma 1.3:  Let 𝑆 be a type 𝐴semigroup. 𝜆 , 𝜆′ (𝜌 , 𝜌′ )  are left (right) translations of 𝑆 whose 

restrictions to the set of idempotents of 𝑆 are equal, then  𝜆 = 𝜆′ (𝜌 = 𝜌′). 

If 𝛺(𝑆)   is adequate, and (𝜆 , 𝜌) is an element of 𝛺(𝑆) , then (𝜆∗, 𝜌∗)  denotes the unique 

idempotent in the ℒ∗-class of (𝜆 , 𝜌),and (𝜆†, 𝜌†) denotes the unique idempotent in the ℛ∗-class 

of (𝜆 , 𝜌). 

For 𝑒 ∈ 𝐸(𝑆),  𝜆†𝑒 =  (𝜆𝑒)†;  𝜆∗𝑒 = (𝜆𝑒)∗ ;  𝑒𝜌†  = (𝑒𝜌)† ;  𝑒𝜌∗  =  (𝑒𝜌)∗ 

𝜆†, 𝜆∗, 𝜌†, 𝜌∗satisfy the following properties ;   

For  𝑎 ∈ 𝑆,  𝜆†𝑎 = (𝑎†𝜌)†𝑎 ;   𝜆∗𝑎 = (𝜆𝑎†)∗𝑎 ;  𝑎𝜌† = 𝑎(𝑎∗𝜌)† ;     𝑎𝜌∗ = 𝑎(𝜆𝑎∗)∗ 

We notice from the definition that 𝜆†𝑒, 𝜆∗𝑒, 𝑒𝜌†  and  𝑒𝜌∗ are idempotents. We also note the 

following: 

i. 𝜆†𝑒 =  (𝑒𝜌)†𝑒     from the definition 

              = 𝑒(𝑒𝜌)†      idempotents commute 

                   = 𝑒(𝑒∗𝜌)† 

              = 𝑒𝜌†           by definition. 

ii.     𝜆∗𝑒 = (𝜆𝑒)∗𝑒       by definition 

                     = 𝑒(𝜆𝑒)∗      commutativity of idempotents 

                     =  𝑒𝜌∗          by definition. 

In particular therefore, 𝜆†𝑏†  and  𝑎∗𝜌† are idempotent of 𝑆. 

    Theorem 1.4 [11]  The translational hull of an ample semigroup is ample. 

The set of left translations is denoted by 𝛬(𝑆)  and right translations by 𝛤(𝑆). The left and the 

right translations are assumed linked.    𝛤𝑆: 𝑎 ↦ 𝜆𝑎 , and 𝛤(𝑆) = {𝜆𝑎: 𝑎 ∈ 𝑆}. 𝛥𝑆: 𝑎 ↦ 𝜌𝑎  and 

𝛥(𝑆)  = {𝜌𝑎: 𝑎 ∈ 𝑆}. 

Theorem 1.5 [2].  Given an ample monoid 𝑆 , there are inverse semigroups 𝑆1, 𝑆2 , and 

embeddings  𝜙1: 𝑆 → 𝑆1 , 𝜙2: 𝑆 → 𝑆2 , such that 𝜙1𝑎∗ = (𝜙1𝑎)∗ = (𝜙1𝑎)−1(𝜙1𝑎), 𝜙2𝑎† =
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(𝜙2𝑎)† = (𝜙1𝑎)(𝜙1𝑎)−1, and there are also embeddings  𝜓1: 𝛬(𝑆) → 𝛬(𝑆1),  𝜓2: 𝑃(𝑆) → 𝑃(𝑆2) 

such that each of the diagrams 

 

commutes  

and  𝜓1(𝜆∗) =  [𝜓1(𝜆)]∗ =  [𝜓1(𝜆)]−1𝜓1(𝜆),       𝜓2(𝜌†) =  [𝜓2(𝜌)]† =  𝜓2(𝜌)[𝜓2(𝜌)]−1. 

The theorem is proved through the following propositions and corollaries. Diagram (i) is dual to 

diagram (ii) and therefore every fact established about diagram (i) applies in dual manner to 

diagram (ii). 

 

Proposition 1.6. [9]. Given an ample monoid 𝑆 , there are inverse semigroups 𝑆1, 𝑆2 , and 

embeddings  𝜙1: 𝑆 → 𝑆1 , 𝜙2: 𝑆 → 𝑆2 , such that 𝜙1𝑎∗ = (𝜙1𝑎)∗ = (𝜙1𝑎)−1(𝜙1𝑎), 𝜙2𝑎† =

(𝜙2𝑎)† = (𝜙2𝑎)(𝜙2𝑎)−1. 

Corollary 1.7 [22]. If (𝑎, 𝑏) ∈ ℛ∗(𝑆), then [𝜙1(𝑎), 𝜙1(𝑏)] ∈ ℛ∗[𝜙1(𝑆)] 

Let 𝐻 be a subset of a semigroup 𝑆. The upper saturation 𝐻𝜔 of 𝐻 in 𝑆 is defined by:     

 𝐻𝜔 = {𝑠 ∈ 𝑆: (∃ℎ ∈ 𝐻) ℎ ≤ 𝑠}. 

Proposition 1.8 [22]. 𝜙1 preserves subsemigroups and upper saturations  

Lemma 1.9 [22]. For an inverse semigroup 𝑆1, 𝛤: 𝑎 ↦ 𝜆𝑎 is an isomorphism from 𝑆1onto 𝛤(𝑆1).  

Lemma 1.10 [22]. For an ample  semigroup 𝑆, 𝛤: 𝑎 ↦ 𝜆𝑎 is an isomorphism from 𝑆 onto 𝛤(𝑆). 

Corollary 1.11 [22]. For an inverse semigroup 𝑆1, 𝛥𝑆1
: 𝑎 ↦ 𝜌𝑎 is an isomorphism from 𝑆1 onto 

𝛥(𝑆1). Similarly, for an ample semigroup 𝑆, 𝛥𝑆: 𝑎 ↦ 𝜌𝑎 is an isomorphism from 𝑆 onto 𝛥(𝑆). 

Proposition 1.12 [22].  Given an ample monoid 𝑆, there are inverse semigroups 𝑆1, 𝑆2, and 

embeddings  𝜓1: 𝛬(𝑆) → 𝛬(𝑆1),    𝜓2: 𝑃(𝑆) → 𝑃(𝑆2) such that 𝜓1(𝜆∗) =  [𝜓1(𝜆)]∗ =

 [𝜓1(𝜆)]−1𝜓1(𝜆),  𝜓2(𝜌†) =  [𝜓2(𝜌)]† =  𝜓2(𝜌)[𝜓2(𝜌)]−1. 

 

𝜓1 

 

𝑆1 𝑆 

𝛬(𝑆) 𝛬(𝑆1) 

 

𝛤𝑆1
 𝛤𝑆 

𝜙1 

(i) 

𝜓2 

 

𝑆2 𝑆 

𝑃(𝑆) 𝑃(𝑆2) 

 

𝛥𝑆1
 𝛥𝑆 

𝜙2 

(ii) 
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Proposition 1.13 [22].  Each of the diagrams 

 

commutes. 

Proposition 1.14. [22]  𝜓1ₒ𝜓1
−1

 is an idempotent-separating congruence on 𝛤(𝑆) 

Proposition 1.15 [22]. 𝜓1 is a good homomorphism 

Proposition 1.16 [22]. 𝜓1: 𝛤(𝑆) → 𝛤(𝑆1) is a ∗-homomorphism 

Proposition 1.17 [22]. If 𝛿 is a congruence on 𝛤(𝑆), then 𝜓1(𝛿) is a congruence on 𝛤(𝑆1) 

Definition 1.18. 

- An ideal 𝐹 of a semilattice 𝐸 is called a 𝑃-ideal if the intersection of 𝐹 with any other principal 

ideal of the semigroup is a principal ideal. 

- A semigroup homomorphism 𝜓: 𝑆 → 𝑇 is called a 𝑃-homomorphism if 〈𝜓(𝐸𝑆)〉 is a 𝑃-ideal of 

𝐸𝑇.  

Theorem 1.19 [22]. If  𝜙1 and 𝛤𝑆1
 are 𝑃-homomorphisms, then so is the composition  𝜓1𝛤𝑆. 

 

2.  CATEGORY THEORY 

According to Hollings [15], category can be viewed in two versions which are indeed implicitly 

the same. Namely; the object – morphism version of category and the generalized monoid 

version of category. 

2.1.  The Object – Morphism Version of Category 

According to Asibong-Ibe [3], a category consists of  

- a class of objects (usually denoted by 𝑪- obj) 

- a set of morphisms between the objects in 𝑪 which are denoted by ℎ𝑜𝑚𝑪(𝐴, 𝐵) or simply 

ℎ𝑜𝑚 (𝐴, 𝐵) for morphisms between 𝐴 and 𝐵, satisfying the following conditions: 

 

𝜓1 

 

𝑆1 𝑆 

𝛬(𝑆) 𝛬(𝑆1) 

 

𝛤𝑆1
 𝛤𝑆 

𝜙1 

(i) 

𝜓2 

 

𝑆2 𝑆 

𝑃(𝑆) 𝑃(𝑆2) 

 

𝛥𝑆1
 𝛥𝑆 

𝜙2 

(ii) 
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i. for any set of objects 𝐴, 𝐵, 𝐶 ∈ 𝑪, the 𝑪-morphisms  𝑓 ∈ ℎ𝑜𝑚 (𝐴, 𝐵), 𝑔 ∈ ℎ𝑜𝑚 (𝐵, 𝐶) imply 

𝑔  ⃘𝑓 ∈ ℎ𝑜𝑚 (𝐴, 𝐶) 

ii. for each object 𝐴, an identity morphism 1𝐴 ∈ ℎ𝑜𝑚 (𝐴, 𝐴) 

iii. if 𝑓 ∈ ℎ𝑜𝑚 (𝐴, 𝐵) , 𝑔 ∈ ℎ𝑜𝑚 (𝐵, 𝐶)  and ℎ ∈ ℎ𝑜𝑚 (𝐶, 𝐷) , then ℎ  ⃘(𝑔  ⃘𝑓) = (ℎ   ⃘𝑔)  ⃘𝑓 ∈

ℎ𝑜𝑚 (𝐴, 𝐷) 

iv. for every object 𝐴, 1𝐴 ∈ ℎ𝑜𝑚 (𝐴, 𝐴) and 𝑓  ⃘1𝐴 = 𝑓, 1𝐵  ⃘𝑔 = 𝑔, for every 𝑓, 𝑔 ∈ ℎ𝑜𝑚 (𝐴, 𝐵). 

v. every distinct pair of 𝑪- objects has distinct set of morphisms. That is, if (𝐴, 𝐵) ≠ (𝐶, 𝐷), 

then ℎ𝑜𝑚 (𝐴, 𝐵) ∩ ℎ𝑜𝑚 (𝐶, 𝐷) = ∅ 

So, in a category, there must be a class consisting of systems of the same type, referred to as 

𝑜𝑏𝑗𝑒𝑐𝑡𝑠 and between any pair of objects 𝐴 and 𝐵 in the class, there must arrows 𝑓: 𝐴 → 𝐵 and 

each arrow is a structure preserving map referred to as morphism. 

2.2 Subcategory  

According to Asibong-Ibe [3], assuming 𝑫 is a subclass of a category 𝑪 such that each object in 

𝑫 is also a 𝑪- object. Then 𝑫 is a subcategory if  

i. for any pair of objects 𝐴, 𝐵 in 𝑫, each morphism  𝑓: 𝐴 → 𝐵 in 𝑫 is also a morphism in 𝑪 

ii. each object in 𝑫 has an identity morphisms in 𝑫 and  

iii. 𝑫 contains the product of its morphisms. That is, the products of 𝑫-morphisms 𝑓: 𝐴 → 𝐵 and 

𝑔: 𝐵 → 𝐶 which is 𝑔  ⃘𝑓: 𝐴 → 𝐶 is also a 𝑫-morphism.  

Reader is referred to [3], [4] and [8] for the numerous examples of category and other details. 

Right now, we are particularly interested in the following example as it will help to link us to the 

generalized monoid version of category. 

Example 2.2.1 [3] 

Define the object set in 𝑀 as elements of the underlying set 𝐴 of 𝑀 and between any objects 𝑎, 𝑏, 

is the monoid operation  ′′  ⃘′′. That is, for 𝑎, 𝑏 in object 𝑀, (𝑎, 𝑏) →  𝑎  ⃘𝑏. 

Thus, ((𝑎, 𝑏), 𝑐) → ((𝑎   ⃘ 𝑏), 𝑐) → (𝑎   ⃘ 𝑏)   ⃘ 𝑐 = 𝑎   ⃘ (𝑏   ⃘ 𝑐) = (𝑎, (𝑏, 𝑐)). 

Also 1𝐴 ∈ hom (𝐴, 𝐴) and 1𝐴 is the unit in 𝑀. 𝑎   ⃘1𝐴 = 1𝐴   ⃘ 𝑎 = 𝑎. 

Thus, 𝑀 is a category with object 𝐴 and morphism ′′  ⃘′′.  

2.3   The Generalized Monoid Version of Category 

Let 𝐶 be a class and ′′ ∙ ′′ be a partial binary operation on 𝐶. For 𝑥, 𝑦 ∈ 𝐶, we write ∃𝑥 ∙ 𝑦 if 𝑥 ∙

𝑦 ∈ 𝐶. An element 𝑒 ∈ 𝐶 is called an idempotent if ∃𝑒 ∙ 𝑒 and 𝑒 ∙ 𝑒 = 𝑒. The idempotents  𝑒 ∈ 𝐶 
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which satisfy the conditions that for 𝑥 ∈ 𝐶, ∃𝑒 ∙ 𝑥⇒𝑒 ∙ 𝑥 = 𝑥  and ∃𝑥 ∙ 𝑒⇒𝑥 ∙ 𝑒 = 𝑥, are called 

the identities of 𝐶. We denote the set identities of 𝐶 by 𝐶𝑜 . 

According to [15], the pair (𝐶,∙) is called a category if the following hold: 

i. ∃𝑥 ∙ (𝑦 ∙ 𝑧)⇔∃(𝑥 ∙ 𝑦) ∙ 𝑧  and in which case, 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧 

ii. ∃𝑥 ∙ (𝑦 ∙ 𝑧)⇔∃𝑥 ∙ 𝑦 and ∃𝑦 ∙ 𝑧 

iii. ∀𝑥 ∈ 𝐶, there exist unique identities 𝒅(𝑥), 𝒓(𝑥) ∈ 𝐶𝑜 such that ∃ 𝒅(𝑥) ∙ 𝑥  and ∃𝑥 ∙ 𝒓(𝑥) 

Whenever the partial multiplication in category (𝐶,∙) is clear, we simply refer to category 𝐶. The 

identity 𝒅(𝑥) is called the domain of 𝑥 and the identity  𝒓(𝑥) is called the range of 𝑥. Since 𝒅(𝑥), 

𝒓(𝑥) ∈  𝐶𝑜 , 𝒅(𝑥) ∙ 𝑥 = 𝑥  and  𝑥 ∙ 𝒓(𝑥) = 𝑥. Thus, for any identity 𝑒, 𝒅(𝑒) = 𝒓(𝑒) = 𝑒. 

2.4. Functor 

Let 𝑪 and 𝑫 be categories. A function 𝜙: 𝑪 → 𝑫 is called a functor if it satisfies the following 

conditions: 

i. If  ∃ 𝑎 ∙ 𝑏 in 𝑪, then ∃ 𝑎𝜙 ∙ 𝑏𝜙 in 𝑫 and  

ii. 𝑎𝜙 ∙ 𝑏𝜙 = (𝑎 ∙ 𝑏)𝜙 

A functor 𝜙: 𝑪 → 𝑫 is called an ordered functor (or order preserving functor) if 𝑎 ≤ 𝑏 in 𝑪, 

then 𝑎𝜙 ≤ 𝑏𝜙 in 𝑫. 

An ordered functor  𝜙: 𝑪 → 𝑫 is called inductive functor if ∀𝑒, 𝑓 ∈ 𝑪𝑜, then  𝑒𝜙 ˄ 𝑓𝜙 exists in 

𝑫𝑜. 

Lemma 2.5. [15].  Let (𝐶,∙) be a category with 𝑥, 𝑦 ∈ 𝐶. 

i. ∃𝑥 ∙ 𝑦 ⇔ 𝒓(𝑥) = 𝒅(𝑦) 

ii. If ∃𝑥 ∙ 𝑦, then 𝒅(𝑥 ∙ 𝑦) = 𝒅(𝑥) and  𝒓(𝑥 ∙ 𝑦) = 𝒓(𝑦). 

Let (𝐶,∙) be a category. For𝑒, 𝑓 ∈ 𝐶𝑜 , Hollings [15] defined the set 𝑚𝑜𝑟(𝑒, 𝑓) by: 

𝑚𝑜𝑟(𝑒, 𝑓) = {𝑥 ∈ 𝐶: 𝒅(𝑥) = 𝑒, 𝒓(𝑥) = 𝑓}. 

When 𝑒 = 𝑓, 𝑚𝑜𝑟(𝑒, 𝑓) is a monoid. To see this, for 𝑥 ∈ 𝑚𝑜𝑟(𝑒, 𝑒), 𝑒 ∙ 𝑥 = 𝒅(𝑥) ∙ 𝑥 = 𝑥,  𝑥 ∙

𝑒 = 𝒓(𝑥) = 𝑥. Therefore, 𝑒 is the identity in 𝑚𝑜𝑟(𝑒, 𝑒). Let 𝑥, 𝑦 ∈ 𝑚𝑜𝑟(𝑒, 𝑒). Then, 𝒅(𝑥 ∙ 𝑦) =

𝒅(𝑥) = 𝑒 and  𝒓(𝑥 ∙ 𝑦) = 𝒓(𝑦) = 𝑒. Therefore, 𝑥 ∙ 𝑦 ∈ 𝑚𝑜𝑟(𝑒, 𝑒). It then follows that ∃𝑥 ∙ (𝑦 ∙

𝑧) and ∃(𝑥 ∙ 𝑦) ∙ 𝑧, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑚𝑜𝑟(𝑒, 𝑒), and since 𝑚𝑜𝑟(𝑒, 𝑒) ∈ 𝐶, 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

𝑚𝑜𝑟(𝑒, 𝑒)  is called the local submonoid  of 𝐶  at 𝑒 .  Thus, category is regarded as a 

generalization of a monoid.  According to [15], a unipotent category is a category in which 

every local submonoid contains only one idempotent.  

Definition 2.6. [15]  A cancellative category is a category (𝐶,∙) inwhich ∀ 𝑎, 𝑏, 𝑧 ∈ 𝐶, 
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i. If ∃𝑧 ∙ 𝑎, ∃𝑧 ∙ 𝑏  and  𝑧 ∙ 𝑎 = 𝑧 ∙ 𝑏, then  𝑎 = 𝑏 and 

ii. If ∃𝑎 ∙ 𝑧, ∃𝑏 ∙ 𝑧  and  𝑎 ∙ 𝑧 = 𝑏 ∙ 𝑧, then  𝑎 = 𝑏. 

Definition 2.7. [15]. Let (𝐶, ∙) be a category and let 𝐶 be partially ordered by ≤ with 𝑎, 𝑏, 𝑐, 𝑑 ∈

𝐶.  According to [15], the triple (𝐶,∙ , ≤)  is called an ordered categor𝑦  if the following 

conditions hold: 

i. If 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑, ∃𝑎 ∙ 𝑏 and ∃𝑐 ∙ 𝑑, then  𝑎 ∙ 𝑏 ≤ 𝑐 ∙ 𝑑 

ii. If  𝑎 ≤ 𝑏, then  𝒅(𝑎) ≤ 𝒅(𝑏)  and 𝒓(𝑎) ≤ 𝒓(𝑏) 

iii. (1) for each 𝑓 ∈ 𝐶𝑜and 𝑎 ∈ 𝐶 with 𝑓 ≤ 𝒓(𝑎), there exists an element of 𝐶, denoted by 𝑎|𝑓which 

is the unique element with the properties 𝑎|𝑓 ≤ 𝑎and𝒓(𝑎|𝑓) = 𝑓. 

            (2) for each 𝑓 ∈ 𝐶𝑜and 𝑎 ∈ 𝐶 with 𝑓 ≤ 𝒅(𝑎), there exists an element of 𝐶, denoted by 

𝑓|𝑎, which is the unique element with the properties 𝑓|𝑎 ≤ 𝑎 and  𝒅(𝑓|𝑎) = 𝑓. 

The element 𝑎|𝑓 is called the corestriction of 𝑎 to 𝑓, while𝑓|𝑎 is called restriction of 𝑓 to 𝑎. 

Assuming 𝑒, 𝑓 ∈  𝐶𝑜 and ∃𝑒|𝑓, then by definition, 𝑒 ≤ 𝒅(𝑓). But 𝒅(𝑓) = 𝑓. Therefore, 𝑒|𝑓⇒𝑒 ≤

𝑓. Similarly, if corestriction 𝑓|𝑒is defined, 𝑓 ≤ 𝑒. 

Let (𝐶,∙ , ≤) be an ordered category with 𝑎, 𝑏, 𝑥, 𝑦, 𝑧 ∈ 𝐶 and 𝑒, 𝑓 ∈  𝐶𝑜 .  Suppose 𝑎 ≤ 𝑏. Then  

𝒅(𝑎) ≤ 𝒅(𝑏)  and 𝒓(𝑎) ≤ 𝒓(𝑏). Since 𝒅(𝑎) and 𝒓(𝑎) are identities by definition, then by (vi) & 

(vii), the restriction 𝒅(𝑎)|𝑏  and corestriction 𝑏|𝒓(𝑎)  are defined in 𝐶  and 𝒅(𝑎)|𝑏 ≤

𝑏; 𝒅[𝒅(𝑎)|𝑏] = 𝒅(𝑎). Since 𝒅(𝑎)|𝑏 is unique, 𝒅(𝑎)|𝑏 = 𝑎. Similarly, 𝑏|𝒓(𝑎) = 𝑎. 

So,  if 𝑎 ≤ 𝑏, then 𝒅(𝑎)|𝑏 = 𝑎 = 𝑏|𝒓(𝑎)              (2.7.1) 

Let 𝑓 ≤ 𝒓(𝑎). By definition,∃𝑎|𝑓, 𝒓(𝑎|𝑓) = 𝑓 and since 𝒓(𝑎|𝑓) is an identity such that (𝑎|𝑓) ∙

𝒓(𝑎|𝑓) = (𝑎|𝑓) , we have (𝑎|𝑓) ∙ 𝑓 = 𝑎|𝑓.  Similarly, 𝑓 ∙ (𝑓|𝑎) = 𝑓|𝑎.  Thus, for 𝑓 ≤

𝒓(𝑎), ∃(𝑎|𝑓) ∙ 𝑓 with (𝑎|𝑓) ∙ 𝑓 = 𝑎|𝑓 and for 𝑓 ≤ 𝒅(𝑎), ∃𝑓 ∙ (𝑓|𝑎) with  

   𝑓 ∙ (𝑓|𝑎) = 𝑓|𝑎              (2.7.2) 

Suppose ∃ 𝑐 ∈ 𝐶 such that 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐  and that 𝒓(𝑎) = 𝒓(𝑏). Then by equation (1), 𝑎 ≤ 𝑐 

and 𝑏 ≤ 𝑐  imply that 𝑎 = 𝑐|𝒓(𝑎)  and 𝑏 = 𝑐|𝒓(𝑏) . Therefore, 𝑎 = 𝑐|𝒓(𝑎) = 𝑐|𝒓(𝑏) = 𝑏. 

Similarly, if 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐  and that𝒅(𝑎) = 𝒅(𝑏), then 𝑎 = 𝑏. Thus, if ∃ 𝑐 ∈ 𝐶 such that 𝑎 ≤

𝑐 and 𝑏 ≤ 𝑐  and either  𝒓(𝑎) = 𝒓(𝑏) or 𝒅(𝑎) = 𝒅(𝑏),then 𝑎 = 𝑏 

Thus,  𝒓(𝑎) = 𝒓(𝑏) or 𝒅(𝑎) = 𝒅(𝑏), then 𝑎 = 𝑏            (2.7.3) 

From equation (1), we have that  𝑎 ≤ 𝑏 ⇒ 𝒅(𝑎)|𝑏 = 𝑎 = 𝑏|𝒓(𝑎) . Now, if 𝑎 = 𝑏,  we have 

𝒅(𝑎)|𝑎 = 𝑎 = 𝑎|𝒓(𝑎).  
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Thus,∀𝑎 ∈ 𝐶, 𝒅(𝑎)|𝑎 = 𝑎 = 𝑎|𝒓(𝑎)                         (2.7.4) 

Assuming 𝑒 ≤ 𝑓, then by equation (1) and since 𝑒 = 𝒅(𝑒) = 𝒓(𝑒), we have 𝑒|𝑓 = 𝒅(𝑒)|𝑓 =

𝑒 = 𝑓|𝒓(𝑒) = 𝑓|𝑒. 

Thus,    𝑒 ≤ 𝑓⇒𝑒|𝑓 = 𝑒 = 𝑓|𝑒            (2.7.5) 

Lemma 2.8 [20]:  Let (𝐶,∙ , ≤) be an ordered category and suppose that 𝑎 ∈ 𝐶 and 𝑒 ∈ 𝐶𝑜 .  If 

𝑎 ≤ 𝑒, then 𝑎 ∈ 𝐶𝑜 . 

Consequently, in an ordered category (𝐶,∙ , ≤), if the greatest lower bound (𝑡ℎ𝑒 𝑚𝑒𝑒𝑡) of two 

identities – 𝑒, 𝑓 , denoted by 𝑒˄𝑓(with respect to ≤) exists, then it is an identity.  

An inductive category is an ordered category (𝐶,∙ , ≤) in which ∀𝑒, 𝑓 ∈ 𝐶𝑜 , 𝑒˄𝑓 exists in 𝐶𝑜.  

Let (𝐶, ∙ , ≤) be an ordered category. The Pseudoproduct ⊗ in (𝐶, ∙ , ≤) is the binary operation 

given by 

𝑎 ⊗ 𝑏 = [𝑎|𝒓(𝑎)˄ 𝒅(𝑏)] ∙ [𝒓(𝑎)˄ 𝒅(𝑏)|𝑏] 

If ∃𝑎 ∙ 𝑏, then by lemma 2.8.4,  𝒓(𝑎) =  𝒅(𝑏). So that 𝑎 ⊗ 𝑏 = [𝑎|𝒓(𝑎)] ∙ [𝒅(𝑏)|𝑏] 

By equation (2.7.4), 𝑎|𝒓(𝑎) = 𝑎  and  𝒅(𝑏)|𝑏 = 𝑏. Hence, 𝑎 ⊗ 𝑏 = [𝑎|𝒓(𝑎)] ∙ [𝒅(𝑏)|𝑏] = 𝑎 ∙ 𝑏. 

Thus, if both 𝑎 ∙ 𝑏 and 𝑎 ⊗ 𝑏 are defined in 𝐶, then 𝑎 ∙ 𝑏 = 𝑎 ⊗ 𝑏                        

(2.7.6) 

Proposition 2.9 [19]. Let (𝐶,∙ , ≤) be an ordered category. If both 𝑎 ⊗ (𝑏 ⊗ 𝑐) and (𝑎 ⊗ 𝑏) ⊗

𝑐 are defined, then they equal. Hence, in an inductive category, ⊗ is an everywhere defined 

associative binary operation. 

Suppose (𝐶,∙ , ≤)  be is an inductive category with 𝑎 ∈ 𝐶  and 𝑒 ∈ 𝐶𝑜 .  Then, 𝑒 ⊗ 𝑎 =

[𝑒|𝒓(𝑒)˄ 𝒅(𝑎)] ∙ [𝒓(𝑒)˄ 𝒅(𝑎)|𝑎] = [𝑒|𝒆 ˄ 𝒅(𝑎)] ∙ [𝒆 ˄ 𝒅(𝑎)|𝑎] . Notice that 𝒆 ˄ 𝒅(𝑎)  is an 

identity and 𝒆 ˄ 𝒅(𝑎) ≤ 𝑒.  Therefore, by (xii), 𝑒|𝒆 ˄ 𝒅(𝑎) = 𝒆 ˄ 𝒅(𝑎) . So that 𝑒 ⊗ 𝑎 =

𝒆 ˄ 𝒅(𝑎) ∙ [𝒆 ˄ 𝒅(𝑎)|𝑎]. Furthermore, 𝒆 ˄ 𝒅(𝑎) ≤ 𝒅(𝑎) and by equation (2.7.2), 

𝑒 ⊗ 𝑎 = 𝒆 ˄ 𝒅(𝑎) ∙ [𝒆 ˄ 𝒅(𝑎)|𝑎] = 𝒆 ˄ 𝒅(𝑎)|𝑎      (2.7.7) 

Similarly,  𝑎 ⊗ 𝑒 = 𝑎|𝒓(𝑎)˄ 𝑒        (2.7.8) 

It is important to note that  𝑎|𝒓(𝑎)˄ 𝒅(𝑏)  means 𝑎|[𝒓(𝑎)˄ 𝒅(𝑏)]  and not [𝑎|𝒓(𝑎)] ˄ 𝒅(𝑏) . 

Similarly, 𝒓(𝑎)˄ 𝒅(𝑏)|𝑏 should be read as [𝒓(𝑎)˄ 𝒅(𝑏)]|𝑏 and not 𝒓(𝑎)˄ [𝒅(𝑏)|𝑏]. 

Theorem 2.10. [3]. Every functor preserves identities, isomorphisms and commutative diagrams. 
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3. RESULTS: CATEGORICAL ANALYSIS OF THE EMBEDDING 

We recall that in a category, there must be a class consisting of systems of the same type, 

referred to as objects and between any pair of objects 𝐴 and 𝐵 in the class, there must arrows 

𝑓: 𝐴 → 𝐵 and each arrow is a structure preserving map referred to as morphism. 

Proposition 3.1. Let  𝑆1, 𝑆2 be inverse semigroups and 𝑆 an ample monoid. Then the embeddings   

𝜓1: 𝛬(𝑆) → 𝛬(𝑆1) , 𝜓2: 𝑃(𝑆) → 𝑃(𝑆2)  such that 𝜓1(𝜆∗) =  [𝜓1(𝜆)]∗ =  [𝜓1(𝜆)]−1𝜓1(𝜆) , 

𝜓2(𝜌†) =  [𝜓2(𝜌)]† =  𝜓2(𝜌)[𝜓2(𝜌)]−1 is categorical. 

Proof.  Here is the commutative diagram. We show that it is a category 

 The objects are:  

i. The ample semigroup 𝑆; 

ii. The inverse semigroup 𝑆1; 

iii. The left translational hull 𝛬(𝑆) of 𝑆 and  

iv. The left translational hull 𝛬(𝑆1) of 𝑆1. 

 

We showed that the diagram commutes. That is,   𝜓𝛤𝑆 = 𝛤𝑆1
𝜙 = ζ   where  𝜁: 𝑎 → 𝜃𝜆𝑎

(𝑎 ∈ 𝑆). 

𝜙 ∈ ℎ𝑜𝑚(𝑆, 𝑆1),  𝛤𝑆1
∈ ℎ𝑜𝑚(𝑆1, 𝛬(𝑆1)) and  𝛤𝑆1

𝜙, ζ ∈ ℎ𝑜𝑚(𝑆, 𝛬(𝑆1)) 

𝛤𝑆 ∈ ℎ𝑜𝑚(𝑆, 𝛬(𝑆)),  𝜓 ∈ ℎ𝑜𝑚(𝛬(𝑆), 𝛬(𝑆1)) and 𝜓𝛤𝑆 , ζ ∈ ℎ𝑜𝑚(𝑆, 𝛬(𝑆1)) 

For each object, there is an identity map. For instance, 1𝑆 : 𝑎 → 1 ∙ 𝑎(where 𝑎 ∈ 𝑆 and 1 is the 

identity in 𝑆), is an identity map on the object 𝑆.   𝜙1𝑆 =  𝜙. 

Notice that 𝜙1𝜙𝑎 = 𝜙1𝑎 = 𝜙𝑎 and 𝜙𝑎𝜙1 = 𝜙𝑎. So that 𝜙1 is the identity in 𝑆1. 1𝑆1
: 𝜙𝑎 → 𝜙𝑎𝜙1 

is an identity map on the object 𝑆1.  1𝑆1
𝜙 =  𝜙 

Every arrow in the commutative diagram is distinct. Each arrow is not just a homomorphism but 

a ∗-homomorphism. Hence, the arrows are all structure preserving. 

Thus, the diagram is a category. 

From this point, we call the commutative  

diagram – category 𝑪. 

 

 

 

 

𝜓 

 

𝑆1 𝑆 

𝛬(𝑆) 𝛬(𝑆1) 

 

𝛤𝑆1
 𝛤𝑆 

𝜙 

 

ζ 

𝜓 

 

𝑆1 𝑆 

𝛬(𝑆) 𝛬(𝑆1) 

 

𝛤𝑆1
 𝛤𝑆 

𝜙 

 

𝑪 
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3.2 Construction of a Category from an inverse semigroup 

We do this construction in analogy with Lawson [19] construction of inductive category from a 

restriction semigroup. 

Given an inverse semigroup 𝑆1, we define a product in 𝑆1 by 

 𝑎 ∙ 𝑏 = {
𝑎𝑏              𝑖𝑓  𝑎−1𝑎 = 𝑏𝑏−1

undefined,   otherwise                   
𝑎, 𝑏 ∈ 𝑆1          (3.2.0) 

Theorem 3.2.1  Let 𝑆1 be an inverse semigroup with the natural partial order ≤. Then (𝑆1, ∙

 , ≤) = 𝑪(𝑺𝟏) is a category with 𝑪(𝑺𝟏)𝑜 = 𝐸(𝑆1), 𝒅(𝑎) = 𝑎𝑎−1, 𝒓(𝑎) = 𝑎−1𝑎, ∀𝑎 ∈ 𝑆1, where 

′′ ∙ ′′ is the product defined in equation (3.2.0) above. 

Proof.   Assuming 𝑒 is an identity in (𝑆1,∙) such that ∃ 𝑒 ∙ 𝑥 for 𝑥 ∈ 𝑆1. Then, by the definition of 

′′ ∙ ′′,  𝑒 = 𝑥𝑥−1 . Similarly, if 𝑓  is an identity in (𝑆1,∙) such that ∃𝑥 ∙ 𝑓  for 𝑥 ∈ 𝑆1. Then 𝑓 =

𝑥−1𝑥 . Thus, idempotents in 𝑆1  are the identities in (𝑆1,∙). 𝑥𝑥−1 ∙ 𝑥  exists since 

(𝑥𝑥−1)−1(𝑥𝑥−1) = 𝑥𝑥−1.  Of course, 𝑥𝑥−1 ∙ 𝑥 = 𝑥  and by uniqueness of 𝒅(𝑥) , 𝑥𝑥−1 = 𝒅(𝑥). 

Similarly, 𝑥−1𝑥 = 𝒓(𝑥). 

Next, we show that (∀𝑥, 𝑦, 𝑧 ∈ 𝑆1) ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇔ ∃(𝑥 ∙ 𝑦) ∙ 𝑧  and that 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧, 

∃𝑥 ∙ 𝑦 ; ∃𝑦 ∙ 𝑧. 

Assuming ∃𝑥 ∙ (𝑦 ∙ 𝑧), then 𝑥−1𝑥 = (𝑦 ∙ 𝑧)(𝑦 ∙ 𝑧)−1 

But (𝑦 ∙ 𝑧) = 𝑦𝑧 such that 𝑦−1𝑦 = 𝑧𝑧−1 

Therefore, ∃𝑥 ∙ (𝑦 ∙ 𝑧)⇒𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1 and 𝑦−1𝑦 = 𝑧𝑧−1 

So that 𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1 = 𝑦𝑧𝑧−1𝑦−1 = 𝑦𝑧𝑧−1𝑧𝑧−1𝑦−1 = 𝑦𝑦−1𝑦𝑦−1𝑦𝑦−1  (since 𝑦−1𝑦 =

𝑧𝑧−1)  = 𝑦𝑦−1 

 Therefore, ∃𝑥 ∙ 𝑦. Similarly, ∃𝑦 ∙ 𝑧. 

Again, 𝑥 ∙ (𝑦 ∙ 𝑧) = 𝑥𝑦𝑧  such that 𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1  and 𝑦−1𝑦 = 𝑧𝑧−1  . But 𝑥−1𝑥 =

(𝑦𝑧)(𝑦𝑧)−1 = 𝑦𝑦−1. 

Therefore, 𝑥 ∙ (𝑦 ∙ 𝑧) = 𝑥𝑦𝑧 such that 𝑥−1𝑥 = 𝑦𝑦−1; 𝑦−1𝑦 = 𝑧𝑧−1. 

On the other hand, (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥𝑦𝑧 such that (𝑥𝑦)−1(𝑥𝑦) = 𝑧𝑧−1 and 𝑥−1𝑥 = 𝑦𝑦−1. 

But (𝑥𝑦)−1(𝑥𝑦) = 𝑦−1𝑥−1𝑥𝑦 = 𝑦−1𝑥−1𝑥𝑥−1𝑥𝑦 = 𝑦−1𝑦𝑦−1𝑦𝑦−1𝑦 = 𝑦−1𝑦. 

So that  (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥𝑦𝑧  such that 𝑦−1𝑦 = 𝑧𝑧−1; 𝑥−1𝑥 = 𝑦𝑦−1 

Thus, ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇒ ∃(𝑥 ∙ 𝑦) ∙ 𝑧  and 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

Hence, (𝑆1,∙)  is a category.  We denote by 𝑪(𝑺𝟏)  this category associated with an inverse 

semigroup 𝑆1, and the set of identities of 𝑪(𝑺𝟏) by 𝑪(𝑺𝟏)𝑜 
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Proposition 3.2.2.  𝑪(𝑺𝟏)  is inductive 

Proof. Suppose  𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑪(𝑺𝟏)  such that 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑, ∃𝑎 ∙ 𝑏, ∃𝑐 ∙ 𝑑. Then for some 𝑒, 𝑓 ∈

𝑪(𝑺𝟏)𝑜, 𝑎 = 𝑒𝑐 and 𝑏 = 𝑓𝑑. So that  𝑎𝑏 = 𝑒𝑐𝑓𝑑 = 𝑒𝑐𝑐−1𝑐𝑓𝑑 = 𝑒𝑐𝑓𝑐−1𝑐𝑑 

𝑒𝑐𝑓𝑐−1 is an idempotent. Therefore, 𝑎𝑏 = 𝑒𝑐𝑓𝑐−1𝑐𝑑 ≤ 𝑐𝑑. Thus, 𝑎 ∙ 𝑏 ≤ 𝑐 ∙ 𝑑 

Now, suppose 𝑎 ≤ 𝑏. This implies that 𝑎 = 𝑒𝑏 = 𝑏𝑓 for some 𝑒, 𝑓 ∈ 𝑪(𝑺𝟏)𝑜. 

With 𝑎−1 = 𝑏−1𝑒, 𝑎𝑎−1 = 𝑒𝑏𝑏−1𝑒 = 𝑒𝑏𝑏−1 ≤ 𝑏𝑏−1 

So that 𝒅(𝑎) ≤ 𝒅(𝑏). 

With 𝑎 = 𝑏𝑓, 𝑎−1 = 𝑓𝑏−1 and 𝑎−1𝑎 = 𝑓𝑏−1𝑏𝑓 = 𝑏−1𝑏𝑓 ≤ 𝑏−1𝑏. So that 𝒓(𝑎) ≤ 𝒓(𝑏). 

So that, 𝑎 ≤ 𝑏 implies that 𝒅(𝑎) ≤ 𝒅(𝑏) and 𝒓(𝑎) ≤ 𝒓(𝑏). 

For each 𝑓 ∈ 𝑪(𝑺𝟏)𝑜 and 𝑎 ∈ 𝑪(𝑺𝟏)  with 𝑓 ≤ 𝒓(𝑎), we take  𝑎|𝑓 = 𝑎𝑓, the correstriction of 𝑎 

to 𝑓.    𝑎𝑓 satisfies the required properties as follows: 

𝑎𝑓 ≤ 𝑎 and 𝑎−1𝑎𝑓 ≤ 𝑎−1𝑎. Therefore,𝑓 ≤ 𝑎−1𝑎 = 𝒓(𝑎).  𝒓(𝑎𝑓) =  (𝑎𝑓)−1(𝑎𝑓) = 𝑓𝑎−1𝑎𝑓 =

𝑎−1𝑎𝑓 = 𝑓. 

For the uniqueness, let 𝑔 be another value for 𝑎|𝑓. This implies that 𝑔 ≤ 𝑎 and 𝒓(𝑔) = 𝑓. That is, 

𝑔−1𝑔 = 𝑓. 

𝑔 ≤ 𝑎⇒𝑔 = 𝑎𝑒 for some  𝑒 ∈ 𝑪(𝑺𝟏)𝑜.  So that 𝑔−1 = 𝑒𝑎−1. 

Therefore, 𝑔−1𝑔 = 𝑒𝑎−1𝑎𝑒 = 𝑎−1𝑎𝑒. This implies that, 𝑔−1𝑔 ≤ 𝑒. 

So that, 𝑒𝑔−1𝑔 = 𝑔−1𝑔. So with𝑔 = 𝑎𝑒, 𝑔 = 𝑔𝑔−1𝑔 = 𝑎𝑒𝑔−1𝑔 = 𝑎𝑔−1𝑔, and with 𝑔−1𝑔 = 𝑓, 

we have  𝑔 = 𝑎𝑔−1𝑔 = 𝑎𝑓. 

Similarly, if we choose 𝑓𝑎 for the restriction of 𝑓 to 𝑎, the desired properties will be satisfied. 

Thus, 𝑪(𝑺𝟏)  is an ordered category. 

For ∀𝑒, 𝑓 ∈ 𝑪(𝑺)𝑜 , 𝑒𝑓 ≤ 𝑒  and 𝑒𝑓 ≤ 𝑓 . So that 𝑒𝑓 ≤ 𝑒 ˄ 𝑓 . Assuming 𝑔 = 𝑒 ˄ 𝑓 , 𝑔 ∈ 𝑪(𝑺𝟏), 

then we have 𝑔 ≤ 𝑒, 𝑔 ≤ 𝑓 and therefore, 𝑒 ˄ 𝑓 = 𝑔 = 𝑔2 ≤ 𝑒 ˄ 𝑓 = 𝑔. Hence,  𝑒 ˄ 𝑓 ∈ 𝑪(𝑺𝟏)𝑜 

Hence, 𝑪(𝑺𝟏)  is an inductive category. 

Corollary 3.2.3:  Let 𝑆1 be an inverse semigroup with the natural partial order ≤. Then  (𝑆1,∙

 , ≤) = 𝑪(𝑺𝟏) is an inductive category with 𝑪(𝑺𝟏)𝑜 = 𝐸(𝑆1), 𝒅(𝑎) = 𝑎𝑎−1, 𝒓(𝑎) = 𝑎−1𝑎, ∀𝑎 ∈

𝑆1.  

3.3. Construction of a category from an ample semigroup 

In a very similar fashion as that of inverse semigroup, we construct a category from an ample 

semigroup as follows: 

Let 𝑆 be an ample semigroup and define a product in 𝑆 by 
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 𝑎 ∙ 𝑏 = {
𝑎𝑏           𝑖𝑓  𝑎∗ = 𝑏†

undefined, otherwise           
𝑎, 𝑏 ∈ 𝑆1            (3.3.0) 

Theorem 3.3.1:   Let 𝑆 be an ample semigroup with the natural partial order ≤. Then  (𝑆,∙ , ≤) =

𝑪(𝑺)  is a category with 𝑪(𝑺)𝑜 = 𝐸(𝑆), 𝒅(𝑎) = 𝑎† , 𝒓(𝑎) = 𝑎∗ , ∀𝑎 ∈ 𝑆 , where ′′ ∙ ′′  is the 

product defined in (ii) right above. 

Proof.  Assuming 𝑒 is an identity in (𝑆,∙) such that ∃𝑒 ∙ 𝑥 for 𝑥 ∈ 𝑆. Then  𝑒 = 𝑥†. Similarly, if 𝑓 

is an identity in (𝑆,∙) such that ∃𝑥 ∙ 𝑓 for 𝑥 ∈ 𝑆. Then 𝑓 = 𝑥∗ . Thus, idempotents in 𝑆 are the 

identities in (𝑆,∙). 𝑥† ∙ 𝑥  exists since (𝑥†)∗ = 𝑥†.  Of course, 𝑥† ∙ 𝑥 = 𝑥  and by uniqueness of 

𝒅(𝑥), 𝑥† = 𝒅(𝑥). Similarly, 𝑥∗ = 𝒓(𝑥). 

Now, suppose ∃𝑥 ∙ (𝑦 ∙ 𝑧). That is  𝑥∗ = (𝑦𝑧)†  and 𝑦∗ = 𝑧†.  So that 𝑥∗ = (𝑦𝑧†)† = (𝑦𝑦∗)† =

𝑦† . So ∃𝑥 ∙ (𝑦 ∙ 𝑧)⇒𝑦∗ = 𝑧† ; 𝑥∗ = 𝑦† . But (𝑥𝑦)∗ = (𝑥∗𝑦)∗ = (𝑦†𝑦)∗ = 𝑦∗ = 𝑧† . So that ∃𝑥 ∙

(𝑦 ∙ 𝑧)⇔(𝑥𝑦)∗ = 𝑧†; 𝑥∗ = 𝑦†⇔∃(𝑥 ∙ 𝑦) ∙ 𝑧. Hence, 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

Moreover, ∃𝑥 ∙ (𝑦 ∙ 𝑧)⇒𝑥∗ = 𝑦†; 𝑦∗ = 𝑧† ⇒ ∃ 𝑥 ∙ 𝑦 ; ∃𝑦 ∙ 𝑧.  

Hence, (𝑆,∙) is a category.  We denote by 𝑪(𝑺) this category associated with type 𝐴 semigroup 𝑆, 

and the set of identities of 𝑪(𝑺) by 𝑪(𝑺)𝑜 

Proposition 3.3.2.  𝑪(𝑺) is inductive 

Proof.  Let  𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑪(𝑺) with 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑, ∃𝑎 ∙ 𝑏, ∃𝑐 ∙ 𝑑. Then for some 𝑒, 𝑓 ∈ 𝐸(𝑆), 𝑎 =

𝑒𝑐 and 𝑏 = 𝑓𝑑. So that  𝑎𝑏 = 𝑒𝑐𝑓𝑑 = 𝑒(𝑐𝑓)†𝑐𝑑 ≤ 𝑐𝑑.  Thus, 𝑎 ∙ 𝑏 ≤ 𝑐 ∙ 𝑑. 

Assuming, 𝑎 ≤ 𝑏, then 𝑎 = 𝑒𝑏, and this implies that 𝑎† = (𝑒𝑏)† = (𝑒𝑏†)† = 𝑒𝑏† ≤ 𝑏†. So that 

𝒅(𝑎) ≤ 𝒅(𝑏). 

𝑎 ≤ 𝑏  equally implies that 𝑎 = 𝑏𝑓, 𝑓 ∈ 𝐸(𝑆).  So that 𝑎∗ = (𝑏𝑓)∗ = (𝑏∗𝑓)∗ = 𝑏∗𝑓 ≤ 𝑏∗   and 

therefore, 𝒓(𝑎) ≤ 𝒓(𝑏). 

For each 𝑓 ∈ 𝑪(𝑺)𝑜 and 𝑎 ∈ 𝑪 with 𝑓 ≤ 𝒓(𝑎), we take 𝑎|𝑓 = 𝑎𝑓, the correstriction of 𝑎 to 𝑓 and 

we note that 𝑎𝑓  satisfies the required properties as follows: 𝑎𝑓 ≤ 𝑎. 𝑓 ≤ 𝒓(𝑎) = 𝑎∗,  so that 

𝒓(𝑎𝑓) = (𝑎𝑓)∗ = (𝑎∗𝑓)∗ = 𝑎∗𝑓 = 𝑓. To confirm uniqueness, assuming there is another value 𝑔 

for 𝑎|𝑓. This implies that 𝑔 ≤ 𝑎 and 𝒓(𝑔) = 𝑔∗ = 𝑓. Then, 𝑔 ≤ 𝑎⇒𝑔 = 𝑎𝑔∗ = 𝑎𝑓. Similarly, if 

𝑓𝑎 is chosen for the restriction of 𝑓 to 𝑎, the desired properties will be satisfied. Hence, the 𝑪(𝑺) 

is an ordered category. 

Just as in 𝑪(𝑺𝟏), For ∀𝑒, 𝑓 ∈ 𝑪(𝑺)𝑜 , 𝑒 ˄ 𝑓 ∈ 𝑪(𝑺)𝑜. 

Thus, 𝑪(𝑺) is inductive.  
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Corollary 3.3.3:  Let 𝑆 be a type 𝐴 semigroup with the natural partial order ≤. Then  (𝑆,∙ , ≤) =

𝑪(𝑺) is an inductive category with 𝑪(𝑺)𝑜 = 𝐸(𝑆), 𝒅(𝑎) = 𝑎†, 𝒓(𝑎) = 𝑎∗, ∀𝑎 ∈ 𝑆.  

Theorem 3.3.4.  𝜂 ≔ 𝑪(𝝓): 𝑪(𝑺) → 𝑪(𝑺𝟏) is an inductive functor. 

Proof.  Essentially, we mean to show that  𝜙: (𝑆,∙, ≤) → (𝑆1,∙, ≤) is an inductive functor. 

Suppose ∃𝑎 ∙ 𝑏 in. Then 𝑎∗ = 𝑏† and 𝑎 ∙ 𝑏 = 𝑎𝑏. Since 𝜙 is a homomorphism,  𝑎∗ =

𝑏†⇒𝑎∗𝜙 = 𝑏†𝜙⇒(𝑎𝜙)∗ = (𝑏𝜙)†⇒∃𝑎𝜙 ∙ 𝑏𝜙 in 𝑆1 

It further follows that  (𝑎 ∙ 𝑏)𝜙 = (𝑎𝑏)𝜙 = 𝑎𝜙𝑏𝜙 = 𝑎𝜙 ∙ 𝑏𝜙  in 𝑆1 [since (𝑎𝜙)∗ = (𝑏𝜙)†] 

Thus, 𝜙: (𝑆,∙, ≤) → (𝑆1,∙, ≤) is a functor. 

To show that the functor is inductive, recall that ∀𝑒, 𝑓 ∈ 𝑪𝑜, then  𝑒 ˄ 𝑓 = 𝑒𝑓. so that  

(𝑒 ˄ 𝑓)𝜙 = (𝑒𝑓)𝜙 = 𝑒𝜙𝑓𝜙 = 𝑒𝜙 ˄ 𝑓𝜙. 

Finally, we show that the functor is order preserving 

Assuming 𝑎 ≤ 𝑏. This implies that 𝑎 = 𝑒 ∙ 𝑏 for some 𝑒 ∈ 𝑪𝑜.  

So that 𝑎𝜙 = (𝑒 ∙ 𝑏)𝜙 = 𝑒𝜙 ∙ 𝑏𝜙⇒𝑎𝜙 ≤ 𝑏𝜙. 

Evidently, 𝜂 is an ordered inductive functor. 

It is important to note that   𝒅(𝑎)𝜙 = 𝑎†𝜙 = (𝑎𝜙)† = 𝒅(𝑎𝜙)  and𝒓(𝑎)𝜙 = 𝑎∗𝜙 = (𝑎𝜙)∗ =

𝒓(𝑎𝜙). 

 

 

F  ∶ 𝑆 → 𝑪(𝑺) is the map (𝑎, 𝑏) ∈ 𝑆 × 𝑆 →̇ 𝑎 ∙ 𝑏.  As given, 𝑎 ∙ 𝑏 = 𝑎𝑏 ( if 𝑎∗ = 𝑏†). 

(𝑎, 𝑏) ∙ = (𝑎 ∙ 𝑏) = 𝑎𝑏 = (𝑎) ∙ (𝑏).  So  ′′ ∙ ′′ is the morphism and F ∈ hom [𝑆, 𝑪(𝑺)] 

As we have seen in the construction of 𝑪(𝑺) from 𝑆 that:  

 𝐸(𝑆) → 𝑪𝑜,    𝑎∗ ∈ 𝑆 → 𝒓(𝑥) ∈ 𝑪(𝑺),    𝑎† ∈ 𝑆 → 𝒅(𝑥) ∈ 𝑪(𝑺), 

𝑫 

 

𝑪(𝝍) 

 

𝑪(𝑺𝟏) 𝑪(𝑺) 

𝛬[𝑪(𝑺)] 𝛬[𝑪(𝑺𝟏)] 

 

𝑪(𝜞𝑺𝟏
)   𝑪(𝜞𝑺) 

𝑪(𝝓) 𝜓 

 

𝑆1 𝑆 

𝛬(𝑆) 𝛬(𝑆1) 

 

𝛤𝑆1
 𝛤𝑆 

𝜙 

 

𝑪 

 
F 
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Notice that 𝑥 ℒ∗(𝑆)𝑦 ⇔  𝑥∗ = 𝑦∗⇔𝒓(𝑥) = 𝒓(𝑦). Therefore 𝑥ℒ∗(𝑆)𝑦 if and only if 𝒓(𝑥) = 𝒓(𝑦) 

in 𝑪(𝑺). 

Similarly, 𝑥 ℛ∗(𝑆)𝑦 if and only if 𝒅(𝑥) = 𝒅(𝑦) in 𝑪(𝑺). 

Thus, the structure in 𝑪 is not lost in 𝑫. 

F is a morphism between two categories. Hence F is a functor. As a functor, F preserves, in 

category 𝑫 , the identities and the isomorphisms in category 𝑪 . Moreover, F carries the 

commutative quality of diagram 𝑪 to 𝑫.  

Thus, 𝑫-diagram commutes. 

Proposition 3.3.5. 𝑪(𝑺) is cancellative (with respect to ′′ ∙ ′′ ) 

Proof. Assuming ∃𝑥 ∙ 𝑧, ∃𝑦 ∙ 𝑧 and let 𝑥 ∙ 𝑧 = 𝑦 ∙ 𝑧. By definition of the product, 𝑥 ∙ 𝑧 ⇒ 𝑥∗ =

𝑧† and 𝑦 ∙ 𝑧 ⇒ 𝑦∗ = 𝑧†. Therefore, 𝑥∗ = 𝑦∗. That is, 𝒓(𝑥) = 𝒓(𝑦). But, 𝑥 ∙ 𝑧 = 𝑦 ∙ 𝑧 implies that 

𝒅(𝑥 ∙ 𝑧) = 𝒅(𝑦 ∙ 𝑧)  and this gives 𝒅(𝑥) = 𝒅(𝑦) . So we have 𝒓(𝑥) = 𝒓(𝑦)  and 𝒅(𝑥) = 𝒅(𝑦). 

Therefore, 𝑥 = 𝑦. Similarly, if ∃𝑧 ∙ 𝑥, ∃𝑧 ∙ 𝑦 and  𝑧 ∙ 𝑥 = 𝑧 ∙ 𝑦, then 𝑥 = 𝑦. 

Theorem 3.3.6. [𝑪(𝑺),⊗] is a type 𝐴 semigroup, where 𝑪(𝑺) is the inductive category above. 

 Proof. Obviously,[𝑪(𝑺),⊗] is a semigroup. For each 𝑎 ∈ 𝑪(𝑺), we define 𝑎† = 𝒅(𝑎) and 𝑎∗ =

𝒓(𝑎). 

  𝑎 ⊗ 𝑎∗ = 𝑎|𝒓(𝑎)˄𝑎∗      

⇒𝑎 ⊗ 𝑎∗ = 𝑎|𝑎∗˄𝑎∗ = 𝑎|𝑎∗ = 𝑎   

Thus, with respect to ⊗, 𝑎∗ is a right identity for 𝑎. Similarly, 𝑎† is a left identity for 𝑎 with ⊗. 

 𝑎∗ ⊗ 𝑎∗ = 𝑎∗|𝑎∗ ˄ 𝑎∗ = 𝑎∗ and  𝑎† ⊗ 𝑎† = 𝑎† 

That is, for each 𝑎 ∈ [𝑪(𝑺),⊗], 𝑎∗and 𝑎† are idempotents, which implies that [𝑪(𝑺),⊗] is full in 

𝑪(𝑺). 

Let 𝑒, 𝑓 be idempotents in [𝑪(𝑺),⊗] 

 𝑒 ⊗ 𝑓 = (𝑒|𝑒 ˄ 𝑓) ∙ (𝑒 ˄ 𝑓|𝑓) 

𝑒 ˄ 𝑓 ≤ 𝑒, 𝑒 ˄ 𝑓 ≤ 𝑓. Therefore, 𝑒|𝑒 ˄ 𝑓 = 𝑒 ˄ 𝑓 and 𝑒 ˄ 𝑓|𝑓 = 𝑒 ˄ 𝑓  by (5) in section 3.5. 

Therefore, 𝑒 ⊗ 𝑓 = (𝑒 ˄ 𝑓) ∙ (𝑒 ˄ 𝑓) = 𝑒 ˄ 𝑓.   Similarly 𝑓 ⊗ 𝑒 = 𝑓 ˄ 𝑒 = 𝑒 ˄ 𝑓 . Thus, the 

idempotents in [𝑪(𝑺),⊗] commute. 

Next, we show that 𝑎∗ = 𝒓(𝑎) is the unique idempotent inℒ𝑎
∗ . 

Let 𝑥, 𝑦 ∈ 𝑪(𝑺)𝟏 and assuming 𝑎 ⊗ 𝑥 = 𝑎 ⊗ 𝑦 

𝑎 ⊗ 𝑥 = 𝑎 ⊗ 𝑦 implies that (𝑎 ⊗ 𝑥)† = (𝑎 ⊗ 𝑦)† 
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That is, [(𝑎|𝑎∗ ˄ 𝑥†) ∙ (𝑎∗ ˄ 𝑥†|𝑥)]† = [(𝑎|𝑎∗ ˄ 𝑦†) ∙ (𝑎∗ ˄ 𝑦†|𝑦)]† 

That is, 𝒅[(𝑎|𝑎∗ ˄ 𝑥†) ∙ (𝑎∗ ˄ 𝑥†|𝑥)] = 𝒅[(𝑎|𝑎∗ ˄ 𝑦†) ∙ (𝑎∗ ˄ 𝑦†|𝑦)] and we have that 

𝒅(𝑎|𝑎∗ ˄ 𝑥†) = 𝒅(𝑎|𝑎∗ ˄ 𝑦†).  

Notice that  𝑎∗ ˄ 𝑥†, 𝑎∗ ˄ 𝑦† ∈ 𝑪(𝑺)𝑜 and by the definition of corestriction,  𝑎|𝑎∗ ˄ 𝑥† ≤ 𝑎 and 

𝑎|𝑎∗ ˄ 𝑦† ≤ 𝑎. So we have: 

𝑎|𝑎∗ ˄ 𝑥† ≤ 𝑎, 𝑎|𝑎∗ ˄ 𝑦† ≤ 𝑎 and 𝒅(𝑎|𝑎∗ ˄ 𝑥†) = 𝒅(𝑎|𝑎∗ ˄ 𝑦†) 

Therefore, 𝑎|𝑎∗ ˄ 𝑥† = 𝑎|𝑎∗ ˄ 𝑦†. 

Now, 𝑎 ⊗ 𝑥 = [(𝑎|𝑎∗ ˄ 𝑥†) ∙ (𝑎∗ ˄ 𝑥†|𝑥)] = [(𝑎|𝑎∗ ˄ 𝑦†) ∙ (𝑎∗ ˄ 𝑥†|𝑥)] 

By assumption, 𝑎 ⊗ 𝑥 = 𝑎 ⊗ 𝑦 = [(𝑎|𝑎∗ ˄ 𝑦†) ∙ (𝑎∗ ˄ 𝑦†|𝑦)] 

That is, [(𝑎|𝑎∗ ˄ 𝑦†) ∙ (𝑎∗ ˄ 𝑥†|𝑥)] = [(𝑎|𝑎∗ ˄ 𝑦†) ∙ (𝑎∗ ˄ 𝑦†|𝑦)] and by cancellation, 

𝑎∗ ˄ 𝑥†|𝑥 = 𝑎∗ ˄ 𝑦†|𝑦.  Hence, by (2.7.7), 𝑎∗ ⊗ 𝑥 = 𝑎∗ ˄ 𝑥†|𝑥 = 𝑎∗ ˄ 𝑦†|𝑦 = 𝑎∗ ⊗ 𝑦 

Thus, ∀𝑎 ∈ 𝑪(𝑺), (𝑎, 𝑎∗) ∈ ℒ∗[𝑪(𝑺),⊗]. Similarly, (𝑎, 𝑎†) ∈ ℛ∗[𝑪(𝑺),⊗]. 

Since idempotents in [𝑪(𝑺),⊗] commute, 𝑎∗ is the unique idempotent in ℒ𝑎
∗ [𝑪(𝑺),⊗] and 𝑎† the 

unique idempotent in ℛ𝑎
∗ [𝑪(𝑺),⊗]. 

Now, we show that 𝑎 ⊗ 𝑒 = (𝑎 ⊗ 𝑒)† ⊗ 𝑎 and 𝑒 ⊗ 𝑎 = 𝑎 ⊗ (𝑒 ⊗ 𝑎)∗ 

By (2.7.7), (𝑎 ⊗ 𝑒)† ⊗ 𝑎 = [(𝑎 ⊗ 𝑒)† ˄ 𝑎†]|𝑎 = [(𝑎|𝑎∗ ˄ 𝑒)† ˄ 𝑎†]|𝑎 

Since 𝑎∗ ˄ 𝑒 ∈ 𝑪(𝑺)𝑜 , by definition of corestriction , 𝑎|𝑎∗ ˄ 𝑒 ≤ 𝑎. So that (𝑎|𝑎∗ ˄ 𝑒)† ≤ 𝑎†. 

Therefore, (𝑎 ⊗ 𝑒)† ⊗ 𝑎 = [(𝑎|𝑎∗ ˄ 𝑒)† ˄ 𝑎†]|𝑎 = (𝑎|𝑎∗ ˄ 𝑒)†|𝑎. 

Since 𝑎|𝑎∗ ˄ 𝑒 ≤ 𝑎, (𝑎|𝑎∗ ˄ 𝑒)†|𝑎 = 𝒅(𝑎|𝑎∗ ˄ 𝑒)|𝑎 = 𝑎|𝑎∗ ˄ 𝑒. So that  

[(𝑎 ⊗ 𝑒)† ⊗ 𝑎]† = [(𝑎|𝑎∗ ˄ 𝑒)†|𝑎]† = [𝑎|𝑎∗ ˄ 𝑒]† = (𝑎 ⊗ 𝑒)†. 

So we have:  𝑎 ⊗ 𝑒 =  𝑎|𝑎∗ ˄ 𝑒 ≤ 𝑎, (𝑎 ⊗ 𝑒)† ⊗ 𝑎 = (𝑎|𝑎∗ ˄ 𝑒)†|𝑎 ≤ 𝑎 

And  𝒅[(𝑎 ⊗ 𝑒)† ⊗ 𝑎] = [(𝑎 ⊗ 𝑒)† ⊗ 𝑎]† = (𝑎 ⊗ 𝑒)† = 𝒅(𝑎 ⊗ 𝑒). 

So that, by (2.7.3), (𝑎 ⊗ 𝑒)† ⊗ 𝑎 = 𝑎 ⊗ 𝑒.  Similarly, 𝑒 ⊗ 𝑎 = 𝑎 ⊗ (𝑒 ⊗ 𝑎)∗. 

We therefore conclude that [𝑪(𝑺),⊗] is an ample semigroup.  

We denote by 𝑺[𝑪(𝑺)] this ample semigroup constructed from the inductive category 𝑪(𝑺). 

Having constructed an ample semigroup from an inductive category, doing the same for an 

inverse semigroup is straightforward and that is what we wish to do next. 

Theorem 3.3.7.  [𝑪(𝑺𝟏),⊗] is an inverse semigroup, where 𝑪(𝑺𝟏) is the inductive category 

above 
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Proof.  We put 𝑎𝑎−1 = 𝒅(𝑎) and 𝑎−1𝑎 = 𝒓(𝑎). For each 𝑎 ∈ 𝑪(𝑺𝟏). 

𝑎𝑎−1 ⊗ 𝑎𝑎−1 = 𝑎𝑎−1  and 𝑎−1𝑎 ⊗ 𝑎−1𝑎 = 𝑎−1𝑎 . So, 𝑎𝑎−1  and 𝑎−1𝑎  are idempotents in 

[𝑪(𝑺𝟏),⊗]. As shown in type 𝐴 case, idempotents in [𝑪(𝑺𝟏),⊗] commute. What remains is to 

simply show that [𝑪(𝑺𝟏),⊗] is regular. For 𝑎, 𝑏 ∈ 𝑪(𝑺𝟏), if ∃ 𝑎 ∙ 𝑏, 𝒓(𝑎) = 𝒅(𝑏). 

So that, 𝑎 ⊗ 𝑏 = [𝑎|𝒓(𝑎)] ∙ [𝒅(𝑏)|𝑏] =  𝑎 ∙ 𝑏  by (2.7.4). Thus, if 𝑎 ∙ 𝑏 is defined in 𝑪(𝑺𝟏), ′′ ∙ ′′ 

and ⊗ coincide. 

Let 𝑥−1  be the inverse of 𝑥  in 𝑪(𝑺𝟏)  (note that the underlying set in 𝑪(𝑺𝟏)  is the inverse 

semigroup 𝑺𝟏) 

𝑥 ⊗ 𝑥−1 ⊗ 𝑥 = (𝑥 ∙ 𝑥−1) ⊗ 𝑥 = 𝒅(𝑥) ⊗ 𝑥 = 𝒅(𝑥) ∙ 𝑥 = 𝑥. 

Similarly, 𝑥−1 ⊗ 𝑥 ⊗ 𝑥−1 = 𝑥−1. Thus, [𝑪(𝑺𝟏),⊗] is regular and the idempotents commute. 

We denote by 𝑺[𝑪(𝑺𝟏)] this inverse semigroup constructed from the inductive category 𝑪(𝑺𝟏). 

 

Lemma 3.3.8 [15] Let 𝜙: 𝑪 → 𝑫 be an ordered functor between ordered categories 𝑪 and 𝑫. If 

𝑓 ∈ 𝑪𝑜  is such that 𝑓 ≤ 𝒓(𝑎) for some 𝑎 ∈ 𝑪, then (𝑎|𝑓)𝜙 = 𝑎𝜙|𝑓𝜙 . Similarly, if 𝑓 ≤ 𝒅(𝑎), 

then (𝑓|𝑎)𝜙 = 𝑓𝜙|𝑎𝜙 

Theorem 3.3.9.  𝜒 ∶  𝑺[𝑪(𝑺)] →  𝑺𝟏[𝑪(𝑺𝟏)] is a functor 

 

Proof. This implies showing that  𝜂: [𝑪(𝑺),⊗] → [𝑪(𝑺𝟏),⊗]is a functor with respect to ⊗ which 

amounts to showing that 𝜙 is a functor under ⊗. 

Since 𝑪(𝑺)  and 𝑪(𝑺𝟏)  are both inductive categories, ∀𝑎, 𝑏 ∈ 𝑪(𝑺) , 𝑎 ⊗ 𝑏  will always exist 

in 𝑪(𝑺) while    𝑎𝜙 ⊗ 𝑏𝜙 and (𝑎 ⊗ 𝑏)𝜙 will always exist in 𝑪(𝑺𝟏). This is evident from the 

fact that in an inductive category, the meet of every pair of elements must exist, and 

consequently, the corestriction and restriction in the product ⊗ must exist. 

Now, we simply need to show that 𝑎𝜙 ⊗ 𝑏𝜙 = (𝑎 ⊗ 𝑏)𝜙. 

𝑮 

 

𝝌′ 

' 

𝛬[𝑺[𝑪(𝑺)]] 𝛬[𝑺[𝑪(𝑺𝟏)]] 

𝜞𝑺 

 

𝑺[𝑪(𝑺𝟏)] 𝑺[𝑪(𝑺)] 

𝜞𝑺𝟏
 

𝝌 
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𝑎𝜙 ⊗ 𝑏𝜙 = [𝑎𝜙|𝒓(𝑎𝜙) ˄ 𝒅(𝑏𝜙)] ∙ [𝒓(𝑎𝜙) ˄ 𝒅(𝑏𝜙)|𝑏𝜙] 

= [𝑎𝜙|𝒓(𝑎)𝜙 ˄ 𝒅(𝑏)𝜙] ∙ [𝒓(𝑎)𝜙 ˄ 𝒅(𝑏)𝜙|𝑏𝜙] 

= [𝑎𝜙|(𝒓(𝑎)˄ 𝒅(𝑏))𝜙] ∙ [(𝒓(𝑎)˄ 𝒅(𝑏))𝜙|𝑏𝜙]   since 𝜙 is a morphism 

= [𝑎|𝒓(𝑎)˄ 𝒅(𝑏)]𝜙 ∙ [𝒓(𝑎)˄ 𝒅(𝑏)|𝑏] 

= [[𝑎|𝒓(𝑎)˄ 𝒅(𝑏)] ∙ [𝒓(𝑎)˄ 𝒅(𝑏)|𝑏]]𝜙  since 𝜙 is a functor under ′′ ∙ ′′ 

= (𝑎 ⊗ 𝑏)𝜙 

 

Theorem 3.3.10 

 

Proof. We simply need to show that 𝑺[𝑪(𝑺)] = 𝑺 and 𝑺[𝑪(𝑺𝟏)] = 𝑺𝟏, and since 𝜒 ∶  𝑺[𝑪(𝑺)] →

 𝑺[𝑪(𝑺𝟏)] as a functor amounts to 𝜙 being a functor under ⊗, every fact will follow, through the 

coincidence of ⊗ and the product in 𝑺. 

𝑪(𝑺)  is an inductive category under ′′ ∙ ′′  in which (∀𝑎, 𝑏 ∈ 𝑪(𝑺))(∀𝑒, 𝑓 ∈ 𝑪(𝑺)𝑜), 𝑒|𝑎 =

𝑒𝑎, 𝑎|𝑒 = 𝑎𝑒  and  𝑒 ˄ 𝑓 = 𝑒𝑓.  The underlying set in 𝑺[𝑪(𝑺)]  is   𝑺  and 𝑎 ⊗ 𝑏 =

[𝑎|𝒓(𝑎)˄ 𝒅(𝑏)] ∙ [𝒓(𝑎)˄ 𝒅(𝑏)|𝑏]. 

Since  𝑒 ˄ 𝑓 = 𝑒𝑓∀𝑒, 𝑓 ∈ 𝑪(𝑺)𝑜, then 𝑎 ⊗ 𝑏 = [𝑎|𝒓(𝑎)𝒅(𝑏)] ∙ [𝒓(𝑎)𝒅(𝑏)|𝑏] 

and since 𝑒|𝑎 = 𝑒𝑎, 𝑎|𝑒 = 𝑎𝑒, we have  

𝑎 ⊗ 𝑏 = [𝑎|𝒓(𝑎)𝒅(𝑏)] ∙ [𝒓(𝑎)𝒅(𝑏)|𝑏] = (𝑎𝑎∗𝑏†) ∙ (𝑎∗𝑏†𝑏)  = (𝑎𝑏†) ∙ (𝑎∗𝑏) 

 and since (𝑎𝑏†)∗ = (𝑎∗𝑏†)∗ = 𝑎∗𝑏† = (𝑎∗𝑏)†, then 𝑎 ⊗ 𝑏 = (𝑎𝑏†) ∙ (𝑎∗𝑏) = 𝑎𝑏†𝑎∗𝑏 = 𝑎𝑏 

Thus, the operations of  𝑺[𝑪(𝑺)] and 𝑺 coincide, and since they have the same underlying set, 

𝑺[𝑪(𝑺)] = 𝑺. 

Similarly, the operations of 𝑺[𝑪(𝑺𝟏)] and 𝑺𝟏 coincide, and 𝑺[𝑪(𝑺𝟏)] = 𝑺𝟏. 
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