Available online at http://scik.org
Algebra Letters, 2013, 2013:2
ISSN 2051-5502

ON EPIMORPHISMS AND SEMIGROUP IDENTITIES

WAJIH ASHRAF* AND NOOR MOHAMMAD KHAN

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Abstract. Khan and Shah associated two natural numbers with a seminormal identi-
ty. Using these natural numbers, we further enlarge the class of homotypical identities of
which both sides contain repeated variables which are preserved under epis in conjunction

with a seminormal permutation identity.
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1. Introduction

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [5], we say
that U dominates an element d of S if for every semigroup 7" and for all homomorphisms
a,B:8 = T, ua = up for all w € U implies da = dfS. The set of all elements of S
dominated by U is called the dominion of U in S, and we denote it by Dom(U, S). It
may easily be seen that Dom(U, S) is a subsemigroup of S containing U. A semigroup U
is said to be saturated if Dom(U, S) # S for every properly containing semigroup S, and

epimorphically embedded or dense in S if Dom(U,S) = S.
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A morphism « : S — T in the category of all semigroups is called an epimorphism
(epi for short) if for all morphisms 3, ~, af = ary implies 5 = 7. Every onto morphism is
epi, but the converse is not true in general. It may be easily checked that o : S — T is
epi if and only if the inclusion map ¢ : Sav — T is epi and the inclusion map i : U — S
is epi if and only if Dom(U,S) = S. A variety V of semigroups is said to be saturated if
all its members are saturated and epimorphically closed or closed under epis if whenever
S eVand ¢: S5 — T is epi in the category of all semigroups, then 7" € V or equivalently
whenever U € V and Dom(U, S) = S, then S € V.

An identity g is said to be preserved under epis in conjunction with an identity 7 if
whenever S satisfies 7 and p, and ¢ : S — T is an epimorphism in the category of all
semigroups, then 71" also satisfies 7 and u; or equivalently, whenever U satisfies 7 and p

and Dom(U, S) = S, then S also satisfies 7 and p.
An identity of the form
L1+ = Ty Ly """ Ty, (n > 2)7 (1)

is called a permutation identity, where i is any permutation of the set {1,2,3,...,n} and
ir, for each k (1 < k < n), is the image of k£ under the permutation i. A permutation
identity of the form (1) is said to be nontrivial if the permutation i is different from the
identity permutation. Further, a nontrivial permutation identity of the form (1) is said to
be left semicommutative if 11 # 1, right semicommutative if i,, # n, and seminormal if i, =
1 and ¢,, = n. Clearly, every nontrivial permutation identity is either left semicommutative,
right semicommutative, or seminormal. A semigroup S satisfying a nontrivial permutation
identity is said to be permutative, and a variety ) of semigroups is said to be permutative
if it admits a nontrivial permutation identity. For example, some of the well known

permutation identities are:

T129 = 297 [commutativity];
T1ToT3 = T173T9 [left normality];
T1ToT3 = Tox T3 [right normality];
T1ToT3Ty = X1X3Tory [normality].
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An identity u = v is said to be preserved under epis if for all semigroups U and S with U

dense in S, if U satisfies u = v, then S also satisfies u = v.
We now consider three conditions that a semigroup identity ¢ may satisfy:

(A) ¢ is preserved under epis;
(B) each variety admitting ¢ is epimorphically closed;

(C) each variety admitting ¢ is saturated.

Condition (C) clearly implies (B), which in turn implies (A), but the reverse impli-
cations are not true in general. In [2], Higgins gave a necessary condition for a semigroup
identity to satisfy condition (A): a semigroup identity is preserved under epis only if one
of its sides contains no repeated variable. Isbell [5] showed that the dominion of a com-
mutative semigroup is commutative, which yields that commutativity satisfies condition
(A). Khan [6, 9] generalised this result in two directions by showing that commutativity
satisfies condition (B), and that all permutation identities satisfy condition (A). In [9],
Khan further showed, jointly with Higgins, that left and right semicommutative identities
satisfy condition (B). Therefore, it is natural to try to determine all those semigroup
identities that satisfy condition (A) in conjunction with seminormal identities. Khan [7,
8] showed that all semigroup identities in which both sides do not contain repeated vari-
ables satisfy condition (A) in conjunction with any nontrivial permutation identity, while
Higgins [3] has shown that seminormal permutation identities do not satisfy condition
(B) by showing that the identity xyx = yxy does not satisfy (A) in conjunction with the

normality identity.

It is well known that all subvarieties of a saturated variety are saturated, but the same
is not true for epimorphically closed varieties in general. Thus, determining all semigroup
identities whose both sides contain repeated variables and satisfy condition (A) in con-

junction with any seminormal identity becomes much more difficult, but interesting.

In [10], Khan and Shah obtained some partial results towards this goal, by estab-

lishing some sufficient conditions for such identities to lie in this class. In the present
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paper, we further enlarge the class of homotypical identities containing repeated variables
on both sides that are preserved under epis in conjunction with a seminormal identity by
generalizing results Theorem 1.5, 2.7 and 3.1 of [10]. However, a full determination of all
semigroup identities that satisfy condition (A) in conjunction with a seminormal identity

remains an open problem.

2. Preliminaries

Now, we quote some results that will be used in rest of the paper. Our notation will
be standard and we refer the reader to Clifford and Preston [1] and Howie [4] for any
unexplained symbols and terminology. Further in what follows, we will often speak of a
semigroup “satisfying (1)” to mean that the semigroup in question satisfies an identity of

that type.

Result 2.1 ([8], Proposition 3.1). Let S be any permutative semigroup satisfying (1)

with n > 3.

(i) For each g € {2, 3,...,n} such that z,_yz, is not a subword of z; z;, ---x;,, S

also satisfies the permutation identity
TNTg -+ Ty 1 TYLy -+ Ly = T1T2 -+ Tg_1YTLy - - L.
(ii) If 2y # x4, then S also satisfies the permutation identity
TYL1To -+ Ty, = YTL1Lg "+ - T

In the following result and elsewhere in the paper S, for any positive integer m and

semigroup S, will denote the set of all m-fold products of elements of S.

Result 2.2 ([8], Proposition 6.3). Let S be any semigroup satisfying (1) with n > 3.
Then for each g € {2,3,...,n} such that x,_;z, is not a subword of z;, x;, - - - z;,, for all

r>g—1,s>n—g+1and for all u € ST, v e S, we have
UT1 T2V = UTT1V, for all 1,25 € S.

In particular, S*) satisfies the normality identity for all k& > max(g — 1,n — g + 1).
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Result 2.3 (][9], Theorem 3.1). All permutation identities are preserved under epis.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag

Theorem.

Result 2.4 ([5, Theorem 2.3] or [4, Theorem VII.2.13]). Let U be a subsemigroup of a
semigroup S and let d € S. Then d € Dom(U, S) if and only if d € U or there exists a

series of factorizations of d as follows:

d =apti = yiats =yagtes = Yaasts = = Ynlom—1lm = YmGom, (2)
where m > 1, a; €U (i =0,1,...,2m), y;,t; € S (1 =1,2,...,m), and
ap = Y101, A2m—1tm = Q2m,
agi—1t; = agititq, YiG2; = Yi+102i4+1 (1<i<m-—1).

Such a series of factorization is called a zigzag in S over U with value d, length m, and

spine ag, aq, . .., asy,. We refer to the equations in Result 2.4 as the zigzag equations.

Result 2.5 ([8], Result 3). Let U be any subsemigroup of a semigroup S and let
d € Dom(U,S)\ U. If (2) is a zigzag of minimal length m over U with value d, then
yj,t; € S\Uforall j=1,2,...,m.

In the following results, let U and S be any semigroups with U dense in S.

Result 2.6 ([8], Result 4). For any d € S\ U and k any positive integer, if (2) is a zigzag
of minimal length over U with value d, then there exist by, b, ..., by € U and dj, € S\ U
such that d = byby - - - bidy.

Result 2.7 ([8], Corollary 4.2). If U be permutative, then
ST1Tg -+ Tt = ST, Tj, ++ - T, T,
for all z1,29,..., 2, €S, s,t € S\ U and any permutation j of the set {1,2,..., k}.

Result 2.8 ([10], Corollary 2.8). For any d € S and positive integer k, if d = bybs - - - byd,
for some by,bo,...,b; € U and dj, € S\ U such that by = y,¢; for some 3; in S\U, ¢; € U,
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then d? = 0{th - - - bi.d}, for any positive integer p.

The symmetrical statement in the following result does not appear in the original,

but is immediate.

Result 2.9 ([9], Proposition 4.6). Assume that U is permutative. If d € S\ U and (2)
is a zigzag of length m over U with value d such that y; € S\ U, then d* = akt¥ for
each positive integer k; in particular, the conclusion holds if (2) is of minimal length.
Symmetrically, if d € S\ U and (2) is a zigzag of length m over U with value d such that
tm € S\ U, then d* = y*ak = for each positive integer k; in particular, the conclusion

holds if (2) is of minimal length.

3. Main results
The following proposition easily follows from Result 2.2.

Proposition 3.1. Let S be any permutative semigroup satisfying (1) with n > 3. Then
for each ¢ € {2,3,...,n} such that z, 1z, is not a subword of z;z;,---z;,, for all

r>g—1,s>n—g+1,and for all u € S, v € S©, we have
UL To - LU = UT ), Ty, * - TV,
for all z1,x9,...,20 € S (¢ > 2), where )\ is any permutation of the set {1,2,...,¢}.
Now using Results 2.3, 2.6 and Proposition 3.1, we easily get the following.

Proposition 3.2. Let U be any semigroup satisfying (1) with n > 3 and let S be any
semigroup containing U such that Dom(U,S) = S. Then for each g € {2,3,...,n} such

that z, 12, is not a subword of z;, z;, - - - x;,, for all7 > g—1 and for allu € ST, v € S\U
UL1T * + = TgU = UL N Txy ** " T )V,

for all z1,x9,...,20 € S (£ > 2), where \ is any permutation of the set {1,2,...,¢}.
Symmetrically, for all s > h — 1 such that x,_,2,_,—1) is not a subword of x; x;, - - - x;

and for all v € S® uwe S\ U

n
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UT1X2 * = TpU = UT )\, Ty " " TH, U,

for all z1,x9,...,20 € S (£ > 2), where \ is any permutation of the set {1,2,...,¢}.
Lemma 3.3. Let U be any permutative semigroup satisfying a seminormal identity which
is dense in S. Let w and v be any words in z1,..., 2, and let py,...,p,, q1,...,qs be any

positive integers such that p; < --- <p,; ¢s < -+ < q(r,s > 1). If U satisfies

oVt a2yl oyl =2t a2yl ey (3)

then the identity (3) is also satisfied for all z1,..., 2., y1,...,ys € S and 2q,..., 2
in U.

Proof. Take any semigroups U and S with U a subsemigroup of .S such that Dom(U, S) =
S. Since U satisfies (1), by Result 2.3, S also satisfies (1). Now we shall show that the iden-
tity (3) satisfied by U is also satisfied when 21, 29, ..., 2, € U and 1,29, ..., T, Y1, Y2,y - - -, Ys
in S.

Case(i): First, take any z1,x9,...,2, € S and yy,...,Ys, 21,...,20 € U. f 21, 29,..., 2,

in U, then (3) holds trivially. So assume without loss of generality that z; € S\ U. Let

(2) be a zigzag of minimal length m over U with value x;. Letting y = y{'ya - - - y2, we
have
atay? e alru(z, 2 20y s Y
= yPrabl ab? - xPru(zy, 29, ..., 20)y (by the zigzag equations and Result 2.9)
= yPrabl ab? - xPro(zy, 29, ..., 20)y (as U satisfies (3) )
= o' ab? - abro(zy, 20, z0)yTyd -yl

(by the zigzag equations and Result 2.9 and as y = y{'ya* - - - y%)

as required.
Next, we assume inductively that the result is true for all x1, ..., 2,1 € Sand xg, ..., z, in

U. We shall prove that the result is also true for all x1,..., 2, € S and x44q,..., 2, € U.
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Again if x; € U, then the result follows by the inductive hypothesis. So assume that

x € S\ U. Let (2) be a zigzag of minimal length m in S over U with value xy.

Now, letting y = yi'ya® - - - y%, we have
p1,.pP2
altah? e alru(zy, 2o, ., 20)Y
— p1,.P2 Pr—1 Pk P41
= o' wy -y any ot bz, 2, 20)Y

(by Result 2.9 and zigzag equations)

— (m)Pk y (m)Pk (m)Pk_pp,  Prt1
= wym by by abn i alru(z, ze, . 20)Y

by Results 2.6 and 2.7 for some 5™, ... 0™ € U and y{™ € S\U as
1 k-1

Ym € S\U and Aom = Gom—1tm with tm € S\U and where w = xllol . xik_711>

— (m)Pk (m)P1 (m)Pk=1 pp et
= wym” ™Mb by agnm e arulz 2, 2y

(by Result 2.7 as y&" ¢, € S\U and where v(m) = p{m™™ 7 plm) PEEFRL

— (m)Pk ()7 (m)P1 (m)Pk=1 pp  pri1 -
= wy, vMb] by agn i wPru(zy, 2, 20)Y

(as U satisfies (3))

— (m)Pky (m)Pk (m)Pk_pp pryr -
= wym by by agn e alru(zy, 2, 20)Y

(by Result 2.7 and the definition of v(™))

— p1,..P2 Prk—1 Pk Pk+1
= aitay? - ybkasy o bz, 2, 20)Y
Pk Pk Pk 3

(as ym bgm) e b](:f)l =yPk and w = 2'ah? - 2P
— p1,..P2 Pk—1,.Pk . Pk+1
= aftay? -tk a2, 2, 20y

(by Result 2.9 and zigzag equations)
— p1,.P2 q1,,92 _ ,,41,,92
= ay ey’ apru(z, e, 2y Yy yE (as y = uis )

as required.
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Case(ii): Now, we show that (3) is satisfied for all zq,..., 2, 41,...,ys € S and z1,..., 2
in U. Again, we can assume without loss of generality that y; in S\ U. Let (2) be a zigzag

of minimal length m over U with value y;. Now as the equalities (4) and (5) below follow

by Results 2.6 and 2.7 for some b(zl), N " in U and t(ll) in S\U as y;,t; € S\ U and

1)1 —42 1)91—Gs . .
where w!) = bg ) . respectively. Letting x = x7'ab? - - - 2Pr | we have
P1,.p2 D q1,,92 q
oy wy’ e wu(z, 2 2yl Y Y

= zu(z1, 22,...,20)ad' tT'yd - - y% (by the zigzag equations and Result 2.9)

= zu(zy,29,. .. ,ZE)aglbgl)ql _ bgl)qltgl)qugz eyl (4)

q2 qs q
= zu(zy,29,. .. ,ZE)aglbgl) e w(l)tgl) Ly (5)
= zv(z1,22,...,20)ad bgl)qz e bgl)qsw(l)tgl)qu;“ ---y? (as U satisfies (3))
= zv(z1,22,...,20)a bgl)‘n e bgl)(htgl)qu;n ceeyls
(by Result 2.7 and definition of w")
= zv(z1,22,. .., 2000l tTyd - y% (by Result 2.7 as bgl)(h e b&”“tﬁ”'ﬂ =t1")
= ay'ay’ - alu(en, 2, 2yl sy
(by the zigzag equations and Result 2.9 and as « = af'ah? - - - aPr)
Next, we assume inductively that the result is true for all y1,...,yx1 € S and yi,...,ys

in U. We shall prove that the result is also true for all yy, ..., yx—1,yx € S and ygy1, ..., Ys
in U. Again if y, € U, then the result follows by the inductive hypothesis. So assume
that y, € S\ U. Let (2) be a zigzag of minimal length m in S over U with value
yr. Now as equalities (6) and (7) follow by Results 2.6 and 2.7 for some bgjl, oY in
U and tgl) € S\ U as yi,t; € S\ U and where v = y*%' ---y%, and by Result 2.7 as

s 7

ap = Y101, Y1, tgl) € S\U and where w® = bgjlqkiqkﬂ e bgl)qkiqs respectively, we have
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atay’ e au(a, 2 2yl Yyl

= au(zr, 22, 2yl Yy g Yy

(by Result 2.9 and zigzag equations)

ak Tk (1)4k

= au(z1, 29, .., 200y - -yg’i‘fag’“b&)l ST, (6)
_ xu(zl, Zoy. .., zﬁ)yi]l . 'ygk:fagkbgllqkﬂ o bgl)qu(l)tgl)qu (7)
_ xv(zl, Zoy ... ’Zg)y? . 'ygk:llagkbl(glllqkﬂ o bgl)qu(1)t§1)qu

(by the inductive hypothesis)
= wv(z 2z, 2yl g ag b D

(by Result 2.7 and the definition of w()
= av(z, 2, 2yl Y ad YRy

(by Result 2.7 as b,(:llqk e bgl)qkt(ll)qk = {{* and the definition of v)

= ay'alalo(a, z, o 2)YT Y U YRy
(by Result 2.9 and zigzag equations and as x = " ah? - - - aPr).
as required. This completes the proof of the lemma. O

The following corollary easily follows from Proposition 3.1 and Lemma 3.3.

Corollary 3.4. Let U be any permutative semigroup which is dense in S, and t1, %o, ..., %,
be any positive integers. Let py,po, ..., pr, q1, G2, - .., (s be any positive integers such that

PL<p2<--<pr1 <P, s < @s—1-- < @2 < qu(r,s > 0). If U satisfies

D1 ,,.D2 t1 b2 te, 41, G2 s _ .P1,.D2 ti1 tio e q1, g2 ’
Ty Ty XY 2y 2L Yy YE = X Xy W 2 2 Yy Y
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where j is any permutation of the set {1,2,..., ¢}, then the above identity is also satisfied

forall z¢,..., 20, v1,...,ys € Sand z1,...,2, € U.

Proposition 3.5: Let U be a permutative subsemigroup satisfying a seminormal per-
mutation identity which is dense in S. Let v and v be any words in wy, ..., w,. If the
identity

p1 q1 s — mP1 q1 <
alt e alru(wy, o we)yft eyl = 2t aPro(wy, . we)yft eyl

holds for all xy,..., 2., y1,...,ys € S and wy, ..., w, € U, then the identity

xfl ce xfn”“u(wl, s 7w€)yq = lejl e a:{f*v(wl, ce 7w£)yq
[PPu(wy, ..., wo)yd -yl = 2Po(wy, ..., we)yd - - y%]

also holds for all y € S\ U; xy,..., 2, € S; wy,...,w, € U and positive integer g > ¢, [for
all z € S\U; y1,...,ys € S; wy,...,we € U and positive integer p > p,|.
Proof. We have,

p1 P q
' alru(wy, we, . we)y

I it _
= al' - aPru(wy, wa, .. we)y Tyt

_ p1 q1 a1 g—
= al' - alru(wy, wy, .. we)adt - alty Tyt 0

(by Results 2.6 and 2.8 for some ay,...,as € U and
y € S\U as a, = 2, by for some z," € S\U, b, € U)

_ p1 q1 'l g
= al' - alru(wy, wa, .. we)adt - alwy Tyt n

(by Result 2.8 as a; = 2 by for some 2, € S\U, by e U
and where w = a3 "% ... q017%)

_ D1 q1 a1 q—
= a' - alro(wy, ..., we)af" - alwy Tyl n

g ..
= o' aPro(wy, .. we)aft - aly Ty ? (by definition of w)
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_ P1 _
= ml ...xfrv(wl".',wé)yquq q1

(by Results 2.6 and 2.8 as y% = a - - - a2y’ ™)

= o' aPro(w, ... we)y?
as required. Dual statment may be proved on the similar lines. 0

Following Khan and Shah [10], for any seminormal identity, let go = min P, the minimum

of P, where
P={2<g<n—-2:z,42,is not a subword of x; x;, - - - z;, };
and let hg = min ), where
Q={1<h<n—gyo—1: 2y p&y_(n-1) is not a subword of z; z;, - - - x;, }.

Throughout the paper gy and hy will stand as defined above; and p1,p2 .. ., Pr,
di,q:2 - - .,qs will stand for any positive integers such that p; + p2 + -+ pr > g0 — 1,
1 tgz+--+dgds>ho—1,p1 < <prg <prandqgs <--- < gz < qy(r,s > 1) un-
less exclusively mentioned. Also, to avoid introduction of new symbols, we
shall treat, wherever is appropriate, x;,Xs,...,X:, V1,¥2,---,¥Vs, W1, W2, ..., Wy,Z1,
Z2,...,Zp etc. as variables as well as the members of a semigroup without

explicit mention of distinction.

Further for any word u and any variable z of u, |z|, will denote the number of occurrences

of z in the word w.

Theorem 3.6. Let u and v are any words in the variables zq, 2o, . .., z¢ such that |z, =
|zi], for all i = 1,2,...,¢. Then all semigroup identities of the form
oyt alu(zy 2y eyl = oz 2yt gl (023) (8)

are preserved under epis in conjunction with (1).
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Proof. Take any semigroups U and S with U as a subsemigroup of S such that U is
dense in S. Let U satisfy (1) and (8). As U satisfies (1), by Result 2.3, S also satisfies
(1). Now we shall prove that the identity (8) satisfied by U is also satisfied by S. Suppose
that x1, 2o, ..., Tr Y1, Y2, -« -, Ys, 21, 22, - - -, 2¢ € S. Ifall of 21, 29,..., 2 are in U, then, (8)
is satisfied by lemma 3.3, So, we assume that not all of 21, 25, ..., 2, are from U. Suppose
that z; € S\ U, for some j € {1,2,...,¢}. By Result 2.4, z; = 2’'b = 2'b'y’ for some
2y € S\ U and b0 € U with b = 0'y/. Now, as equalities (9) and (10) below hold
respectively by Proposition 3.2 as ¢’ € S\ U and p; +---+p, > go— 1, and by Proposition
32as2' € S\U, ¢+ -+ qs > ho — 1 together with the fact that |z, = |z, for all

1=1,2,...,¢, we have

oyt oyt au(z, 2 20) Y Ys Y
= al'al? o alru(zy, 20y 2o, DVY  Zigs o 20y S -y
= aftab? o abr () leu(zy, 2o, 2, VY 2, 2y YRy (9)
= aftab?abr ()l (2, 20, 2, VY 2, 20 YR YRRy (10)
= al'al?alru(z, 2o, .0 2o, 2 VY 2, o 20U Y YR (11)
= al'al? o aPro(z, 2o, o 21, 2y 2ty - 20 YT Yy,

where the equality (11) above follows by Proposition 3.2 as p; +-+-+p, > go— 1 and
y' € S\U, as required. O

Corollary 3.7. All semigroup identities of the form

te, a1

P1 o Prott ceiqs — PL L Pr s by L b AL s
T,z Ze Y1 Y& = Ty Ty Zj N e 25,70 yd (0> 3),

Ty

where j is any permutation of the set {1,2,... ¢} and t1,s,...,t, > 1, are preserved

under epis in conjunction with a seminormal identity.
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Theorem 3.8. Let u and v be any words in the variables z1, ..., z,. If min{|z|, |2i]o}

> max {p,,q} for all i in {1,2,...,¢}, then all semigroup identities of the form
otz 2yl oyl =yt a (e 20y Yl (02 03), (12)
are preserved under epis in conjunction with (1).

The following lemmas, where U and S be any semigroups such that U is dense in .5,
will be required to complete the proof of Theorem 3.8; bracketed clauses yield the dual

statements.

In the following, S* will denote the semigroup obtained from the semigroup S by ad-
joining an identity, if necessary; while the length of a word u, denoted by ¢(u), is defined

as the sum of the occurrences of all the variables appearing in u.

Lemma 3.8.1([10], Lemma 2.7.1). Let (1) be any seminormal identity, and let u, v
and w be any words in the variables 1, xs, ...,z (k > 2) such that ¢(u) > go — 1 and
{(v) > hg — 1. Take any ay,as,...,a, € U and ty,ts,...,t, € S'. If for each i such that
t; € S, a; = y;b; [a; = byy;] for some y; € S\ U and b; € S (i = 1,2,..., k), then for any
choice dy, ds, . .., dy for the variables xq, xs, ...,z in S respectively

u(d)w(arty, asty, ... apte)o(d) = u(d)w(as, az, ..., ap)w(ty, ta, . .. tx)v(d)

[U(d)U)(thZl, Z526127 s 7tk‘ak)v(d) = u(d)w(tb t27 s atk)w(ala ag, . .. 7ak)/0(d)]>
where d = (dy, ds, . .., dy).

For any word u, the content of u (necessarily finite) is the set of all variables appear-

ing in the word u and is denoted by C'(u).

Lemma 3.8.2([10], Lemma 2.7.2). Let (1) be any seminormal identity and let u, v, w
and w’ be any words in the variables xy,xs,...,x; such that {(w) > gy — 1, {(w') >
ho — 1. Take any dy,ds,...,d; in S for the variables zi,x,, ...,z respectively. Let

z; € C(v) [z; € C(u)] be such that d; € S\ U for some 1 < j <k. Then
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where d = (dy,ds, . .., dy).

Lemma 3.8.3([10], Lemma 2.7.3). Let (1) be any seminormal identity and let u, v
and w be any words in the variables 1, xo, ...,z (kK > 2) such that ¢(u) > go — 1 and
l(w) > hg — 1. Take any dy,ds, ...,dy in S for the variables xy, za, ..., x) respectively. If
x; € C(v), for some 1 < j <k, be such that d; € S\ U, then

u(d)v(dyw(d) = u(d)(d))o(d )w(d)

in S'(in fact the two products are equal in S), where

d:(dl,dg,...,dk)

and

dﬂ = (d17d27 . 7dj_l, 17dj+1; e 7dk')’

for all dy,ds,...,d, € S (thus the product v(d) is obtained from the product v(d) by

ommitting all the occurences of the element d;).

Proof of Theorem 3.8. Take any semigroups U and S with U dense in S, and assume
that U satisfies (1) and (11). As U satisfies (1), by Result 2.4, S also satisfies (1). Now,
we show that the identity (11) is also satisfied by S.

We shall prove the theorem in the case when ¢; > p,, so |z, > ¢ and |z;|, > ¢; hold

for all ¢; the proof when p,. > ¢ follows by dual arguments on similar lines.

So, take any di,ds,...,d, € S. If some d; € U, there is a zigzag in S* over U with
value d;, namely, d; = d;-1 =1-d;-1 =1-d;. And if d; € S\ U, then there is a zigzag over
U in S, hence in S*. Thus d;,ds, ..., d; all have zigzags over U in S' of some common

length [6, Lemma 4.2], say

R

D) — 4@ o0 o) 40 _ 0400

Y Qo = Ypt1%2%410 D2p-1 oklern (1 <<l 1<k <m-—1);

m

Dot =l e = d; 19
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where ol € U (i = 1,2,...,6 j = 0,1,....2m) and t, 4’ € S* for i = 1,2,...,¢
and ¢ = 1,2,...,m. Further, for each d; € S\ U, we may assume that t((f) and y(gi) are in
S\ U [6, Lemma 4.2].

Let Z = (21, 22, . .., 2¢). With this notation, as in [6], identity (12) becomes

oy ()Y eyl = ey o)y gl
Also, let
d = (d,dy,...,dp);

a = (a,(ﬁl)’al(f)’.._,al(f)) (k=0,1,...,2m);

> 1 2 l
b, = WPty (g=1,2,...,m);
- 1 2 l
g = Wy w0 (g=1,2,...,m).

We, now, wish to show that
1;1191 . a’;f”‘u(d)ygl PN ygs — 1‘1171 [N xfrv(d)ygl “ e y?S

By [6, Lemma 4.3], d € S¥ is in the dominion of UY in (Sl)m, where TV, for any
semigroup 71" and for any integer v > 2, denotes the cartesian product of the ~-copies of

T. In fact, d has a zigzag over UMY in (S 1)[4 of length m as follows:

d = apty, ap = Y1a1;
Urliog = Uki18okt1, Gok—1ly = doptprn (1 <k<m—1,1<i<m—1); (14)
d2m—1fm - d?ma gmde == Ja

where @, € UM (t =0,1,...,2m) and §,, t, € (51)[@ (¢g=1,2,...,m).

So, suppose that xq,..., 2., y1,...,Ys, di,...,dy € S. If all d; that occur in the word u

are from U, then, by lemma 3.3,

~ m ~

1 apru(d)ylt eyl =yt ao(d)ylt ey,

v
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as required. Hence, we may assume that there exists at least one d; (1 < j < /), say, such

that d; € S\ U. Then tl(j),yi(j) € S\ U forall i =1,2,...,m. Letting x = o' ab?> - zPr

and y = y{'ya* - - - y?, we have

eapru(d)yl -yl

a
= au(agt,)y(from equations (14))

= zu(dg)u(t;)y (by lemma 3.8.1)

= xu(do)(tgj))‘zﬂuu(f'l)y (by lemma 3.8.3 as tgj) e S\U)

= zv(ao) (tY)) = lu(f,)y (by Proposition 3.5 as |2jlu > ¢ and t¥ e 5\ U)

= zv(fiar)u(ty)y (by equations (14) and Proposition 3.1 as t¥) € S\ U)

= zv(j)v(a)u(ty)y (by dual of lemma 3.8.1 as y) € §\ U)

= 2v(a)v(§)u(t)y (by lemma 3.8.2 as y%j) e S\U)

= xv(dl)(yy))"zﬂ"”v(gjll)u(fl)y (by lemma 3.8.3 as yy) e S\U)

= zu(@) ()=l o(F)u(f )y (by Proposition 3.5 as |2;]v > q1 and y e S\ U)
= zu(ay)v(g)u(t,)y (by Lemmas 3.8.3 as ygj) e S\U)

= 2v(fh)u(at;)y (by Lemmas 3.8.1 and 3.8.2)

= zv(§1)u(asts)y (from equations (14)).

Continuing in this way, we obtain
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Py atru(dyfys oyl

I T

20 (i1 )u(Gat2)y

20 (Jm—1)u(G2m—2tm)y

2V (Pp—1)U(A2m—2)u(t)y (by lemma 3.8.1)

2u(@sm—2)0 (1 )u(Em)y (by lemma 3.8.2 as ), € S\ U)

2u(Gzm—2) (2 )El (G, Dult)y (by lemma 3.8.3 as 49, € S\ U)

0(@am-2) (Y1) =0 (G JulEn)y
(by Proposition 3.5 as |zj|, > ¢ and y9 e S\U)

20(82m—2)V(Fm—1)u(tm)y (by lemma 3.8.3)

V(P10 (G2m—2)u(ty)y (by lemma 3.8.2 as t9 e s \U)
TV (Jm—182m—2)u(tm)y (by the dual of lemma 3.8.1)
TV(Jrnom—1)u(ty )y (from equations (14))

20 (Jim )0 (m—1)u(ty )y (by the dual of lemma 3.8.1)
20(82m—1)V (P )u(tm )y (by lemma 3.8.2 as y e s \U)

20 (@am_1) (Y20 (G Yu(tm)y (by lemma 3.8.3 as y§) € S\ U)
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wu(gn—1) () 0, u(En)y
(by Proposition 3.5 as |z;|, > ¢1 and yﬁ,{) e S\U)

(g —1)0(Fm)u(t)y (by lemma 3.8.3)

2V(Jm ) u(@2m—1tm)y (by Lemmas 3.8.1 and 3.8.2 as yg) e S\U)

V(G )u(Gom )y (from equations (14))

2U(@9m )V (Jm )y (by lemma 3.8.2 as Yy es \U)

2u(Gam) (Y70 (. )y (by lemma 3.8.3 as y$) € S\ U)

xv(as )(yfn))‘zﬂ”v( )y (by Proposition 3.5 as |z;|, > ¢; and Yy es \U)
V(G20 )V(Um)y (by lemma 3.8.3)

V(Y )v(G2m)y (by lemma 3.8.2 as y e s \U)

2V(Ymaom)y (by the dual of lemma 3.8.1)

P1.P2 | .p Q,92 . .q
il abro(d)yfy$ -yl

where the last equality follows from equations (14), and as © = a}'z5>--- 2P and y =
yt'ya® - - - y?. This completes the proof of the theorem. O

4. AN IMPROVEMENT IN A SPECIAL CASE

In this section, we find some sufficient condition on semigroup identities, a subclass

of the class of semigroup identities of the type considered in Theorem 3.6, to be preserved
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under epis in conjunction with any seminormal identity (1), and with improved lower
bounds for p; +---+p, and ¢; +- - - +¢s. This modest weaking of lower bounds is achieved

by a careful analysis of the interplay of the zigzag equations and the identities in question.

Theorem 4.1: Let (1) be a seminormal identity and let py,pa,...,pr, @1,-...,¢s be any
positive integers such that p; < py < --- < p1 <Pp; G < g1 - < @@ < (s > 1)

with py+...4+p. > go— 2 and q; + ...+ gs > hg — 2 respectively. Then for any integer

p > max{p,, ¢ }, all semigroup identities of the form

xfl .. .x%z?"zzf. . Z?ytlh . .ySS — lejl . .w?;rz‘?l . .z‘iygl . .yss (15)
where ¢ > 3 and j is any permutation of the set {1,2,...,¢}, are preserved under epis in

conjunction with (1).

Proof. Take any semigroups U and S with U dense in S. Assume U, and hence S by
Result 2.3, satisfy the identity (1). We shall show that if U satisfies (15), then so does S.

Solet z1,29,...,20 € S. If 21,29,...,2, € U, then the result holds by corollary 3.4.

For ease of writing, we introduce some notation:

W1 (T1, oy Ty Ziyy oo 2 Yl e v o3 Ys)
— DU pr PSP A s
= Tz 0 s
= U (T1y e Ty 21y ey 20, YLy e 5 Us)
and
Wo (1, ooy Ty Zjyy e e s Zjs Yls e v o3 Ys)
— DU apr PSP AL g
= T2 2 5
= (L1, Ty 21y ey 20, YLy e 5 Us)

Using these definitions, the theorem asserts that

Wi (X1, ey Ty 2y ey 2 Yty e Ys) = Wo( L1y ooy Ty 2y ey Zjys Yo - - -5 Us)
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or, equivalently, that
UL (T ooy Ty 21y ey 20, YLy e e oy Ys) = U2(X1, o Ty 215 ooy 20, Y1y - -+ Ys)

We will prove the theorem by induction on ¢, where the elements x1, zo, ..., 2., y1,

Y253 Yss Zjis -5 %,y lie in S (¢ > 2) and the remaining elements z;,, ..., z;, lie in U.

First for ¢ = 2, that is, when x1,2za,..., 2, y1,%2,...,¥s, 25, € S and zj,,...,2;, € U,
we wish to show that (15) holds. When z; € U, (15) holds by corollary 3.4. If, on the

other hand z;, € S\ U, let (2) be a zigzag of minimal length m over U with value z;,.

Case(i). j1 = 1. Now

ARTEE o AP RV IR
= o)t abryhab, 2 - 2yt -y (by the zigzag equations and Result 2.9)
= ot abr fn—pry%agmzﬁ?z R zg;ygl T
= gl gy P P agmﬂ”agmzi gy

(by Results 2.6 and 2.7 for some agm), o ,aﬁm) € U and y,(fln) € S\U as
Ym € S\U and agy,, = agpm_1t, with t,, € S\U)

_ m)Pr m)P1 m)Pr
— x?l e x%z?" 57, pry,sn ) w(m)ajg ) e a,& ) agmzﬁé e Z‘iy$1 N gs (by Result
)Pr—P1 (m)Pr—Pr—1

2.7 as y& t,, € S\U and where w(™ = a{™

_ .; —pr, (M)PT (m)P1 (m)Pr p p P

= ot aPryP Py w™ay ceay a2y Ty
(by corollary 3.4)

_ . —py,, (m)Pr_(m)Pr (m)Pr p p P, q

— _le ...xl?T %pTym al cee Gy a2mz2...zéy11... gs

(by definition of w(™))
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= PL_ pPrgp gP PP
= I xrryma2m22 Zéyl yss

(by Results 2.6 and 2.7 as yPr = yﬁnm)pTagm)pr e ai’”)p’)

= afteeabrZl e 2Pyl y% (by the zigzag equations and Result 2.9)

as required.
Case(ii). 1 < j; < £. Now letting k = j;, we have

Pl pPr P P4 s
L1 Ly 25, 25, Y1 Ys

= Pt PP P o P T gd i i
= abryb ag, - 25,07 y2s (by the zigzag equations and Result 2.9)
= pPL L Py pmPrgPragP LGP T
= Ty " Ym ~ Ym Aom ngyl Ys®
Ppr Pr Ppr
I T LT O COLNUIN (LG SRS S I
= I Lo Ym Ym T Oy Qr " Qo+ * 25,Yp Ys®

(by Results 2.6 and 2.7 for some agm), o ,aﬁm) € U and yS@n) e S\U as
Ym € S\U and agy,, = agp_1t, with t,, € S\U)

e xlfl [P xgryg(:pry?(’:zl)prw(m)agm)pl L a/gm)pTagm . Z;?gy(l]l I ygs (by Result 27

as yo t,, € S\U and where w(™ = ™" " ... o™
m)Pr m m
= - -xfryfn_pryr(n P )wl(ag ), . ,a7(~ ),a2m, s 2y YLy e Us)
= i xfryfn_pryﬁ)prw(m)wﬂagm), . ,a,(nm), oy -y Zjps YLy - - 5 Ys)

(by corollary 3.4)

Pr p1 Dr
— o PU L ey p—pry (MPT () (m)PY ()P p o p p o p g
= I3 Tp Y T Ym T WA Qr = 2 1092y Aol Ys®
Dr pP1 Pr
—  PU ey p—pr, (M) (m),,m)Pr )P p o p o p P, P41 g
= I3 Lo Y T Ym T WOy ar’ 2 2y g Qg g U 2y 2y Ys®s
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where the last equality holds by the zigzag equations and Result 2.7 as y,,,, ., in

S\ U. Now, setting u™ = ' .. -xfryﬁl*pTygn)prw(m), we have

PlL ., pPr P P d s
Ty Ly Zjl ngyl Ys
— g m)mPr o (m)Prop o p o PP LS Py AL ds
= ul a, ar 21 2 1Qom 1t 21 20 Yn Ys
_ m),(mPt —(m)Pr p - p p (mp  pmp(m)P p poar g
= ul ay ar "2 2 gy by by tm Tz A Ys

(by Results 2.6 and 2.7 for some b,(ﬁ)l, e bl(m) € U and t'7V € S\U
as ybr) and t,, € S\U)

m) (mPt ()P p o p p
= ul ay ar 21 Z—1%2m 10,41

by Results 2.6 and 2.7 for some c(m), e ,cgm) €U and t& € S\U
1

p
Y AL PR SR

as y7(nm) and tfngLn) - S\U, Where d = Zi‘)—i-l .. .Zgyfl v gs)
T m m m m)4s m 'p

= u(m)agm)pl .. ~a£m)p 2. Z£—1agm—1b§g+)1p L bé )pcg o Cg )4 e(m)t,(n "

(by Result 2.7 as yfnm), %n) € S\U and where e(m) = Cgm)p—zn e Cgm)p—qs)
= e aT A a B bR )

P

(where p(m) = e(m)tS,T) d)
U@, 0™ e s Gy B B, 6, )
= u™uy (™™ 2 e agm 1, BB ™yt

(by corollary 3.4)

Now the word ul(fv s 757"; 21529, oy R4, 5/1, - ,fls) begins with ffl .. .équrzﬁ?l which equals

gt &8, So, the above product in S contains y?, PryPrab . Thus, using Result 2.7

and the fact that y,,a2m_-1 = Ym_1a2m_o from the zigzag equations, we have
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$1171 e xfrzi . Z?gy(ln . _ygs
- U(m)ul(agm)7 T 7a$’m)7 Rls v vy Rk—1, A2m—1, b/(:i]:)b ce ,bém)7 Cgm), c. 7Cgm))1)(m)
= u(m—l)u1(agm—1), - ,(Z?(nm—l), Zlyeey Rk—1, A2m—2, b](ﬁ_)l? . 7bém)7 Cgm)’ o 7C‘(gm))v(m)
(where u(™= = " ... Igryg;zﬂlryr(ﬁ—ll)pragm—l)Pr—Pl - 'aq(ﬁl_l)pr—prq and by

Results 2.6 and 2.7 for some a{™ ", ... al™ ™ € U and 4" € S\U
as ym_1 and t9" € S\U)

(m) (m)

— -1
= u(m )U2(CL1 yoeey Qp ,Zl,...,Zkfl,agmfz,bk_i_l,... 1 "5+ 5Cs

(by corollary 3.4)

s m/P
= Ay Py 2 ah, b b e

(by definition of u™~1) and v(™))

— m m m)P m)P,(m)'’
Y P

— PL | P
= I3 Tr" Ym_1

(by definition of e(™)

_ m m)p,(m)P
= eyl By 2 b, Wb B
p
(by Result 2.7 as t00" = ™" ... mP4m 7y
= ' alyn By 2 2 G othd

(by Result 2.7 as P, = b;”j)lp _ bém)pt%n)p)

pP—Dpr

_ Pl .p pr PP P D p
= T Y1 Ym—171%2 *** 21 Qo st 1 d,

(by the zigzag equations and Result 2.7 as y,—1, tm—1 € S\U)

Continuing this way, we obtain

(m) ) (7)), ()
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caPral R LDy
Ty Y Y 12075 2 O gl 1 d
oy Py A 2 altd
e xnyfpryg)pragl)pr e a£1)Per -o- 2z althd (by Results 2.6 and 2.7

for some agl), ~,atY e U and ygl) € S\U as yi,t; € S\U)

1 ope,p—pr, (DPT )y (P (DPT p  p pup
Ty xPryy Ty w! )al ar’ 2z 2. _qathd
1 Pr—Pr—1
caW

(by Result 2.7 as yil), t; € S\U and where w!) = agl)pr_pl ceay, )

(P LPr _p p 4P
1 a2y g anthd

(where u(") = 28" .. -xfryffprygl)prw(l))

uMa” gD zi_lafb,(:ﬁ e bfgl)ptgl)pd (by Results 2.6 and 2.7

for some b,(;zl, . ,bl(l) € U and tgl) € S\U as ygl) and t; € S\U)

(WP P pp (P (D (D7 ,Cg)Ptg)/pd

2z aiby by e

y Results 2.6 and 2.7 for some ¢;7,...,¢cs’ € U an S
by Results 2.6 and 2.7 f (1) M evand ) € S\U
as ygl) and tgl) e S\U)

T s /p
u(l)agl)m . ap)P L. Zz_lazlobl(;zz{ o bél)pcgl)‘ﬂ N cgl)q e(l)tgl) d
(by Result 2.7 as y§1>, tgl) € S\U and where e = Cgl)l’—th o c§1>”“"*)

gl)pl et ppMp (W (DT (W%, (1)

p p
A1 A—1010kp0 C0 e Gs

u(l)ug(agl), I b,(izl, . ,bgl),cgl), . ,cgl))v(l)
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= u(l)ul(agl), adW s s a, b,(izl, . ,b@l),cgl), . ,cgl))v(l)

(by corollary 3.4)
D—Pr

As before, the above product contains the subproduct ¥ " ¢y{"a}. Thus, using Result 2.7

and the fact that y;a; = ag from the zigzag equations, we have

R R A R 2y Y Y
= u(l)ul(agl), adW s s an, b,(:ll, . ,by), cgl), . ,cgl))v(l)
= wu(®1,...,Tp, 21,5, Zk_1, Ao, bgll, e bgl), cgl), o ,cgl))v(l)
= wug(®1,...,Tp, 21, ..., 2k_1, Ao, bgll, e bél), cgl), o ,cgl))v(l) (by corollary 3.4)
S T RRRT ot 0% JUNP e () O SO OL¥ S L EOLNOHONS!

'p
(as v® = MM q)
'p
= el a2 ey oA D

(by definition of e(l))

= afalralb a0 d
D
(by Results 2.6 and 2.7 as cgl)p E cgl)ptgl) = tgl)p)
S A C
(by Results 2.6 and 2.7 as bgﬁ o ~b§l)pt§1)p =)
= 3:11?13:1292 .. .IszfZg. . .Ziilz£2£+1 .. Z?y(lhygz .. .ygs’
where the last equality follows by the zigzag equations and Result 2.9, and as d =

Zpo1 20yt - yZ. This completes the proof in Case(ii).
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Case(iii). j; = ¢. Now

DL P P PSP s

1 Ty Zj %5, " %501 Ys

= Pl gPryP P SP L P It gl
= erymGQijg ngyl Ys®

(by the zigzag equations and Result 2.9)

— PL | poProg@=PrgPr P P SP,d .4
= Ty Ym Ty’n:a%nzjg ngyl Ys®
Pr Dr Pr
— g PU L P p—pr (P ()P ()P o p o p g
= :L‘rTym "UYUm aq ar ansz Zjeyl yss

(by Results 2.6 and 2.7 for some agm), e ,aﬁm) € U and y,(qzbn) e S\U as
Ym € S\U and as,, = agp_1t, with t,, € S\U)

— :Lall)l e wgry’rp;lfpryg;n)prw(m)a:(lm)pl . a&m)pragmzy2 . Z?Zyill . ygs (by Result 27

as y&, t,, € S\U and where w(™ = agm)pripl E ai@lprpr_l)
= umuwy (@™, al™ o, 2, 20 YL Ys)

(where ulm) = o+ gyt ey )

= u(m)wQ(agm), e ,aﬁm), A2y Zjgs -+ 5 2 Uty - - - Ys) (by corollary 3.4)
m m)P1 m)Pr

= umgm L gmT e P oab iy

= uma{™" M by

(by the zigzag equations and Result 2.7)

_ u(m)agm)pl o gtmPp p D (m)P (m)P (m)pyql

r Zl '..Zlé_la/2mflcl -.-Cs m 1 ---yg‘s
( by Results 2.6 and 2.7 for some ¢™, ..., ™ € U and t9" € S\U
as Y, and t,, € S\U)

27
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= ua™" T  a, Ty

(by Result 2.7 as y,, t4” € S\U and where e(™ = ™" ™ ...

= g™ ~z§_1a§m,1c§m)ql e I m)
(where v(™) = e(m)t%n)pyfl e yde)
= u(m)u2(a§m), o ,aq(ﬂm), 21y 21, Q21 cgm), . ,cgm))v(m)
= u(m)ul(agm), o d"™ s as cgm), . ,cﬁf"))v(m> (by corollary 3.4).
Now the word u(§y, -+, & 21,22, 20,€'y, -+, &) begins with &' -+ &P 2% which e-

quals &' - - &Pr27. So, the above product in S contains y2 PryPral . Thus, using Result

2.7 and the fact that y,,a2,,-1 = Ym_1a2m_o from the zigzag equations, we have

.I]i)l [N xf’"zﬁ?l [P Z?gytln PPN ygs

— u(m)ul(agm), o d"™ s ag cgm), o ,cgm))v(m)

= u(m_l)ul(agm_l), . ,aﬁm_l), 21y Zl—1s U2m—2, cgm), e ,cgm))v(m)
(where wm=1 — le71 L xgryfn—f)lrygzz—ll)magm—l)pr—m - 'airfl_l)pr_pT_l
and by Results 2.6 and 2.7 for some agm_l), ,a™ Y e U and
y,(g:l) e S\U as y,,_1 and tm e S\U)

= g Pyl el aB, e e e

(by definitions of u(™~Y and v(™)
— ./L'Il)l e xnyfnf){yﬁilz?Zg P Z§_1a5m72cg ) P Cg ) tgn ) ygl ‘e ygS

(by definition of e(™)
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= a2 2 A oty
(by Result 2.7 as 2, = ™" ... {™7m"

DP—pr
m—1

p

_ P1 4D Dr p.,p . ...P p a1 . ,q
= I3 "y Ym—121%2 " Zg_1 093t _1Y1 Ys®s

where the last equality follows by Result 2.7 and the zigzag equations.

Continuing this way and letting y = y{'y3* - - - y%, we obtain
Pt . ..pr.P P . P, 41,492 . ,q
g T 25 Zj, Zj Y1 Y2 Ys
p DP—Dpr

_ 1. .p pr PP D P
= I xrrym—l Ym—1*1 z€—1a2m—3tm—1y

_ .PL. . ,pr P—Pr DPr P ... D DD
= I "Y1 T A 2y 10707y

p

= &y - xfryf_pr?/g)pragl)pr e aﬁl)mzf -2l altly (by Results 2.6 and 2.7

for some agl), . ,agl) € U and yil) € S\U as y,t; € S\U)

—pyr (1)Pr 1)P1 1)Pr
= xlfl .. :L-J;erlf p ?A ) w(l)ag P 'a7(~ ) Z}f . 'Zf,la]ftzfy
(by Result 2.7 as ygl)’ = S\U and where w® = agl)pr*pl N .ai]__)lprfprfl)
= uWa"" T ey
(where ut) = 2§12yl #y 0" wl)
= U(l)agl)pl e aﬁl)przf T qualfcgl)p o 'Cgl)ptgl)p?/ (by Results 2.6 and 2.7

for some cgl), ) e U and tgl) € S\U as y§1) and t; € S\U)

= u(l)agl)pl N ag,l)przgf . e Zfilalljcgl)ql e Cgl)qse(l)tgl)p

Yy
(by Result 2.7 as ygl), tgl) € S\U and where e®) = cgl)pfql . cgl)pqu)
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= u(l)UQ(agl), . ,ag), 21y 211,01, cgl), .. ,cgl))v(l)

(where 0@ = eV

= u(l)ul(agl), coa L aa, cgl), e ,cgl))v(l) (by corollary 3.4)

As before, the above product in S contains the subproduct ¢} " yi"a}. Thus, using Result

2.7 and the fact that y1a; = ag from the zigzag equations, we have

oyt a2 2 Yy Yl
= u(l)ul(agl), I R cgl), . ,cgl))v(l)
= u(T1,. .., Ty 21, -, 20-1, Ao, cgl), . ,cgl))v(l)
= U(T1,..., Ty 21, -, 20-1, o, cgl), . ,cgl))v(l)(by corollary 3.4)
= atabr.abr2h -szlagcgl)ql .. .cgl)qse(l)tgl)py (by definition of v™))
= al'al? b2 -folagcgl)p e Cgl)ptgl)py (by definition of e())
= o iy

(by Results 2.6 and 2.7 as cgl)p " cgl)ptgl)p =)

= af a2yl
where the last equality follows by zigzag equations, Result 2.9; and as j; = ¢ and
y=u"yl
This is the end of the proof in case(iii) and, thus, of the base ¢ = 2 of the induction.
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Next, assume inductively that the result holds when zy, ..., &, y1, .. Uss 2515 - -5 Zjyy
arein S (¢ > 2) and zj,,..., %, € U. From this assumption, we shall prove that the result
also holds when 1, ..., 2, Y1, ..., Ysy 215 -+ 5 2515 2j, €S and 25, ,,...,2;, in U. So take
ANY L1, .oy Ty YLy ooy Yss Zjis Zas -+ o5 210 %4y € S and zj,,,...,2;, € U. Assume that
z;, € S\ U. Let (2) be a zigzag of minimal length m over U with value z;,. Put k = j,
and t = j,_1. As equalities (16) and (17) below hold by Proposition 3.2 as y,, € S\ U and
pr+ - +p-+1>go— 1, we have

Case (1). t =k — 1. Now

PL . Pro PSP, s

it " %5, 25, Y1 Yq
— PL ., prsP P PP PSP I G
it .25, z]q_lym%mzjq+1 25, Y1 yd

(by the zigzag equations and Result 2.9)

— pProiigprP (s PP P o P d L

- xl xTTZjl (quflym) a2mzjq+1 z]gyl yss (16)
- w1<x1a"'7x7"azj17"'7qu727zjqflymaCLmequij"'7ij7y17"'ays)

= w2<x1a"'7x7‘azj17"'7qu727zjq71ymaa2myzjq+1a"'7ijy17"'ays)

(by the inductive hypothesis)

— Pl ppr P, P . PP PSP A - _

= T," 2y Zk:—Q(Z]q—lym) Aom 1 2 yd (ast =k —1)

— pPL PP P P PP PSP I L

= L2y B 0%, Ymbom Py 2 Ys® (17)
— PL ., eDr PP P PP SP A0

= A B R T 2 R A s

(by the zigzag equations and Result 2.9)

— o PU PP P P PP Pyl s S A
= af TP 2oy 1208 2ot Y% (as jo1 =k —1)

as required.
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Case (2). t <k —1 and k < {. Now, as above, we have

PL L ePryP P, ds

ay a2y e 2y y?
PL . pPryP P PP PPt s
1 L' % Zjg—1ImA2m=j Y1 Ys

(by the zigzag equations and Result 2.9)

PL . pPrsP (s PP P P g
':Cl xT’szj (qu—lym) a’2mzjq+1 ngyl yss

(by Proposition 3.2 as y,, € S\U and p1 +...+p.+1>go— 1)

WL Ty Zjys ooy Zjgas ZjgorYms 2ms Zjgyrs -+ s Zjos Yls - - Us)

Wo L1,y oy Ty Zjys ooy Zjgas ZjgorYms> W2ms Zjgyrs -+ -5 Zjos Yls - - Us)

(by the inductive hypothesis)

PL . Dr PP . PP P Y L L R}
Ty T, 2 Zt—l(zjqflym) 1 Rp—1%mPry1 T R Ys®
b1 pr PP p p . ..P PP PSP
3 T2y B 1%, R B YmBoem P A Ys®

b1 pr P, P p.p .. P p.p .. P41 .4

Ty A I A P A S - S T X '] Ys®s

(18)

where the last equality holds by the zigzag equations and Result 2.9, and the equality

(18) above follows by Proposition 3.2 as py + -+ +p. +1 > go — 1 and agy, = agm-_1tm

with ¢, € S\ U, as required.

Case (3). £+ 1 =t. As the equality (19) holds by the inductive hypothesis, and e-

qualities (20) and (21) follow by the zigzag equations and by Proposition 3.2 as y,, in

S\U and p; + -+ +p, + 1 > go — 1 respectively, we have



ON EPIMORPHISMS AND SEMIGROUP IDENTITIES 33

P1L . Pr P . P a1 . Qs
Ty xrzjl yl Ys

P p,4ar .. ,3qs

= P PP
= I xrrzjl q 1ym 2m Jq 41 Z]eyl s

(by the zigzag equations and Result 2.9)

= PP P (4 PP . Do, ..
= I Irrzjl (qu,1ym) Aom Z][yl ysS

(by Proposition 3.2 as y,, € S\ U and p; +---+p. +1>go— 1)

= wl(:cl, ey Tpy Zhys ey Zjg_as Zjg 1 Yms A2mis Zjgias o -3 Zhgs Yl - - ;ys)

= U)Q(;Ul,...,.’,lj‘r,z]'l,...,qu72,quilym,agm,zj‘q+1,---,zjyyly---;ys) (19)
= wz(xla---,xrazj17"'7qu72>quflym7a2m*1tmvzjq+l’""Zjé’yh""ys) <20>
= afteeeakray - Zi—l(Qmeltm)p(’zjqfl ym)pzfﬂ 2yl yE

= aftealral 2y ab,  (tm2j, Ym)P 2 2y (21)
= uQ(:cl, ey Ly By e ey R—1, G2m—1, thjq_lym7 Ztly ey 2l Y1y - 7ys)

= Ul(l'l, ey Ty 21y ey Zh—15 Q2m— 1 EmZy_ Yms Bty - - oy 20 YLy - - ,ys),

where the last equality holds by the inductive hypothesis. Since z;,_, 2;, is a subword of the
word w1 (&1, ..., & 21, -5 20,1, - -+, €,), the above product in S contains (£, 25, Ym )P @y, ;.-
Thus, using dual of Proposition 3.2 as t,,, € S\ U and y{" - - - y% € S%, and the fact that

Ym@2m—1 = Ym—10om_o from the zigzag equations, we have
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AT SRRRE L B SO BV LY SRS
= UL(T1, . Ty 21, 22, s 2Ry Q2m—1s by Y 2t Ls s 20, YL -
= UL(T1, ., Ty 21, 22y 2Ry G2m—2, b Zjy Y1y B4 Ly - - 0 205 YL - - -
= U1, Ty 21y 21 Q2m—2, b P Y1y By - s 205 Y - - -
= oy ety 2y G gtz Ym1)P R YL Y
o SRR 0 WY TR DU SR B

Jys)

7y8)

\Ys) (22)

where the last equality and the equality (22) above follow by Proposition 3.2, as y,,_1 in

S\U and p;+---+p,+1 > go—1, and the inductive hypothesis respectively. As equalities

(23) and (24) below follow by zigzag equations and Proposition 3.2, as y,,—1 € S\ U and

p1+-

p1
I

4+ p-+1>go— 1, we have

p a1

we.gpPr P v ons
A TR 71 Ys

Pl ppr P, P p D (. PP .. SP, 1
Ty T, 2 Zk71a2m—2tm(zjq71ym—1) 2111 Y1 Ys®
P prP P p p . pP P01

T T, 2 Zk71a2m—3tm—1<zjq71ym—1> Zig1t ZeY Ys®
P pr PP P b . PP P
T T, 2129 zk’fla2m73(tm—1zjq—1ym—1) Zip1 2 s

Thus, continuing this way, we obtain

a

p, 41

S Y vonyds
Ly Zjy “j Y1 Ys

Pl ppr P, P b . PP P A s
Ty a2y e 2y (12, Ym—1)P 2000 20y s

(23)

(24)
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= PL . pr PP P b . pyP P
= Ty 21 % Zkflal(tlzjqflyl) eyl 21 Ys®
= Up(T1, .. T, 21, Zem1, O, T2 YL B ls s 20 YL - Us)
= (@1, .., T, 21, Zem1, O, T2 YL B ls s 20 YL - Us)
(by the inductive hypothesis)
!/ / :
As before, the word uy(&1,..., &, 21, .., 20,1, ..., &) contains z;,_,z; as a subword, so

the above product in S contains (¢12;,_,41)Pa}. Thus, using Proposition 3.2 and the fact

that y1a; = a¢ from the zigzag equations, we have

TPl Ty
= ul(xl, R N P 7Zk_17a1,t12jq71y1,zt+17 cey R YL, - ,ys)
= U1<I1, ey Ly B1, 22, e ,Zk_l,ao,tleqil,Zt_H, cee 20 Y1, - ;ys)
= Up(T1, ., Ty 21, 22y s 2R, Q05 125y 2 Ls s 20 YL - Ys)

as

(by the inductive hypothesis)

— PL eDrP P p . PP P04
= I Ty Zy Zk—1ao(tlzyq71> Zev1 2 Y1 s
— PLL P PP GP4PD P g
= LAY 2 Aoty Y s

(by Proposition 3.2 ast; € S\U andp; +...+p,+1> gy — 1)

— Pl PP P PSP PP s
= T B i P L SR I X s

(by Result 2.9 and the zigzag equations)

— b1 pr PP b _p D oL SP L as y —
= I A R M P R SR PR A ) & (as jg1 =1)

required.
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Case (4). k+ 1 < tand t < £. As the equality (25) below follows by Proposition 3.2
because y,, € S\ U and p; +---+p, +1 > gy — 1, we have

PL P PP s
Ty Irzjl ngyl Ys

p

RN Y R p P p a1
= Y25 %

P e ceoqd
yma2mzjq+1 ijyl yss

(by the zigzag equations and Result 2.9)

TR AT S AN LS SO 1 (25)
= WXy Ty 2y Zgyas Zjgi Yms O2ms Zjasrs -5 Zjes Yls - - Us)
= Wol®1s o Ty Zjys e Zjyas Zjgor Yms O2ms Zjusrs -5 Zjes Yls - - Us)
(by the inductive hypothesis)
= oyl 2 Qg 2 (2 Ym ) PR YL
I T I N R N CA AR )

where the last equality holds by the zigzag equations and Proposition 3.2 as t,, is in
S\U and p; +---+p,+1> go — 1. As the equality (26) below holds by Results 2.6 and

Proposition 3.2 for some bg:ﬁ)l, o 7b1(£)(t—k—1) € Uandty e S\U, as t,, € S\U and letting

_ P p, @ s (k) _ (@) ~
2=zl oyl oyl and wp ) =t zpgr - z-1(25,_,uk) Where 4,k € {1,2,...,m}, we
have

p1 pr P P, a 2

xl ...xr Zj1'..zjgy1 ...y89

— P1 .. prP P p p PP . p
= I T2 2100110, 211 Zt71(zyq71?/m) z

= el a2 (5, )P (26)
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b(m)P ”b(m)P ( (m)

= Pt igPrP o gP . PoP LGPy gl
S T S T L P L S| b (k) (Wi P2y 2y Y (27)

(by the definition of z)

— (m) (m) (m)
= Up(T1,. ., Ty 2150 Qo1 by - ,bk+(t_k_1),wm ey 20 YLy Ys)
— (m) (m) (m)
- U1<I‘1, sy Ly 21y -0 A2m—1, bk;+17 s 7bk+(t_k_1)7wm vy R YLy 7y8)7

where the last equality holds by the inductive hypothesis and equality (27) above holds by
Proposition 3.2, as y,,, € S\U and p;+---+p.+1 > go— 1. Also equalities (28), (29) and
(30) follow respectively by the inductive hypothesis, by Proposition 3.2 as y,,,_1 € S\U and
pr4---+pr+1> go—1, and by Result 2.6 and Proposition 3.2 as b,(fr)lp e b,(ﬁ)(ffkfl)t%n)p =
tP . The above product in S contains the subproduct (t&n)zkﬂ 21 (2jy 1 Ym) )P Wy

!/ ! :
because the word w;(§1,...,&, 21,. .., 20, &), ..., &) contains z; _, z;, as a subword. Thus,

using Proposition 3.2 and the fact that y,,a0m-1 = ym_102m—_o from the zigzag equations,

we have
AR S 3V LY
— ul(xl,...,xT,zl,...,agm_l,b,(:i)l,...,b,(:j)(t_k_l),wgl),...,Zg,yl,...,ys)
— ul(xl,...,:rT,zl,...,a2m_2,b,(;1)1,...,bﬁ)(t_k_l),wy(:l_l),...,zz,yl,...,ys)
= u2(x1,...,:r,4,z17...,a2m_2,b,(;1)1,...,b;ﬁ)(t_k_l),wgl_l),...,Zg,yl,...,ys) (28)
= P gprl ol P .b,iﬁg_k_l)(wgg@—l) P 2Py

(where y = yf' - - y&)

= alteearal e, bYW gt e A )2y (29)
(by definition of wir _1))
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— PL . PrP P p p PP . pP P

= I T, 2 210 _olh, 211 thl('z]qflym—l) 241t Ry (30)
— P pr PP p p P ...P . pp P

= I T2 Zh 103t 12541 thl('z]q—lym—l) 241 Y,

where the last equality holds by the zigzag equations and Proposition 3.2. Continuing
this way, we obtain

PL o Pr PP P A s
7 L 231 %ja ZjeY Ys

= oyl 2 G st 1 g 21 (R Y1) R 2Y

= o e e A ()P el 2

= o ara e a8 e A )P 2l (31)
= o eara o albl B () 2y

where the last equality follows by Proposition 3.2 as p; +---+p,+1 > go — 1 and y; is
in S\ U; and the equality (31) above follows by Result 2.6 and Proposition 3.2 for some

bf:ll,...,b,(iz(t_k_l) inUandtgl) e S\U,aspy+--+p,+1>go—1land t; € S\U.

Therefore,
PL | pPr PP P A
Ty Tr 251 %5, " 25,0 Ys®
_ . opep .0 e p(p W\p,p .. P
= 7 w2 @by Oy (W12 2y
_ (1) (1) (1)
= Up(T1, .y Ty 20y Zhe1, 01, 0 bk+(t_k_1),w1 e 20 YLy Ys)

(by the definition of y)

_ (1) 1) (1)
= ur(Tr, ., Ty 20y Zhe1, 01,0 bk+(t_k_1),w1 e 20 YLy ey Us)s
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where the last equality holds by the inductive hypothesis, and the equality (32) below holds
by the inductive hypothesis and Proposition 3.2 respectively as, tgl) e S\Uand g +---+
¢s+1 > ho—1. Also equalities (33), (34) and (35) below follow respectively by the inductive
hypothesis, Result 2.8 as, g1+ +¢s+1 > hg—1 and t\") € S\ U; and as tgl) € S\U and
b,(glll = y,(cljlc;gﬂ with y,(cljl € S\ U and C;f+1 € U, and by the zigzag equations and Result
2.9 respectively. As before, the word ui(&1,..., & 21,. .., 20,&], ..., §,) contains z;,_, 2;,
as a subword, the above product in S contains (z;,_,y1)Pa}. Thus, using Proposition 3.2

as tgl) e S\Uand ¢ +---+¢s+ 1> hg— 1 and the fact that y;a; = ao from the zigzag

equations, we have

PLD2 PP D P, G2 s
Ty Tg Ly %4, %, ZiY1 Yz Ys
_ 1) (1) 1)
— ul(xl,...,xr,zl,...,zk_l,al,bk+1,...,bk+(t_k_1),w1 ey 20 YLy Ys)
_ 1) (1)
— ul(xl,...,xT,zl,...,zk_l,ao,bkﬂ,...,bk+(t_k_1),f,...,Zg,yl,...,ys)

(by definition of wgl) and where f = tgl)zkﬂ e Z1Z4,)

= u2(x1,...,xw,z1,...,zk_l,ao,b,(;zl,...,b,(;z(t_k_l),f,...,zz,yl,...,ys) (32)
= af-abray. Zg—ﬂgblgﬁ e bl(cl—f)—z()t—k—l)(tgl)zk—l-l s zpaZj, )P 2y

(by definition of f)
= gl PP Zg_lagbg}l’ . b}gl}(?t_k_l)tg)%zﬂ R T RERE /PPN S (33)
R A TR T 1 o W R MR/ AR/ TN T/ (34)
= @ a2 R, B Y (35)
= @y xR B AR A A YR (a8 g = t)

as required.
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Case (5). k+1<tandt=".

The proof in this case may be obtained by modifying the proof of Case (4) in the following

way:

Letting = (z1,...,2,) and § = (y1,...,ys), define

Wi (T, 255 - 25y, §) = A a2l 2y oyt =g (T, 21, 20, 0)
and
Wo T, Zjyy vy 24y Y) = a2l 2y eyt = s (T, 2, 20, 7))
(a) Replace the word z{ ;- -- 2] by 1;
(b) Replace
(T, 21,0y 2h_1, A2e1, b,(:ll, o b,(i)r(t_k_l), t 2 2124, 1Ye) s Ziits - - 20, )
by
(T, 21,225+« s Zk1, A2e—1, b;ﬁl, o ,bgi)l, ) 2y 20-1(2j,_1Ye), )
forall c=1,2,...,m;
(c) Replace
(Ty 215« vy Zh1, A2e—2, béﬁl, e 7b§c(i|)—(t—k—1)’ tgc)zkﬂ o 21(Z,  Yem1)s -5 20, )
by
()21, oy Zk—1, A26—2, b,(:_ap . ,bgc_)l, tgc)zkﬂ o 2pm1(%jy Y1), 1)

for all c=1,2,...,m; and yo by 1 when c is 1.

Thus, the proof of the theorem is completed. O
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