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Abstract. In this paper we study asymptotically stable sets and attractors of inverse limit dynamical

system which is induced from dynamical system on a compact metric space. We give the implication of

asymptotically stable sets and attractors between inverse limit dynamical systems and original systems.

More precisely, the inverse limit system has asymptotically stable sets implies original system has asymp-

totically stable sets. Also, we prove that the inverse limit system has attractors implies original system

has attractors.
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1. Introduction

The concept of asymptotically stable set for discrete dynamical system was intro-

duced by Block and Coppel [2] and Robinson [13] and the concept of attractors for flows

on metric space was introduced by Temam [14] and Hale [7]. In recent years, Marzocchi

and Necca [9] studied ω-limit sets and attractors in regular topological space, Mimna and

Steele [10] discussed ω-limit sets and asymptotically stable sets for semi-homeomorphisms,
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Aniello and Steele [1] discussed the stability of ω-limit sets, Oprocha [11] studied asymp-

totically stable sets in continuous dynamical systems and Braga and Souza [4] studied

attractors for semigroup actions.

Along with the deep research on the properties of topological dynamical systems, many

people also considered dynamical properties in some induced dynamical systems such as

inverse limit dynamical systems. Li [8] studied Devaney chaos of inverse limit dynamical

systems and proved that an inverse limit dynamical system is Devaney chaos if and only

if its original system is Devaney chaos. Chen and Li [6] discussed shadowing property

for inverse limit spaces, Ye [15] studied topological entropy of inverse limit dynamical

system, Block, Jakimovik, Keesling and Kailhofer [3], Bruin [5] and Raines and Stimac

[12] discussed the properties of inverse limit spaces of tent maps.

In this paper we discuss asymptotically stable sets and attractors of inverse limit dy-

namical systems on the basis of [9]. Our purpose is to discuss implication of asymptotically

stable sets and attractors between inverse limit systems and original system. We prove

that the inverse limit system has asymptotically stable sets implies original system has

asymptotically stable sets. Also, we prove that the inverse limit system has attractors

implies original system has attractors.

2. Preliminaries

Throughout this paper a topological dynamical system is a pair (X, f), where X

is a compact metric space with metric d and f : X → X is a continuous map.

Let (X, d) be a compact metric space and let f : X → X be continuous map. The

inverse limit space of f is a metric space defined by the sequence

X
f← X

f← X
f← · · ·

whose elements x = (x0, x1, x2, · · · ) satisfy f(xi+1) = xi, i = 0, 1, 2 · · · and the metric is

defined by

d(x, y) =
∞∑
i=0

d(xi, yi)

2i
.

The inverse limit space of (X, f) is denoted by lim
←

(X, f).

The inverse limit space lim
←

(X, f) is a compact subspace of product space
∞∏
i=1

Xi, (Xi =

X, i = 1, 2, · · · ), the shift map σf : lim
←

(X, f) → lim
←

(X, f) is defined by σf (x0, x1, · · · ) =

(f(x0), x0, x1, · · · ). Furthermore, σk
f (x0, x1, · · · ) = (fk(x0),
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fk(x1), · · · ), where k is a non-negative integer. σf is a homeomorphism and σ−1f (x0, x1,

x2, · · · ) = (x1, x2, · · · ). The inverse limit dynamical system is denoted by (lim
←

(X, f), σf ).

The projection map πi : lim
←

(X, f)→ X is defined by πi(x0, x1, · · ·xi, · · · ) = xi for each

i = 0, 1, · · · . Clearly, πi is a continuous mapping, and f ◦ πi = πi ◦ σf for i = 0, 1, · · · . If

f is a surjective map, then πi is an open surjective mapping for each i = 0, 1, · · · . The

metric d induces the inverse limit topology. This topology has a basis

B = {V : V = π−1i (U) for some i ≥ 0 and some open set U in X}.

Let (X, f) be a dynamical system, γ(x, f) denotes the orbit of x under f for some

x ∈ X, i.e., γ(x, f) = {x, f(x), f 2(x), · · · , fn(x), · · · } where fn = f ◦ fn−1 and f 0 denotes

the identity map on X. A point is called an ω-limit point if it is an accumulation point

of the forward orbit of some point in X. The collection of the ω-limit points of one point

x is denoted by ω(x, f).

In the present paper, a dynamical system we mean a pair (X, f), where X is a compact

metric space and f : X → X is a surjective continuous map. Let N denotes natural

number set and Z+ = N∪ {0}.

Definition 0.1. [9] Let (X, f) be a dynamical system. For every B ⊆ X and m ∈ Z+,

the set γm(B, f) =
⋃
x∈B
{fn(x) : n ≥ m} is called positive orbit through B starting at time

m. If B = {x}, we will write γm(x, f) instead of γm({x}, f). If m = 0, we will omit time

index.

Definition 0.2. [9] Let (X, f) be a dynamical system. Let B ⊆ X and define ω(B, f) as

the set of limit points of the orbit γ(B, f), i.e., ω(B, f) =
⋂

m∈Z+

γm(B, f). If B = {x}, we

will write ω(x, f) instead of ω({x}, f).

In fact, ω(B, f) is a nonempty closed set of X and strongly invariant, i.e., f(ω(B, f)) =

ω(B, f).

Definition 0.3. [2] Let (X, f) be a dynamical system, where (X, f) be a compact metric

space. A is a nonempty closed set in X.

(1): A is said to be Lyapunov stable if for each open set U containing A there exists

an open set V containing A such that γ(x, f) ⊆ U for every x ∈ V .

(2): A is said to be asymptotically stable if A is Lyapunov stable and there exists an

open set U0 containing A such that ω(x, f) ⊆ A for every x ∈ U0.

Definition 0.4. [9] Let (X, f) be a dynamical system, A and B are two subsets in X. A

attracts B if for any open set U containing A there exists m ∈ Z+ such that γm(B, f) ⊆ U .
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In [9], A ⊆ X and B ⊆ P(X) be a family of subsets of X. A is said to be B−attracting

if it attracts every B ∈ B. For simplicity, in the sequel we will say that A is attracting if

it is B−attracting for some B ⊆ P(X).

Definition 0.5. [9] Let (X, f) be a dynamical system where (X, d) is a compact metric

space. A ⊆ X is said to be an attractor if it is an attracting, strictly invariant and compact

set.

3. Asymptotically stable sets of the inverse limit spaces

In this section, we will discuss asymptotically stable sets in the inverse limit spaces

and obtain that the inverse limit dynamical system (lim
←

(X, f), σf ) has asymptotically

stable sets implies (X, f) has asymptotically stable sets.

It follows at once from the definition that any Lyapunov stable set, and hence also any

asymptotically stable set, is invariant, i.e., if A is an asymptotically stable set in X, then

f(A) ⊆ A.

Lemma 0.1. [8] Let (X, f) be a dynamical system, x0 ∈ X and x ∈ (lim
←

(X, f), σf ) satisfy

x = (x0, x1, x2, · · · ). Then ω(x, σf ) = lim
←

(ω(x0, f), f).

Theorem 0.1. Let (X, f) be a dynamical system and f : X → X be a surjective map. If

Ã is an asymptotically stable set in (lim
←

(X, f), σf ), then π0(Ã) is an asymptotically stable

set in (X, f).

Proof. Suppose that Ã is an asymptotically stable set in (lim
←

(X, f), σf ). Then Ã is

closed set in lim
←

(X, f). Since f is a surjective map, which implies π0 : lim
←

(X, f)→ X is an

open surjective continuous map. Furthermore, π0(lim←
(X, f)\Ã) = π0(lim←

(X, f))\π0(Ã) =

X \ π0(Ã) is an open set in X. Hence, π0(Ã) is a closed set in X.

Firstly, we show that π0(Ã) is Lyapunov stable in X. Let U is an open set in X and

U ⊇ π0(Ã). As π0 is a continuous map, π−10 (U) is an open set in lim
←

(X, f) and Ã ⊆

π−10 (U). Since Ã is Lyapunov stable in (lim
←

(X, f), σf ), there exists an open set W̃ ⊇ Ã

such that γ(x, σf ) ⊆ π−10 (U) for every x ∈ W̃ . Moreover, π0 is an open map, π0(W̃ ) is

an open set in X and π0(Ã) ⊆ π0(W̃ ). For any x ∈ π0(W̃ ), we have π−10 (x) ∩ W̃ 6= ∅.
Furthermore, let x = (x, x1, x2, · · · ) ∈ π−10 (x) ∩ W̃ , we have γ(x, σf ) ⊆ π−10 (U). Since

fn ◦ π0 = π0 ◦ σn
f for any n ≥ 0, it follows that π0(γ(x, σf )) = {π0(x), π0 ◦ σf (x), π0 ◦

σ2
f (x), · · · } = {π0(x), f ◦ π0(x), f 2 ◦ π0(x), · · · } = {x, f(x), f 2(x), · · · } = γ(x, f). Hence,

γ(x, f) ⊆ π0(π
−1
0 (U) = U . This shows π0(Ã) is Lyapunov stable in (X, f).
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Secondly, we show that there exists an open set U0 ⊇ π0(Ã) such that ω(x, f) ⊆ π0(Ã)

for every x ∈ U0. Since Ã is asymptotically stable in (lim
←

(X, f), σf ), there exists an

open set Ũ0 ⊇ Ã such that ω(x, f) ⊆ Ã for every x ∈ Ũ0. As π0 is an open map,

π0(Ũ0) is an open set in X and π0(Ã) ⊆ π0(Ũ0). For any x ∈ π0(Ũ0), we have π−10 (x) ∩
Ũ0 6= ∅. Furthermore, take x = (x, x1, x2, · · · ) ∈ π−10 (x) ∩ Ũ0, ω(x, σf ) ⊆ Ã. According

to Lemma 0.1, ω(x, σf ) = lim
←

(ω(x, f), f). Since Ã is invariant and ω(x, σf ) ⊆ Ã, we

have lim
←

(ω(x, f), f) ⊆ Ã. Furthermore, π0(lim←
(ω(x, f), f)) = ω(x, f) ⊆ π0(Ã). Hence,

ω(x, f) ⊆ π0(Ã) for every x ∈ π0(Ũ0). This shows π0(Ã) is an asymptotically stable set

in (X, f).

4. Attractors of of inverse limit dynamical systems

In this section, let (X, d) be a compact metric space and f : X → X be a surjective

continuous map. We will discuss the relationship between attractors of inverse limit

dynamical system (lim
←

(X, f), σf ) and attractors of original system (X, f).

Lemma 0.2. [8] Let W be a nonempty closed and strongly invariant subset of X. If there

is a closed and strongly invariant subset W̃ ⊆ lim
←

(X, f) such that π0(W̃ ) = W , then

W̃ = lim
←

(W, f).

Theorem 0.2. Let (X, f) be a dynamical system where (X, d) is a compact metric space

and B is a nonempty subset of X. If B̃ = π−10 (B) ∈ lim
←

(X, f), i.e., for any x ∈ B̃,

π0(x) ∈ B. Then ω(B̃, σf ) = lim
←

(ω(B, f), f).

Proof. Let x = (x0, x1, · · · ) ∈ ω(B̃, σf ). Then there exist y = (y0, y1, · · · ) ∈
B̃ and a sequence {ni}∞i=1 such that lim

i→∞
σni
f (y) = x. Furthermore, π0( lim

i→∞
σni
f (y)) =

lim
i→∞

π0(σ
ni
f (y)) = lim

i→∞
fni(π0(y)) = π0(x), thus lim

i→∞
fni(y0) = x0. But π−10 (B) = B̃, we

have π0(ω(B̃, σf )) ⊆ ω(B, f). On the other hand, for any x ∈ ω(B, f), there exist y ∈ B
and a sequence {mi}∞i=1 such that lim

i→∞
fmi(y) = x. Let y = (y, y1, · · · ) ∈ π−10 (B) =

B̃. Since ω(B̃, σf ) is compact subset of X, then {σmi
f (y)}∞i=1 has a convergence subse-

quence, without loss of generality, let lim
i→∞

σmi
f (y) = x. Furthermore, π0( lim

i→∞
σmi
f (y)) =

lim
i→∞

π0(σ
mi
f (y)) = lim

i→∞
fmi(π0(y)) = x, thus x = π0(x). This shows that x ∈ π0(ω(B̃, σf )).

Therefore, π0(ω(B̃, σf )) = ω(B, f). Note that both ω(B, f) and ω(B̃, σf ) are closed and

strongly invariant. By Lemma 0.2, we have ω(B̃, σf ) = lim
←

(ω(B, f), f).
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Lemma 0.3. Let (X, f) be a dynamical system where (X, d) is a compact metric space.

Let B is a nonempty subset of X. If B̃ = π−10 (B) ∈ lim
←

(X, f), then π0(γm(B̃, σf )) =

γm(B, f).

Proof. Let x ∈ γm(B̃, σf ). Then there exist y ∈ B̃ and n ≥ m such that x =

σn
f (y). Furthermore, we have π0(x) = π0(σ

n
f (y) = fn(π0(y)) ∈ γm(B, f), which implies

π0(γm(B̃, σf )) ⊆ γm(B, f).

On the other hand, if x ∈ γm(B, f), then there exist y ∈ B and n ≥ m such that

x = fn(y). Let x = (x, x1, x2, · · · ) ∈ B̃. Then x ∈ π−10 (x) = π−10 (fn(y)). Furthermore,

x ∈ σn
f (π−10 (y)), there exists y = (y, y1, y2, · · · ) ∈ π−10 (y) ⊆ B̃ such that x = σn

f (y).

Therefore, we have x ∈ π0(γm(B̃, σf )). This shows that π0(γm(B̃, σf )) = γm(B, f).

Theorem 0.3. Let (X, f) be a dynamical system where (X, d) is a compact metric space.

Let Ã and B̃ are two subsets in lim
←

(X, f). If Ã attracts B̃, then π0(Ã) attracts π0(B̃).

Proof. Let A = π0(Ã), B = π0(B̃) and U is any open set of X with U containing A,

then π−10 (U) is open set of lim
←

(X, f) and Ã ⊆ π−10 (U). Since Ã attracts B̃, it follows that

there exists m ∈ Z+ such that γm(B̃, σf ) ⊆ π−10 (U). Furthermore,

π0(γm(B̃, σf )) = π0(
⋃
x∈B̃

{σn
f (x) : n ≥ m}) =

⋃
x∈B̃

{π0(σn
f (x)) : n ≥ m}.

Since π0(σ
n
f (x)) = fn(π0(x)) and π0(B̃) = B, it follows that

π0(γm(B̃, σf )) =
⋃
x∈B

{fn(x) : n ≥ m} = γm(B, f).

Note that γm(B̃, σf ) ⊆ π−10 (U) and π0 is an open surjective map, thus π0(γm(B̃, σf )) ⊆ U .

Therefore, we have γm(B, f) ⊆ U . This shows π0(Ã) attracts π0(B̃).

Theorem 0.4. Let (X, f) be a dynamical system where (X, d) is a compact metric space.

If Ã ⊆ lim
←

(X, f) is an attractor of inverse limit dynamical system (lim
←

(X, f), σf ), then

π0(Ã) is an attractor of (X, f).

Proof. Let A = π0(Ã). Since Ã is an attractor of (lim
←

(X, f), σf ), then Ã is an

attracting, strictly invariant and compact set. Note that π0 is a continuous map, we have

A is a compact set of X. Furthermore, Ã is attracting, there exists B ∈ P(lim
←

(X, f)) such

that Ã attracts B̃ for any B̃ ∈ B. Hence, π0(B) = {π0(B̃) : B̃ ∈ B} ⊆ P(X). Since Ã is

strictly invariant set of (X, f), then σf (Ã) = Ã, thus we have π0(σf (Ã)) = f(π0(Ã)) =

π0(Ã). This shows that f(A) = A, i.e., A is strictly invariant set of (X, f).
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Finally, we prove that A is attracting. Since Ã attracts B̃ for any B̃ ∈ B, by the The-

orem 0.3, it follows that A = π0(Ã) attracts π0(B̃) for any π0(B̃) ∈ π0(B). Furthermore,

π0(B) = {π0(B̃) : B̃ ∈ B} ⊆ P(X), thus A attracts B for any B ∈ π0(B). Therefore,

π0(Ã) is an attractor of (X, f).

Definition 0.6. [9] Let (X, f) be a dynamical system where (X, d) is a compact metric

space and let A and B are two subsets of X. A absorbs B if there exists m ∈ N such that

γm(A, f) ⊆ γ(B, f).

Theorem 0.5. Let (X, f) be a dynamical system where (X, d) is a compact metric space

and let Ã and B̃ are two subsets of lim
←

(X, f). If Ã absorbs B̃, then π0(Ã) absorbs π0(B̃).

Proof. Since Ã absorbs B̃, there exists m ∈ N such that γm(B̃, σf ) ⊆ γ(Ã, σf ). By

Lemma 0.3, we have π0(γm(B̃, σf )) = γ(π0(B̃), f) and π0(γ(Ã, σf )) = γ(π0(Ã), f), thus

γ(π0(Ã), f) ⊆ γ(π0(Ã), f). Therefore, π0(Ã) absorbs π0(B̃).
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