Available online at http://scik.org

Advances in Fixed Point Theory, 3 (2013), No. 3, 493-501

ISSN: 1927-6303

A COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS IN MENGER PM-SPACES

M. SHARMA\*, R.C. DIMRI

Post box -100, Department of Mathematics, H.N.B. Garhwal University Srinagar (Garhwal),

Uttarakhand-246174, India

Abstract. In present paper we prove a unique common fixed point theorem for four weakly compatible

self-mappings in Menger-PM spaces without using the notion of continuity.

**Keywords**: Probabilistic metric space, weak compatibility, Implicit relation.

2000 AMS Subject Classification: 54H25, 47H10

1.Introduction

There have been number of generalizations of metric spaces. One such is probabilistic

metric spaces(in brief PM-spaces) introduced by K. Menger [3] in 1942. The study of these

spaces expanded rapidly with pioneering work of Schweizer and Sklar [5,6]. Further in

1972, Sehgal [7] initiated study of contraction mappings in PM-Spaces. Since then there

have been great developments in fixed point theorems with different conditions on map-

pings or on spaces itself. The notion of weakly commuting maps was initiated by Sessa [8]

in metric spaces. Jungck [6] gave the concept of compatible maps and showed that weakly

commuting maps are compatible but converse is not true. Jungck [2] further weakened the

notion of compatibility and showed that compatible maps are weakly compatible but the

\*Corresponding author

Received May 12, 2013

493

converse is not true. Mishra [4] introduced the concept of compatible self-maps in Menger spaces and obtained a common fixed point theorem for four self mappings using compatibility and continuity of two functions. Singh and Jain [9] obtained a common fixed point theorem in Menger spaces through weak compatibility and continuity of one function and thus generalized the results of Mishra [4]. In present paper we prove a unique common fixed point theorem for four self-mappings using weak compatibility and without using continuity. Doing so we establish a unique common fixed point theorem with less number of conditions in comparision of Mishra [4]. Later we extend oue result to sequence of mappings whereas B. Singh [9] extended the result of Mishra [4] upto six mappings. In paper let  $\mathbb{R}^+$  denotes set of all non-negative real numbers.

## 2. Preliminaries

**Definition 2.1.** A mapping  $F: R \to R^+$  is called a distribution function if it is non-decreasing and left continuous with  $\inf_{t \in R} F(t) = 0$  and  $\sup_{t \in R} F(t) = 1$ . Let D denotes the set of all distribution functions whereas H stands for specific distribution function (also known as Heaviside function) defined as

$$H(t) = \begin{cases} 0, & t \le 0; \\ 1, & t > 0. \end{cases}$$

**Definition 2.2.** A PM-space is an ordered pair (X, F) consisting of non- empty set X and a mapping F from  $X \times X$  into D.The value of F at  $(x, y) \in X$  is represented by  $F_{x,y}$ . The functions  $F_{x,y}$  are assumed to satisfy the following conditions:

$$(PM1)$$
  $F_{x,y}(t) = 1$  for all  $t > 0$  if and only if  $x = y$ ;

$$(PM2) F_{x,y}(0) = 0;$$

$$(PM3) F_{x,y}(t) = F_{y,x}(t);$$

$$(PM4)$$
 if  $F_{x,y}(t) = 1$  and  $F_{y,z}(s) = 1$ , then  $F_{x,z}(t+s) = 1$  for all  $x, y \in X$  and  $t, s \ge 0$ .

Every metric (X, d) space can always be realized as a PM-space by considering F from  $X \times X$  into D as  $F_{u,v}(s) = H(s - d(u, v))$  for all  $u, v \in X$ .

**Definition 2.3.** A mapping  $\Delta : [0,1] \times [0,1] \to [0,1]$  is called a triangular norm (briefly t-norm) if the following conditions are satisfied:

- $(1)\Delta(a,1) = a \text{ for all } a \in [0,1];$
- (2)  $\Delta(a,b) = \Delta(b,a)$ ;
- (3)  $\Delta(c,d) \geq \Delta(a,b)$  for  $c \geq a, d \geq b$ ;
- (4)  $\Delta(\Delta(a,b),c) = \Delta(a,\Delta(b,c))$  for all  $a,b,c,d \in [0,1]$ .

Examples of t-norm are  $\Delta(a,b) = min(a,b)$ ,  $\Delta(a,b) = ab$  and  $\Delta(a,b) = min(a+b-1,0)$  etc.

**Definition 2.4.** A Menger space is a triplet  $(X, F, \Delta)$ , where (X, F) is a PM-space,  $\Delta$  is t-norm and the following condition hold:

$$(PM5)F_{x,z}(t+s) \ge \Delta(F_{x,y}(t), F_{y,z}(s))$$
 holds for all  $x, y, z \in X$  and  $t, s \ge 0$ .

**Definition 2.5.** A sequence  $\{p_n\}$  in a Menger space  $(X, F, \Delta)$  is said to converge to a point p in X if for every  $\epsilon > 0$  and  $\lambda > 0$ , there is an integer  $N(\epsilon, \lambda)$  such that  $F_{p_n,p}(\epsilon) > 1 - \lambda$ , for all  $n \geq N(\epsilon, \lambda)$ . The sequence is said to be Cauchy sequence if for every  $\epsilon > 0$  and  $\lambda > 0$ , there is an integer  $N(\epsilon, \lambda)$  such that  $F_{p_n,p_m}(\epsilon) > 1 - \lambda$ , for all  $n, m \geq N(\epsilon, \lambda)$ .

**Definition 2.6.** Self mappings A and S of a Menger space  $(X, F, \Delta)$  are said to be compatible if  $F_{ASx_n,SAx_n}(\epsilon) \to 1$  for all  $\epsilon > 0$  when  $\{x_n\}$  is a sequence in X such that  $Ax_n, Sx_n \to u$  for some  $u \in X$  as  $n \to \infty$ .

**Definition 2.7.** Self mappings A and S of a Menger space  $(X, F, \Delta)$  are said to be weakly compatible if they commute at their coincidence point that is, Ax = Sx for  $x \in X$  implies ASx = SAx.

**Lemma 2.1.** [9]Let  $(X, F, \Delta)$  be a Menger Space.If there exist  $h \in (0, 1)$  such that  $F_{u,v}(ht) \geq F_{u,v}(t)$  for all  $u, v \in X$  then u = v.

Let  $\Phi$  be the class of all real-valued continuous functions  $\phi: (R^+)^4 \to R$ , non-decreasing in first argument and satisfying the following conditions:

for all 
$$x, y \ge 0, \phi(x, y, x, y) \ge 0$$
 or  $\phi(x, y, y, x) \ge 0$  implies  $x \ge y$  (2.1)

$$\phi(x, x, 1, 1) \ge 0 \text{ for all } x \ge 1$$
 (2.2)

**Example 2.1.** Define  $\phi: (R^+)^4 \to R$  as  $\phi(x_1, x_2, x_3, x_4) = 2x_1 - max\{2x_2, x_3/2, x_4/2\}$ . Let  $x, y \ge 0$  such that  $\phi(x, y, x, y) \ge 0$  implies  $2x - max\{2y, x/2, y/2\} \ge 0$  implies  $2x - max\{2y, x/2, y/2\}$ 

 $\max\{2y,x/2\} \geq 0$ . If  $\max\{2y,x/2\} = 2y$ , then  $2x-2y \geq 0$  implies  $x \geq y$ . If  $\max\{2y,x/2\} = x/2$  then  $2x - x/2 \geq 0$  implies  $2x \geq x/2 \geq 2y$  implies  $x \geq y$ . Similarly  $x \geq y$  can be proved when  $x,y \geq 0$  such that  $\phi(x,y,y,x) \geq 0$ . Let  $x \geq 1$ , then  $\phi(x,x,1,1) = 2x - \max\{2x,1/2,1/2\} = 2x - 2x = 0$ . Hence  $\phi \in \Phi$ .

## 3. Main results

**Theorem 3.1** Let A, B, S and T be self mappings on a complete Menger Space  $(X, F, \Delta)$  where  $\Delta = min$  and satisfying

- $(3.1) A(X) \subseteq T(X), B(X) \subseteq S(X).$
- (3.2) Pairs (A, S) and (B, T) are weakly compatible.
- $(3.3) \ \phi(F_{Au,Bv}(ht), F_{Su,Tv}(t), F_{Au,Su}(t), F_{Bv,Tv}(ht)) \ge 0.$

for all  $u, v \in X, t > 0, h \in (0, 1)$ . Then A, B, S and T have a unique common fixed point in X.

Proof: Define sequences  $< x_n >$  and  $< y_n >$  in X such that  $y_{2n+1} = Ax_{2n} = Tx_{2n+1}$  and  $y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$  for n = 0, 1, 2...

Putting  $u = x_{2n}, v = x_{2n+1}$  in (3.3) we get

$$\phi(F_{Ax_{2n},Bx_{2n+1}}(ht),F_{Sx_{2n},Tx_{2n+1}}(t),F_{Ax_{2n},Sx_{2n}}(t),F_{Bx_{2n+1},Tx_{2n+1}}(ht)) \ge 0.$$

$$\phi(F_{y_{2n+1},y_{2n+2}}(ht),F_{y_{2n},y_{2n+1}}(t),F_{y_{2n+1},y_{2n}}(t),F_{y_{2n+2},y_{2n+1}}(ht))\geq 0.$$

Using (2.1) we get

$$F_{y_{2n+1},y_{2n+2}}(ht) \ge F_{y_{2n},y_{2n+1}}(t)$$

We can write 
$$F_{y_n,y_{n+1}}(t) \ge F_{y_{n-1},y_n}(\frac{t}{h})$$
 for  $n = 2, 3, ...$  (3.4)

Let  $\epsilon, \lambda$  be positive reals. Then for m > n by (PM5) we have

$$F_{y_n,y_m}(\epsilon) \ge \Delta(F_{y_n,y_{n+1}}(\epsilon - h\epsilon), F_{y_{n+1},y_m}(h\epsilon))$$

$$\geq \Delta(F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}}), F_{y_{n+1},y_m}(h\epsilon))$$
 by (3.4)

$$\geq \Delta(F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}}), \Delta(F_{y_{n+1},y_{n+2}}(h\epsilon-h^2\epsilon), F_{y_{n+2},y_m}(h^2\epsilon)))$$

$$\geq \Delta(F_{y_1,y_2}(\tfrac{\epsilon-h\epsilon}{h^{n-1}}),\Delta(F_{y_1,y_2}(\tfrac{h\epsilon-h^2\epsilon}{h^n}),F_{y_{n+2},y_m}(h^2\epsilon)))$$

$$\geq \Delta(\Delta(F_{y_1,y_2}(\tfrac{\epsilon-h\epsilon}{h^{n-1}}),F_{y_1,y_2}(\tfrac{\epsilon-h\epsilon}{h^{n-1}})),F_{y_{n+2},y_m}(h^2\epsilon))$$

$$\geq \Delta(F_{y_1,y_2}(\tfrac{\epsilon-h\epsilon}{h^{n-1}}),F_{y_{n+2},y_m}(h^2\epsilon))$$

Repeated use of these arguments gives

$$\geq \Delta(F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}}), F_{y_{m-1},y_m}(h^{m-1-n}\epsilon))$$

$$\geq \Delta(F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}}),F_{y_1,y_2}(\frac{h^{m-1-n}\epsilon}{h^{m-2}}))$$

$$\geq \Delta(F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}}),F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}}))$$

$$\geq F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{n-1}})$$

if N be chosen that  $F_{y_1,y_2}(\frac{\epsilon-h\epsilon}{h^{N-1}}) > 1 - \lambda$  it follows that  $F_{y_n,y_m}(\epsilon) > 1 - \lambda$  for all  $n \geq N$ . Hence  $\{y_n\}$  is a Cauchy sequence in X which is complete so let  $\{y_n\}$  converges to point z in X. Its subsequences  $\{Ax_{2n}\},\{Tx_{2n+1}\},\{Bx_{2n+1}\},\{Sx_{2n+2}\}$  also converges to z. Since  $B(X) \subseteq S(X)$  there exist a point  $p \in X$  such that z = Sp. Using (3.3) we have

$$\phi(F_{Ap,Bx_{2n+1}}(ht),F_{Sp,Tx_{2n+1}}(t),F_{Ap,Sp}(t),F_{Bx_{2n+1},Tx_{2n+1}}(ht)) \ge 0.$$

Taking 
$$n \to \infty, \phi(F_{Ap,z}(ht), F_{Sp,z}(t), F_{Ap,Sp}(t), F_{z,z}(ht)) \ge 0.$$

$$\phi(F_{Ap,z}(ht), F_{z,z}(t), F_{Ap,z}(t), F_{z,z}(ht)) \ge 0.$$

$$\phi(F_{Ap,z}(ht), 1, F_{Ap,z}(t), 1) \ge 0.$$

 $\phi$  is non-decreasing in first argument gives  $\phi(F_{Ap,z}(t), 1, F_{Ap,z}(t), 1) \geq 0$ .

By (2.1),  $F_{Ap,z}(t) \ge 1$  which gives Ap=z.Therefore Ap = Sp = z. Since A and S weakly compatible mappings we have SAp = ASp implies Az = Sz. From (3.3) we get

$$\phi(F_{Az,Bx_{2n+1}}(ht), F_{Sz,Tx_{2n+1}}(t), F_{Az,Sz}(t), F_{Bx_{2n+1},Tx_{2n+1}}(ht)) \ge 0.$$

Taking 
$$n \to \infty, \phi(F_{Az,z}(ht), F_{Sz,z}(t), F_{Az,Sz}(t), F_{z,z}(ht)) \ge 0.$$

$$\phi(F_{Az,z}(ht), F_{Az,z}(t), 1, 1) \ge 0.$$

 $\phi$  is non-decreasing in first argument gives  $\phi(F_{Az,z}(t), F_{Az,z}(t), 1, 1) \geq 0$ .

By  $(2.2)F_{Az,z}(t) \ge 1$  implies Az = z. Therefore Az = Sz = z. As  $A(X) \subseteq T(X)$  there exist a point  $q \in X$  such that z = Tq. By (3.3) we get

$$\phi(F_{Ax_{2n},Bq}(ht),F_{Sx_{2n},Tq}(t),F_{Ax_{2n},Sx_{2n}}(t),F_{Bq,Tq}(ht)) \ge 0.$$

Taking 
$$n \to \infty, \phi(F_{z,Bq}(ht), F_{z,z}(t), F_{z,z}(t), F_{Bq,z}(ht)) \ge 0.$$

$$\phi(F_{z,Bq}(ht), 1, 1, F_{Bq,z}(ht)) \ge 0.$$

By (2.1),  $F_{z,Bq}(ht) \ge 1$  implies z = Bq. Therefore z = Bq = Tq. Similarly as B and T are weakly compatible mappings so BTq = TBq implies Bz = Tz. Using (3.3)we get

$$\phi(F_{Ax_{2n},Bz}(ht),F_{Sx_{2n},Tz}(t),F_{Ax_{2n},Sx_{2n}}(t),F_{Bz,Tz}(ht)) \ge 0.$$

Taking 
$$n \to \infty, \phi(F_{z,Bz}(ht), F_{z,Tz}(t), F_{z,z}(t), F_{Bz,Tz}(ht)) \ge 0.$$

$$\phi(F_{z,Bz}(ht), F_{z,Bz}(t), F_{z,z}(t), F_{Bz,Bz}(ht)) \ge 0.$$

$$\phi(F_{z,Bz}(ht), F_{z,Bz}(t), 1, 1) \ge 0.$$

 $\phi$  is non-decreasing in first argument gives  $\phi(F_{z,Bz}(t), F_{z,Bz}(t), 1, 1) \geq 0$ .

By (2.2), z = Bz. Therefore z = Bz = Tz. Hence z = Bz = Tz = Az = Bz. Therefore mappings A, B, S and T have a common fixed point in X. Let  $z_1$  be another common fixed point of mappings A, B, S and T. Then  $z_1 = Bz_1 = Tz_1 = Az_1 = Bz_1$ . From (3.3) we get

$$\phi(F_{Az,Bz_1}(ht), F_{Sz,Tz_1}(t), F_{Az,Sz}(t), F_{Bz_1,Tz_1}(ht)) \ge 0.$$

$$\phi(F_{z,z_1}(ht), F_{z,z_1}(t), F_{z,z}(t), F_{z_1,z_1}(ht)) \ge 0.$$

$$\phi(F_{z,z_1}(ht), F_{z,z_1}(t), 1, 1) \ge 0.$$

 $\phi$  is non-decreasing in first argument gives  $\phi(F_{z,z_1}(t),F_{z,z_1}(t),1,1)\geq 0$ .

By  $(2.2), F_{z,z_1} \ge 1$  implies  $z = z_1$ . Hence z is a unique fixed point of mappings A, B, S and T.

**Remark 3.1.** In Theorem 3.1 we have used less number of conditions in comparison of Mishra [4] in the sense that continuity of functions has not been used. Also one more notable point is that we have used weak compatibility in comparison of compatibility in Mishra [4].

Corollary 3.1. Let A, S and T be self mappings on a complete Menger Space  $(X, F, \Delta)$  where  $\Delta = min$  and satisfying

- $(3.5) A(X) \subseteq T(X) \cap S(X).$
- (3.6) Pairs (A, S) and (A, T) are weakly compatible.
- (3.7)  $\phi(F_{Au,Av}(ht), F_{Su,Tv}(t), F_{Au,Su}(t), F_{Av,Tv}(ht)) \ge 0.$

for all  $u, v \in X, t > 0, h \in (0, 1)$ . Then A, S and T have a unique common fixed point in X.

Corollary 3.2. Let A and S be self mappings on a complete Menger Space  $(X, F, \Delta)$  where  $\Delta = min$  and satisfying

- $(3.8 A(X) \subseteq S(X).$
- (3.9) Pairs (A, S) is weakly compatible.
- $(3.10) \ \phi(F_{Au,Av}(ht), F_{Su,Sv}(t), F_{Au,Su}(t), F_{Av,Sv}(ht)) \ge 0.$

for all  $u, v \in X, t > 0, h \in (0, 1)$ . Then A and S have a unique common fixed point in X.

Corollary 3.3. If in hypotheses of Theorem 3.1, condition (3.3) is replaced by the following condition

 $F_{Au,Bv}(ht) \ge min\{F_{Su,Tv}(t), F_{Au,Su}(t), F_{Bv,Tv}(t)\}$ . Then mappings A,B,S and T have a unique common fixed point in X.

Proof:By following the proof of Theorem 3.1 and using Lemma 2.1.

**Example 3.1.** Let X = R with the metric d(u, v) = |u - v| and define  $F_{u,v}(s) = H(s - d(u, v))$  for all  $u, v \in X$ .clearly (X, F, min) is a Menger space.Let A, B, S and T be self- mappings from X into itself defined as T(x) = 2x + 1 for all  $x \in X, S(x) = x$  for all  $x \in X, A(x) = B(x) = -1$  for all  $x \in X$ .

Then we see that

- (1)  $A(X) \subseteq T(X)$  and  $B(X) \subseteq S(X)$ .
- (2) pairs (A, S) and (B, T) are weakly compatible.
- (3) Let  $\phi: (R^+)^4 \to R$  be defined as  $\phi(x_1, x_2, x_3, x_4) = x_1 x_2$ . Then  $\phi \in \Phi$  and condition (3.3) of Theorem 3.1 is satisfied for  $h \in (0, 1)$  and t > 0. Thus all conditions of Theorem 3.1 is satisfied and -1 is a unique common fixed point of mappings A, B, S and T.

## 4. An application

**Theorem 4.1** Let (X, F, min) be complete Menger space.Let A, B, S and T be mappings from  $X \times X$  into X such that

- $(3.11)\ A(X\times\{v\})\subseteq T(X\times\{v\}), B(X\times\{v\})\subseteq S(X\times\{v\}\ \text{for all}\ v\in X.$
- (3.12) A(S(u,v),v) = S(A(u,v),v) for all  $(u,v) \in C[A,S]$  where C[A,S] denotes collection of coincidence points of A and S.

 $B(T(u_1, v_1), v_1) = T(B(u_1, v_1), v_1)$  for all  $(u_1, v_1) \in C[B, T]$  where C[B, T] denotes collection of coincidence points of B and T.

$$(3.13) \ \phi(F_{A(u,v),B(u_1,v_1)}(ht),F_{S(u,v),T(u_1,v_1)}(t),F_{A(u,v),S(u,v)}(t),F_{B(u_1,v_1),T(u_1,v_1)}(ht)) \ge 0.$$

for all  $u, v, u_1, v_1 \in X, t > 0, h \in (0, 1)$ . Then there exist exactly one point p in X such that A(p, v) = B(p, v) = S(p, v) = T(p, v) = p for all  $v \in X$ .

Proof:For a fixed  $v \in X$  and  $v = v_1,(3.11),(3.12),(3.13)$  corresponds to (3.1),(3.2),(3.3) of Theorem 3.1 so by Theorem 3.1 for each  $v \in X$  there exist unique point u(v) in X such that

$$A(u(v), v) = S(u(v), v) = B(u(v), v) = T(u(v), v) = u(v)$$

Now for every  $v, v_1$  in X from (3.13) we get

$$\phi(F_{A(u(v),v),B(u(v_1),v_1)}(ht),F_{S(u(v),v),T(u(v_1),v_1)}(t),$$

$$F_{A(u(v),v),S(u(v),v)}(t), F_{B(u(v_1),v_1),T(u(v_1),v_1)}(ht)) \ge 0.$$

$$\phi(F_{u(v),u(v_1)}(ht), F_{u(v),u(v_1)}(t), F_{u(v),u(v)}(t), F_{u(v_1),u(v_1)}(ht)) \ge 0.$$

$$\phi(F_{u(v),u(v_1)}(ht), F_{u(v),u(v_1)}(t), 1, 1) \ge 0.$$

 $\phi$  is non-decreasing in first argument gives

$$\phi(F_{u(v),u(v_1)}(t), F_{u(v),u(v_1)}(t), 1, 1) \ge 0.$$

By (2.2)  $F_{u(v),u(v_1)}(t) \ge 1$  implies  $u(v) = u(v_1)$ . Hence u(.) is some point  $p \in X$  and so A(p,v) = B(p,v) = S(p,v) = T(p,v) = p for all  $v \in X$ .

**Theorem 4.2** Let S,T and  $\{A_i\}_{i\in N}$  be self mappings on a complete Menger Space  $(X,F,\Delta)$  where  $\Delta = min$  and satisfying

$$(3.14) A_i(X) \subseteq T(X), A_{i+1}(X) \subseteq S(X).$$

(3.15) Pairs  $(A_i, S)$  and  $(A_{i+1}, T)$  are weakly compatible.

$$(3.16) \ \phi(F_{A_iu,A_{i+1}v}(ht), F_{Su,Tv}(t), F_{A_iu,Su}(t), F_{A_{i+1}v,Tv}(ht)) \ge 0.$$

for all  $u, v \in X, t > 0, h \in (0, 1)$ . Then S,T and  $\{A_i\}_{i \in N}$  have a unique common fixed point in X.

Proof:Let i = 1, we get hypothesis of Theorem 3.1 for maps  $A_1, A_2, T$  and S.By using Theorem 3.1 we get z is a unique common fixed point of maps  $A_1, A_2, T$  and S.Now z is a unique common fixed point of  $T, S, A_1$  and  $T, S, A_2$ .Otherwise, if  $z_1$  is a second fixed point of T, S and  $A_1$  then by (3.3) we have

$$\phi(F_{A_1z_1,A_2z}(ht),F_{Sz_1,Tz}(t),F_{A_1z_1,Sz_1}(t),F_{A_2z,Tz}(ht)) \ge 0.$$

$$\phi(F_{z_1,z}(ht), F_{z_1,z}(t), F_{z_1,z_1}(t), F_{z,z}(ht)) \ge 0.$$

$$\phi(F_{z_1,z}(ht, F_{z_1,z}(t), 1, 1) \ge 0.$$

By (2.2) we get  $F_{z_1,z} \geq 1$  implies  $z_1 = z$ .

Similarly we can show z is a unique common fixed point of mappings  $T,S,A_2$ .

Now by putting i=2,we get hypothesis of same theorem for maps  $T,S,A_2$  and  $A_3$  consequently there exist a unique common fixed point for maps  $T,S,A_2$  and  $A_3$ . Let this point be  $z_2$ . Similarly  $z_2$  is a unique common fixed point of  $T,S,A_2$  and  $T,S,A_3$ . Thus  $z=z_2$ . Hence we get z is a unique common fixed point for maps  $T,S,A_1,A_2$  and  $A_3$ . Continuing in this way we see that z is a unique common fixed point for S,T and  $\{A_i\}_{i\in N}$ .

**Remark 4.1.** B. Singh [9] generalized the result of Mishra [4] to six mappings by using weak compatibility and continuity of one function and we have extended our result to sequence of mappings without using continuity of any function.

## REFERENCES

- [1] G.Jungck, Compatible mappings and common fixed points, Int. j. Math. Math. Sci., Appli. Math. Information Sci. 9 (1986), 771-779.
- [2] G. Jungck and B. E. Rhodes, Fixed point for set-values functions without continuity, Indian J. Pure Appl. Math. 29(1988),227-238.
- [3] K.Menger, Statiscal metrics, Proc. Nat. Acad. Sci. U.S.A. . 28(1942), 535-537.
- [4] S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japonica 36(1991),283-289.
- [5] B.Schweizer and A.Sklar, Statistical metric spaces, Pacific J.Math. 10(1960), 313-334.
- [6] B.Schweizer and A.Sklar, Probabilistic metric spaces, North Holland Amsterdam, 1983.
- [7] V. M. Sehgal, A. T. Bharucha?Reid, Fixed point of contraction mappings on probabilistic metric spaces, Math. Systems Theory 6(1972),97-100.
- [8] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32(1982),149-153.
- [9] B. Singh, S. Jain, A fixed point theorem in Menger spaces through weak compatibility, J. Math. Anal. Appl. 301(2005),439-448.