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Abstract. In this paper we obtain a new common random fixed point theorem for a pair of random mappings

satisfying weakly contractive condition under generalized altering distance function in polish spaces.
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1. Introduction

Random fixed point theory has receive much attention in recent years and it is needed for the

study of various classes of random equations. The study of random fixed point theorems was

initiate by the Prague school of probabilistic in the 1950s. The interest in this subject enhanced

after publication of the survey paper of Bharucha Reid [6].

Obtaining the existence and uniqueness of fixed points for the self-maps of a metric space by

altering distances between the points with the use of a control function is an interesting aspect

in the classical fixed point theory. In this direction, Khan et al. [10] introduced a new category

of fixed point problems for a single self-map with the help of a control function that alters the
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distance between two points in a metric space which they called an altering distance function.

However, similar type of function was already in use in the fixed point theory under the title

D-function and the details may be found in Dhage [7].

Definition 1.1. [Dhage [7]] A function φ : [0,∞)→ [0,∞) is called a D-function if it is a

continuous and monotone nondecreasing function satisfying φ(0) = 0.

There do exist D-function useful in the fixed point theory and applications and commonly

used D-functions are φ(r) = k r and ψ(r) =
Lr

K + r
. The D-functions φ and ψ are respectively

used in the fixed point theory for linear and nonlinear contraction mappings in metric spaces

(cf. Dhage [7] and the references cited therein).

Definition 1.2. (Weakly contractive mapping): Let X be a metric space. A mapping T : X→ X

is called weakly contractive if for each x,y ∈ X ,

d(T x,Ty)≤ d(x,y)−φ(d(x,y)) (1.1)

where φ : [0,∞)→ [0,∞) is positive on (0,∞) and φ(0) = 0.

In fact, Alber and Guerre-Delabriere [2] assumed an additional condition on φ that is lim
t→∞

φ(t)=

∞. But Rhoades [11] obtained the result noted in following theorem without using this particular

assumption.

Theorem 1.1. (Rhoades [11]) If T : X → X is a weakly contractive mapping, where (X ,d) is a

complete metric space, then T has a unique fixed point.

It may be observed that though the function ϕ has been defined in the same way as the

D-function, the way it has been used in Theorem 2.1 is completely different from the use of

D-function.

Definition 1.3. A self mapping T of a metric space (X ,d) is said to be weakly contractive with

respect to a self mapping S : X → X , if for each x,y ∈ X ,

d(T x,Ty)≤ d(Sx,Sy)−ψ(d(Sx,Sy)),

where ψ : [0,∞)→ [0,∞) is a continuous and nondecreasing function such that ψ is positive on

(0,∞), ψ(0) = 0 and lim
t→∞

ψ(t) = ∞.



14 BAPURAO C. DHAGE, SACHIN V. BEDRE, NAMDEV S. JADHAV AND SHIN M. KANG

Recently, Beg and Abbas [4] proved a generalization of the corresponding theorems of

Rhoades [11] for a pair of mapping in which one is weakly contractive with respect to the other

which is further generalized by Azam and Shakeel [3] in convex metric spaces. Combining the

generalization of Banach contraction principle given by Khan et al. [9] and the generalization

given by Rhoades [11], Dutta and Choudhury [8] obtained a result which is further extended

by Abbas and Khan [1]. Choudhury [6] also proved similar type of works for generalized D-

functions. Recently, Beg et al. [5] obtained random version of these results in convex separable

complete metric spaces.

2. Random Common Fixed Point Theorem For
Generalized Weakly Contractions

Throughout this paper, let (X ,d) be a polish space, i.e., a separable complete metric space

and (Ω,A ) be a measurable space (i.e., A is σ -algebra of subsets of Ω). A function ξ : Ω→ X

is said to be a A -measurable if for any open subset B of X ,ξ−1(B) ∈A .

A mapping S : Ω×X → X is said to be a random map if and only if for each fixed x ∈ X ,

the mapping S(·,x) : Ω→ X is measurable. A random map S : Ω×X → X is continuous if for

each ω ∈ Ω, the mapping S(Ω, ·) : X → X is continuous. A measurable mapping ξ : Ω→ X is

a random fixed point of the random map S : Ω×X → X if and only if S(ω,ξ (ω)) = ξ (ω) for

each ω ∈Ω.

Definition 2.1. A measurable mapping ξ : Ω→ K, is said to be a random common fixed point

of random operators S : Ω×K→K and T : Ω×K→K if for each ω ∈Ω, ξ (ω) = S(ω,ξ (ω)) =

T (ω,ξ (ω)).

In [6], Choudhury introduced the concept of a generalized altering distance function for three

variables. In the following we generalized this notion for five variables.

Definition 2.2. A function φ : [0,∞)5 → [0,∞) is said to be a generalized D-function if the

following conditions are satisfied:

(i) φ is continuous,

(ii) φ is monotone increasing for every variables, and
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(iii) φ(t1, t2, t3, t4, t5) = 0 if and only if t1 = t2 = t3 = t4 = t5 = 0.

Define ψ(x) = φ(x,x,x,x,x) for x ∈ [0,∞). Clearly, ψ(x) = 0 if and only if x = 0. Some nice

examples of the generalized D-functions φ which may be used in metric fixed point theory are

φ(t1, t2, t3, t4, t5) = k max{t1, t2, t3, t4, t5}, for k > 0,

and

φ(t1, t2, t3, t4, t5) = ta1
1 + ta2

2 + ta3
3 + ta4

4 + ta5
5 ; a1,a2,a3,a4,a5 ≥ 1.

Now we prove a random common fixed point theorem for a pair of mappings.

Theorem 2.1 Let X be a metric space and K be a nonempty Polish subspace of X. Let S,T :

Ω×K→ K be continuous map satisfying for each ω ∈Ω,

ψ(d(S(ω,x),T (ω,y)))≤ φ1

(
d(x(ω),y(ω)),d(x(ω),T (ω,x)),d(y(ω),S(ω,y)),

d(x(ω),S(ω,y)),d(y(ω),T (ω,x))
)

−φ2

(
d(x(ω),y(ω)),d(x(ω),T (ω,x)),d(y(ω),S(ω,y)),

d(x(ω),S(ω,y)),d(y(ω),T (ω,x))
)

(2.1)

for each x,y ∈ K, where φi(i = 1,2) are generalized D-functions and the function ψ is defined

by ψ(x) = φ(x,x,x,x,x). Then there exists a measurable mapping ξ : Ω→ K such that ξ (ω) =

S(ω,ξ (ω)) = T (ω,ξ (ω)).

Proof. Let ξ0 : Ω→ K be a measurable but fixed mapping in K, we get

ξ1(ω) = T (ω,ξ0(ω)) and ξ2(ω) = S(ω,ξ1(ω)).

Similarly, we get

ξ3(ω) = T (ω,ξ2(ω)) and ξ4(ω) = S(ω,ξ3(ω)).

Inductively, we construct a sequence of measurable maps {ξn} from Ω to K such that

ξ2n+1(ω) = S(ω,ξ2n(ω)) and ξ2n+2(ω) = T (ω,ξ2n+1(ω)). (2.2)
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Since S and T are continuous, by a result of Himmelberg [9], {ξn} is a measurable sequence.

First we will prove that

d(ξn(ω),ξn+1(ω))≤ d(ξn−1(ω),ξn(ω)).

Consider, the following estimate:

ψ

(
d(ξ2n+1(ω),ξ2n+2(ω))

)
≤ ψ

(
d(T (ω,ξ2n(ω)),S(ω,ξ2n+1(ω)))

)
≤ φ1

(
d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n(ω),T (ω,ξ2n(ω))),d(ξ2n+1(ω),S(ω,ξ2n+1(ω))),

d(ξ2n(ω),S(ω,ξ2n+1(ω))),d(ξ2n+1(ω),T (ω,ξ2n(ω)))
)

−φ2

(
d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n(ω),T (ω,ξ2n(ω))),d(ξ2n+1(ω),S(ω,ξ2n+1(ω))),

d(ξ2n(ω),S(ω,ξ2n+1(ω))),d(ξ2n+1(ω),T (ω,ξ2n(ω)))
)

= φ1

(
d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n+1(ω),ξ2n+2(ω)),

d(ξ2n(ω),ξ2n+2(ω)),d(ξ2n+1(ω),ξ2n+1(ω))
)

−φ2

(
d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n+1(ω),ξ2n+2(ω)),

d(ξ2n(ω),ξ2n+2(ω)),d(ξ2n+1(ω),ξ2n+1(ω))
)

≤ φ1

(
d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n+1(ω),ξ2n+2(ω)),

d(ξ2n(ω),ξ2n+1(ω))+d(ξ2n+1(ω),ξ2n+2(ω))
)

−φ2

(
d(ξ2n(ω),ξ2n+1(ω)),d(ξ2n+1(ω),ξ2n+2(ω)),

d(ξ2n(ω),ξ2n+1(ω))+d(ξ2n+1(ω),ξ2n+2(ω))
)
.

(2.3)

If

d
(
ξ2n+1(ω),ξ2n+2(ω)

)
> d
(
ξ2n(ω),ξ2n+1(ω)

)
,
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then,

ψ
(
d(ξ2n+1(ω),ξ2n+2(ω))

)
< φ1

(
d(ξ2n+1(ω),ξ2n+2(ω)),d(ξ2n+1(ω),ξ2n+2(ω)),

d(ξ2n+1(ω),ξ2n+2(ω)),d(ξ2n+1(ω),ξ2n+2(ω))
)

= ψ
(
d(ξ2n+1(ω),ξ2n+2(ω))

)
(2.4)

which is a contradiction. Since φ1 is monotone increasing for all variables and

φ2[d(ξ2n+1(ω),ξ2n+2(ω))] 6= 0

whenever

d(ξ2n+1(ω),ξ2n+2(ω)).

So, we have

d(ξ2n+1(ω),ξ2n+2(ω))≤ d(ξ2n(ω),ξ2n+1(ω)) (2.5)

for all n = 0,1, . . .. Putting x = ξ2n(ω), y = ξ2n−1(ω) in (2.1), we have

ψ(d(ξ2n(ω),ξ2n+1(ω)))

= ψ(d(T (ω,ξ2n−1(ω)),d(S(ω,ξ2n(ω)))))

≤ φ1

(
d(ξ2n−1(ω),ξ2n(ω)),d(ξ2n−1(ω),T (ω,ξ2n−1(ω))),d(ξ2n(ω),S(ω,ξ2n(ω))),

d(ξ2n−1(ω),S(ω,ξ2n(ω))),d(ξ2n(ω),T (ω,ξ2n−1(ω)))
)

−φ2

(
d(ξ2n−1(ω),ξ2n(ω)),d(ξ2n−1(ω),T (ω,ξ2n−1(ω))),d(ξ2n(ω),S(ω,ξ2n(ω))),

d(ξ2n−1(ω),S(ω,ξ2n(ω))),d(ξ2n(ω),T (ω,ξ2n−1(ω)))
)

= φ1

(
d(ξ2n−1(ω),ξ2n(ω)),d(ξ2n−1(ω),ξ2n(ω)),d(ξ2n(ω),ξ2n+1(ω)),

d(ξ2n−1(ω),ξ2n+1(ω)),d(ξ2n(ω),ξ2n(ω))
)

−φ2

(
d(ξ2n−1(ω),ξ2n(ω)),d(ξ2n−1(ω),ξ2n(ω)),d(ξ2n(ω),ξ2n+1(ω)),

d(ξ2n−1(ω),ξ2n+1(ω)),d(ξ2n(ω),ξ2n(ω))
)
.

(2.6)
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By similar arguments, we have

d(ξ2n+2(ω),ξ2n+3(ω))≤ d(ξ2n+1(ω),ξ2n+2(ω)) (2.7)

for all n ∈ N. From (2.5) and (2.7) we obtain

d(ξn+1(ω),ξn+2(ω))≤ d(ξn(ω),ξn+1(ω)) (2.8)

for all n ∈ N. From (2.3) and (2.8), we have for all integers n≥ 0

ψ(d(ξn+1(ω),ξn+2(ω)))≤ φ1(d(ξn,ξn+1(ω)))−φ2(d(ξn(ω),ξn+1(ω)))

or, equivalently,

φ2(d(ξn+1(ω),ξn+2(ω)))≤ φ1(d(ξn(ω),ξn+1(ω)))−φ1(d(ξn(ω),ξn+1(ω))).

Summing up from (2.8), we obtain

∞

∑
n=0

φ(d(ξn+1(ω),ξn+2(ω)))≤ φ1(d(ξ0(ω),ξ1(ω)))< ∞.

This implies,

φ2(d(ξn(ω),ξn+1(ω)))→ 0 as n→ ∞. (2.9)

Again, from (2.8), the sequence {d(ξn(ω),ξn+1(ω))} is monotone non-increasing and bound-

ed. Hence there exists a real number r(ω)≥ 0 such that,

lim
n→∞

d(ξn(ω),ξn+1(ω)) = r(ω).

Then, by continuity of φ , from (2.9), we obtain φ2(r(ω)) = 0 which implies that by the

property of function φ , we have r(ω) = 0. Thus,

lim
n→∞

d(ξn(ω),ξn+1(ω)) = 0. (2.10)

Now we claim that
{

ξn(ω)
}

is a Cauchy sequence in K. If possible, let
{

ξn(ω)
}

is not a

Cauchy sequence then there exists ε > 0 for which we can find subsequences
{

ξni(ω)
}

and

{ξmi(ω)} with ni > mi > i such that

d(ξmi(ω),ξni(ω))< ε. (2.11)
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Further we can choose ni corresponding mi, in such a way that it is smallest integer with

ni > mi satisfying

d(ξmi,ξni−1(ω))< ε. (2.12)

Using (2.11), (2.12) and the triangle inequality, we have

ε ≤ d(ξmi(ω),ξni(ω))

≤ d(ξmi(ω),ξni−1(ω))+d(ξni−1(ω),ξni(ω))

< ε +d(ξni−1(ω),ξni(ω)).

(2.13)

Letting i→ ∞ and using (2.10),

lim
i→∞

d(ξmi(ω),ξni(ω)) = ε (2.14)

Again, from the triangle inequality we get

d(ξmi(ω),ξni(ω))≤ d(ξmi(ω),ξmi−1(ω))+d(ξmi−1(ω),ξni−1(ω))

+d(ξni−1(ω),ξni(ω))

d(ξmi−1(ω),ξni−1(ω))≤ d(ξmi−1(ω),ξmi(ω))+d(ξmi(ω),ξni(ω))

+d(ξni(ω),ξni−1(ω)).

(2.15)

Letting i→ ∞ and using the inequalities (2.10) and (2.14), we obtain

lim
i→∞

d(ξmi−1(ω),ξni−1(ω)) = ε. (2.16)
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Setting x = ξmi(ω) and y = ξni(ω) in (2.1), we obtain

ψ

(
d(ξmi−1(ω),ξni−1(ω))

)
= ψ

(
d(T (ω,ξmi(ω)),S(ω,ξni(ω)))

)
≤ φ1

(
(d(ξmi(ω),ξni(ω)),d(ξmi(ω),T (ω,ξmi(ω))),d(ξni(ω),S(ω,ξni(ω))),

d(ξmi(ω),S(ω,ξni(ω))),d(ξni(ω),T (ω,ξmi(ω))))
)

−φ2

(
(d(ξmi(ω),ξni(ω)),d(ξmi(ω),T (ω,ξmi(ω))),d(ξni(ω),S(ω,ξni(ω))),

d(ξmi(ω),S(ω,ξni(ω))),d(ξni(ω),T (ω,ξmi(ω))))
)
.

(2.17)

Letting i→ ∞ in (2.17) and using the inequalities (2.2), (2.11) and (2.12), we obtain

ψ(ε)≤ lim
i→∞

ψ(d(T (ω,ξmi(ω)),S(ω,ξni(ω))))

≤ lim
i→∞

φ1

(
d(ξmi(ω),ξni(ω)),d(ξmi(ω),T (ω,ξmi(ω))),d(ξni(ω),S(ω,ξni(ω))),

d(ξmi(ω),S(ω,ξni(ω))),d(ξni(ω),T (ω,ξni(ω)))
)

− lim
i→∞

φ2

(
d(ξmi(ω),ξni(ω)),d(ξmi(ω),T (ω,ξmi(ω))),d(ξni(ω),S(ω,ξni(ω))),

d(ξmi(ω),S(ω,ξni(ω))),d(ξni(ω),T (ω,ξni(ω)))
)

= lim
i→∞

φ1

(
d(ξmi(ω),ξni(ω)),d(ξmi(ω),ξmi+1(ω)),d(ξni(ω),ξni+1(ω)),

d(ξmi(ω),ξni+1(ω)),d(ξni(ω),ξmi+1(ω))
)

− lim
i→∞

φ2

(
d(ξmi(ω),ξni(ω)),d(ξmi(ω),ξmi+1(ω)),d(ξni(ω),ξni+1(ω)),

d(ξmi(ω),ξni+1(ω)),d(ξni(ω),ξmi+1(ω))
)

(2.18)

Using inequalities (2.10), (2.12) and (2.14), we have

ψ(ε)≤ φ1(ε,0,0,0,0)−φ2(ε,0,0,0,0)< φ1(ε)

Since φ1 is monotone increasing in its variables and by the property φ2 that

φ(t1, t2, t3, t4, t5) = 0 if and only if t1 = t2 = t3 = t4 = t5.
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Thus we arrive at a contradiction as ε > 0.

Hence
{

ξni(ω)
}

is Cauchy sequence in K, there exists ξ : Ω→ K such that ξn(ω)→ ξ (ω)

for all ω ∈Ω. We show that ξ (ω) is random common fixed point of S and T .

T (ω,ξ (ω)) = lim
n→∞

T (ω,ξ2n(ω)) = lim
n→∞

ξ2n+1(ω) = ξ (ω)

Similarly, we can prove ξ (ω) = S(ω,ξ (ω)). Hence, T (ω,ξ (ω)) = ξ (ω) = S(ω,ξ (ω)) and

consequently ξ (ω) is common fixed point of S(ω) and T (ω).

Finally, we prove the uniqueness of the common random fixed point ξ of S and T . Let ζ (ω)

and ξ (ω) be two random fixed points of S and T i.e.

S(ω,ξ (ω)) = ξ (ω) = T (ω,ξ (ω))

and

T (ω,ζ (ω)) = ζ (ω) = S(ω,ζ (ω))

for each ω ∈Ω. Using inequality (2.1), we have

ψ(d(ξ (ω),ζ (ω))) = ψ(d(T (ω,ξ (ω)),T (ω,ξ (ω))))

≤ φ1

(
d(ξ (ω),ζ (ω)),d(ξ (ω),T (ω,ξ (ω))),d(ζ (ω),T (ω,ζ (ω))),

d(ξ (ω),T (ω,ζ (ω))),d(ζ (ω),T (ω,ξ (ω)))
)

−φ2

(
d(ξ (ω),ζ (ω)),d(ξ (ω),T (ω,ξ (ω))),d(ζ (ω),T (ω,ζ (ω))),

d(ξ (ω),T (ω,ζ (ω))),d(ζ (ω),T (ω,ξ (ω)))
)

= φ1

(
d(ξ (ω),ζ (ω)),0,0,d(ξ (ω),ζ (ω)),0,d(ζ (ω)ξ (ω))

)
−φ2

(
d(ξ (ω),ζ (ω)),0,0,d(ξ (ω),ζ (ω)),0,d(ζ (ω)ξ (ω))

)
< φ1

(
d(ξ (ω),ζ (ω))

)

(2.19)

which is possible only when ξ (ω) = ζ (ω), since φ1 is monotone increasing in all its variables

and φ(t1, t2, t3, t4, t5) ≤ 0 if at least one of t1, t2, t3, t4, t5 is nonzero. Hence, ξ (ω) is the unique

random common fixed point of S and T , i.e., S(ω,ξ (ω)) = ξ (ω) = T (ω,ξ (ω)) for all ω ∈Ω.
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Remark 2.1. (i) Theorem 2.1 is a generalization of Theorem 2.2 [10] with correction in the

proof. The part of proof showing that the limit of the sequence of iterations is a random fixed

point of the random mapping T (ω) is superfluous, because the required conclusion follows by

virtue of continuity of T (ω) on X .

(ii) Theorem 2.1 presents random version improvement, extension and generalization of Ab-

bas and Khan [1], Dutta and Choudhury [8, Theorem 2.1] and Rhoades [11] by considering

generalized D-function.

(iii) Theorem 2.1 is generalization of Theorem 2.1 [5] for two mappings considering the

generalized altering distance function.

If we take S = T in Theorem 2.1, then we have the following result as a particular case.

Corollary 2.1. Let X be a metric space and K be a nonempty Polish subspace of X. Let

T : Ω×K→ K be continuous map satisfying for each ω ∈Ω,

ψ(d(T (ω,x),T (ω,y)))≤ φ1

(
d(x(ω),y(ω)),d(x(ω),T (ω,x)),d(y(ω),T (ω,y)),

d(x(ω),T (ω,y)),d(y(ω),T (ω,x))
)

−φ2

(
d(x(ω),y(ω)),d(x(ω),T (ω,x)),d(y(ω),T (ω,y)),

d(x(ω),T (ω,y)),d(y(ω),T (ω,x))
)

(2.20)

for each x,y∈K, where φi(i= 1,2) are generalized D-functions and the D-function ψ is defined

by ψ(x) = φ(x,x,x,x,x). Then there exists a measurable mapping ξ : Ω→ K such that ξ (ω) =

T (ω,ξ (ω)).

An immediate consequence of Theorem 2.1 is the following:

Corollary 2.2. Let X be a metric space and K be a nonempty Polish subspace of X. Let

S,T : Ω×K→ K be continuous map satisfying for each ω ∈Ω,[
d(S(ω,x),T (ω,y))

]s
≤ k1

[
d(x,y)

]s
+ k2

[
d(x,T (ω,x))

]s
+ k3

[
d(y,S(ω,y))

]s

+ k4

[
d(x,S(ω,y))

]s
+ k5

[
d(y,T (ω,x))

]s
(2.21)

for all x,y ∈ X where, 0 < k1 + k2 + k3 + k4 + k5 < 1 and s > 0. Then S and T have a random

common fixed point.
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Proof. We make particular choices of φ1 and φ2 given by

φ1(t1, t2, t3, t4, t5) = k1ts
1 + k2ts

2 + k3ts
3 + k4ts

4 + k5ts
5 (2.22)

and

φ2(t1, t2, t3, t4, t5) = (k−1)
[
k1ts

1 + k2ts
2 + k3ts

3 + k4ts
4 + k5ts

5

]
(2.23)

with k = k1 + k2 + k3 + k4 + k5, then (2.1) is implied by (2.21). The corollary then follows by

an application of Theorem 2.1.
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