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Abstract. In this paper, we achieve a fixed point theorem for G-metric set-valued quasi-contraction maps in a

G-metric space. The result was obtained using a similar approach to that used by Amini-Harandi [1] and it extends

the set-valued fixed point theory from metric spaces to G-metric spaces.
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1. Introduction

A set-valued mapping T from a set X to another set Y is a rule that associates one or more

elements of Y with every element of X . If T is a function and DT is the domain of T then a

fixed point or an invariant point of the function T is an element x ∈ DT that is mapped to itself.

That is T (x) = x. A fixed point theorem is a result giving the conditions for which the function

T will have at least one fixed point.
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The D-metric space was introduced in 1992 by Dhage [2] as an attempt to generalize the

existing metric space results. In 2003 Mustafa and Sims [3] exposed some imperfections in the

topological properties of the D-metric space, annulling the validity of the majority of results that

were obtained in those spaces. In 2006, Mustafa and Sims attempted to address the D-metric

space deficiencies by introducing a new structure of generalized metric spaces called G-metric

spaces [4].

2. Preliminaries

The main aim of this section is to state some basic definitions and results that are essential

for general knowledge and serves as a convenient means of reference material for subsequent

use.

Definition 2.1. [2] Let X be a non-empty set and let D : X ×X ×X → [0,∞) be a function

satisfying the following conditions, for all a,x,y,z ∈ X

(i) D(x,y,z)≥ 0;

(ii) D(x,y,z) = 0 if and only if x = y = z;

(iii) D(x,y,z) = D(x,z,y) = D(y,x,z) = D(y,z,x) = D(z,x,y) = D(z,y,x);

(iv) D(x,y,z)≤ D(x,y,a)+D(x,a,z)+D(a,y,z).

Then D is called a D-metric on X and the pair (X ,D) is called a D-metric space.

Definition 2.2. [4] Let X be a non-empty set, and let G : X ×X ×X → [0,∞) be a function

satisfying the following axioms,

(i) G(x,y,z) = 0 if and only if x = y = z;

(ii) G(x,x,y)> 0 for all x,y ∈ X with x 6= y;

(iii) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with z 6= y;

(iv) G(x,y,z) = G(x,z,y) = G(y,x,z) = G(y,z,x) = G(z,x,y) = G(z,y,x);

(v) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X .

Then the function G is called a generalized metric, or, more specifically, a G-metric on X ,

and the pair (X ,G) is called a generalized metric space or a G-metric space.
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Definition 2.3. [4] Let (X ,G) be a G-metric space, and let {xn} be a sequence of points of X .

Then {xn} is G-convergent to x if,

lim
m,n→∞

G(x,xn,xm) = 0.

That is, for any ε > 0, there exist N ∈ N such that G(x,xn,xm)< ε , for all n,m ≥ N. We call x

the limit of the sequence and write xn→ x or,

lim
n→∞

xn = x.

The following lemma follows directly from Definition 2.3.

Lemma 2.1. [4] Let (X ,G) be a G-metric space. Then the following are equivalent

(i) {xn} is G-convergent to x;

(ii) G(xn,xn,x)→ 0 as n→ ∞;

(iii) G(x,x,xn)→ 0 as n→ ∞;

(iv) G(xm,xn,x)→ 0 as m,n→ ∞.

We now proceed to define a Cauchy sequence in a G-metric space.

Definition 2.4. [4] Let (X ,G) be a G-metric space. A sequence {xn} is called G-Cauchy if

for each ε > 0, there exist n0 ∈ N such that G(xm,xn,xp) < ε , for all m,n, p ≥ n0. That is

G(xm,xn,xp)→ 0 as m,n, p→ ∞.

The following Lemma is a consequence of Definition 2.4.

Lemma 2.2. [4] Let (X ,G) be a G-metric space. Then {xn} is called G-Cauchy if and only if

for every ε > 0, there exist N ∈ N such that G(xn,xm,xm)< ε , for all n,m≥ N.

Definition 2.5. Let (X ,d) be a metric space. The family of all non-empty closed and bounded

subsets of X is denoted by CB(X).

Definition 2.6 [1] Let (X ,d) be a metric space. The set-valued map T : X →CB(X) is said to

be a q-set-valued quasi-contraction if,

dH(T x,Ty)≤ q.max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}
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for any x,y ∈ X where 0≤ q < 1 and dH denotes the Hausdorff metric on CB(X) induced by d.

That is for all A,B ∈CB(X),

dH(A,B) = max

{
sup
x∈A

d(x,B),sup
y∈B

d(y,A)

}
.

The following is a fixed point theorem for the set-valued quasi-contraction maps in metric s-

paces.

Theorem 2.1 [1] Let (X ,d) be a complete metric space. Let T : X →CB(X) be a q-set-valued

quasi-contraction with q < 1
2 . Then T has a fixed point.

3. Main results

In this section we introduce the concept of G-metric set-valued quasi-contractions in G-metric

spaces and present our main result which extends Theorem 2.1. to G-metric spaces.

Definition 3.1. Let (X ,G) be a G-metric space. The family of all non-empty closed and bounded

subsets of X is denoted by CBG(X).

Definition 3.2. Let (X ,d) be a metric space, (X ,G) be a G-metric space and CBG(X) be the

family of all non-empty closed and bounded subsets of X in a G-metric space.

(a) The distance between any point x ∈ X and any two non-empty subsets A,B ∈ CBG(X) is

denoted by G(x,A,B) and is defined by,

G(x,A,B) = d(x,A)+d(x,B)+d(A,B),

where, d(x,A) = in f{d(x,y) : y ∈ A}, d(x,B) = in f{d(x,y) : y ∈ B} and

d(A,B) = in f{d(a,b) : a ∈ A,b ∈ B}.

(b) Let A,B,C ∈CBG(X). The Hausdorff G-metric or Hausdorff G-metric distance is denoted

by GH(A,B,C) and is defined by,

GH(A,B,C) = max
{

sup
x∈A

G(x,B,C),sup
x∈B

G(x,C,A),sup
x∈C

G(x,A,B)
}
.

Definition 3.3. Let (X ,G) be a G-metric space, the set-valued map T : X →CBG(X) is said to

be a G-metric q-set-valued quasi-contraction if for any x,y,z ∈ X ,



FIXED POINT THEOREMS FOR SET-VALUED QUASI-CONTRACTION MAPS 495

GH(T x,Ty,T z)≤ q.max



G(x,y,z), G(x,T x,Ty), G(x,Ty,T z),

G(x,T x,T z), G(y,T x,Ty), G(y,Ty,T z),

G(y,T x,T z), G(z,T x,Ty), G(z,Ty,T z),

G(z,T x,T z)


,

where 0 ≤ q < 1 and GH denotes the Hausdorff metric on CBG(X) induced by G. That is, for

all A,B,C ∈CBG(X),

GH(A,B,C) = max
{

sup
x∈A

G(x,B,C),sup
x∈B

G(x,C,A),sup
x∈C

G(x,A,B)
}
.

The following is our main result in G-metric spaces, it is a fixed point theorem for G-metric

set-valued quasi-contraction mappings.

Theorem 3.1. Let (X ,G) be a complete G-metric space. Suppose that T : X → CBG(X) is a

G-metric q-set-valued quasi-contraction with q < 1
2 . Then T has a fixed point. That is there

exist u ∈ X such that u = Tu(u ∈ Tu).

Proof. We first observe that for each A,B,C ∈CBG(X), a ∈ A and α > 0 with GH(A,B,C)< α ,

there exist b ∈ B and c ∈C such that G(a,b,c)< α . Now let r > 0 be such that q < r < 1
2 . Then

by Definition 3.3, we find that

GH(T x,Ty,T z)< r.max



G(x,y,z), G(x,T x,Ty), G(x,Ty,T z),

G(x,T x,T z), G(y,T x,Ty), G(y,Ty,T z),

G(y,T x,T z), G(z,T x,Ty), G(z,Ty,T z),

G(z,T x,T z)


.

If we replace x,y and z by x0,x1 and x2 respectively, then we get

GH(T x0,T x1,T x2)< r.max



G(x0,x1,x2), G(x0,T x0,T x1), G(x0,T x1,T x2),

G(x0,T x0,T x2), G(x1,T x0,T x1), G(x1,T x1,T x2),

G(x1,T x0,T x2), G(x2,T x0,T x1), G(x2,T x1,T x2),

G(x2,T x0,T x2)


.
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But by observation GH(A,B,C) < α , a ∈ A and α > 0. This implies that there exist b ∈ B and

c ∈C such that G(a,b,c)< α . Setting x1 ∈ T x0 , x2 ∈ T x1 and x3 ∈ T x2, we get

G(x1,x2,x3)< r.max



G(x0,x1,x2), G(x0,T x0,T x1), G(x0,T x1,T x2),

G(x0,T x0,T x2), G(x1,T x0,T x1), G(x1,T x1,T x2),

G(x1,T x0,T x2), G(x2,T x0,T x1), G(x2,T x1,T x2),

G(x2,T x0,T x2)


.

Continuing in this manner, by induction, we obtain a sequence {xn} in X such that xn+1 ∈ T xn,

which implies,

G(xn,xn+1,xn+2)< r.max



G(xn−1,xn,xn+1), G(xn−1,T xn−1,T xn),

G(xn−1,T xn,T xn+1), G(xn−1,T xn−1,T xn+1),

G(xn,T xn−1,T xn), G(xn,T xn,T xn+1),

G(xn,T xn−1,T xn+1), G(xn+1,T xn−1,T xn),

G(xn+1,T xn,T xn+1), G(xn+1,T xn−1,T xn+1)


.

We have several cases.

Case I: If xn = xn+1 for some n ∈ N then xn = xn+1 ∈ T xn. That is xn is a fixed point of T and

the proof is completed.

Case II: If xn+1 = xn+2 for some n ∈ N, then xn+1 = xn+2 ∈ T xn+1. That is xn+1 is a fixed point

of T and the proof is completed.

Case III: xn 6= xn+1 6= xn+2 for each n ∈ N. Now xn ∈ T xn−1, xn+1 ∈ T xn and xn+2 ∈ T xn+1.
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Therefore,

G(xn,xn+1,xn+2)< r.max



G(xn−1,xn,xn+1), G(xn−1,T xn−1,T xn),

G(xn−1,T xn,T xn+1), G(xn−1,T xn−1,T xn+1),

G(xn,T xn−1,T xn), G(xn,T xn,T xn+1),

G(xn,T xn−1,T xn+1), G(xn+1,T xn−1,T xn),

G(xn+1,T xn,T xn+1), G(xn+1,T xn−1,T xn+1)



≤ r.max



G(xn−1,xn,xn+1), G(xn−1,xn,xn+1),

G(xn−1,xn+1,xn+2), G(xn−1,xn,xn+2),

G(xn,xn,xn+1), G(xn,xn+1,xn+2),

G(xn,xn,xn+2), G(xn+1,xn,xn+1),

G(xn+1,xn+1,xn+2), G(xn+1,xn,xn+2)



= r.max


G(xn−1,xn,xn+1),

G(xn−1,xn,xn+2),

G(xn−1,xn+1,xn+2)

 .

Thus, we have

G(xn,xn+1,xn+2)< r.max


G(xn−1,xn,xn+1),

G(xn−1,xn,xn+2),

G(xn−1,xn+1,xn+2)

 . (3.1)

Note that we can modify Equation (3.1) by replacing n by n−2 to get that

G(xn,xn−1,xn−2)< r.max


G(xn−3,xn−2,xn−1),

G(xn−3,xn−2,xn),

G(xn−3,xn−1,xn)

 . (3.2)

From Equation (3.2), we have three choices

G(xn,xn−1,xn−2)≤ rG(xn−3,xn−2,xn−1),

G(xn,xn−1,xn−2)≤ rG(xn−3,xn−2,xn),

G(xn,xn−1,xn−2)≤ rG(xn−3,xn−1,xn).
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Now we show by induction that for each n≥ 3 there exist 1≤ i < j≤ n, where j ∈ {i+1, i+2}

such that,
(
note that r ≤ r

1−r

)
G(xn,xn−1,xn−2)≤

(
r

1− r

)n−2

G(x0,xi,x j). (3.3)

For n = 3, the three choices become

G(x1,x2,x3)≤ rG(x0,x1,x2),

G(x1,x2,x3)≤ rG(x0,x1,x3),

G(x1,x2,x3)≤ rG(x0,x2,x3).

That is, G(x3,x2,x1)≤ r
1−r G(x0,xi,x j) =

( r
1−r

)3−2 G(x0,xi,x j) for some 1≤ i < j ≤ 3,

j ∈ {i+1, i+2}. Thus Equation (3.3) holds for n = 3.
(
Note that for n = 4 we can modify

Equation (3.1) by replacing n by n−3 and for n = 5 we can modify Equation (3.1) by replacing

n by n−4 and so on
)
.

Next, we assume that Equation (3.3) holds for all values less than n, we will show that it holds

for n. Now Equation (3.3) trivially holds if G(xn,xn−1,xn−2)≤ rG(xn−3,xn−2,xn−1). Therefore

we consider the choices when

G(xn,xn−1,xn−2)≤ rG(xn−3,xn−2,xn) and G(xn,xn−1,xn−2)≤ rG(xn−3,xn−1,xn).

First, we suppose that

G(xn,xn−1,xn−2)≤ rG(xn−3,xn−2,xn). (3.4)

Then by Definition 2.2 and our assumption, we have

G(xn−3,xn−2,xn) = G(xn,xn−2,xn−3)

≤ G(xn,xn−1,xn−1)+G(xn−1,xn−2,xn−3)

≤ G(xn,xn−1,xn−2)+G(xn−1,xn−2,xn−3)

≤ rG(xn−3,xn−2,xn)+

(
r

1− r

)n−3

G(x0,xi,x j).

Therefore, we have

(1− r)G(xn−3,xn−2,xn)≤
(

r
1− r

)n−3

G(x0,xi,x j)
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This implies that

G(xn−3,xn−2,xn)≤
1

1− r

(
r

1− r

)n−3

G(x0,xi,x j)

Substituting in Equation (3.4), we find that

G(xn,xn−1,xn−2)≤
(

r
1− r

)n−2

G(x0,xi,x j).

This implies that Equation (3.3) holds. Second, we suppose

G(xn,xn−1,xn−2)≤ rG(xn−3,xn−1,xn).

Then by Definition 2.2 and our assumption, we have

G(xn−3,xn−1,xn) = G(xn,xn−1,xn−3)

≤ G(xn,xn−2,xn−2)+G(xn−2,xn−1,xn−3)

≤ G(xn,xn−1,xn−2)+G(xn−1,xn−2,xn−3)

≤ rG(xn−3,xn−1,xn)+

(
r

1− r

)n−3

G(x0,xi,x j).

Therefore, we have

(1− r)G(xn−3,xn−1,xn)≤
(

r
1− r

)n−3

G(x0,xi,x j).

This implies that G(xn−3,xn−1,xn)≤ 1
1−r

( r
1−r

)n−3 G(x0,xi,x j). Hence, we have

G(xn,xn−1,xn−2)≤
(

r
1− r

)n−2

G(x0,xi,x j).

This implies that Equation (3.3) holds. We proceed to show that T has a fixed point. Firstly we

show that the sequence {xn} is bounded, then we show {xn} is Cauchy. To show that {xn} is

bounded, put δ1 = G(x0,x1,T x1). Now from Equation (3.1), we have three choices. Either

G(x1,x2,x3)≤ rG(x0,x1,x2),

G(x1,x2,x3)≤ rG(x0,x1,x3) or,

G(x1,x2,x3)≤ rG(x0,x2,x3).
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Suppose that G(x1,x2,x3)≤ rG(x0,x1,x2). Note that

G(x0,x2,x3) = G(x3,x2,x0),

≤ G(x3,x0,x0)+G(x0,x2,x0),

≤ G(x3,x1,x2)+G(x0,x1,x2),

≤ rG(x0,x1,x2)+G(x0,x1,x2).

That is,

G(x0,x2,x3)≤ (1+ r)G(x0,x1,x2)≤
(

1+
r

1− r

)
G(x0,x1,x2).

Considering the second choice G(x1,x2,x3)≤ rG(x0,x1,x3) Note that

G(x0,x2,x3) = G(x3,x2,x0),

≤ G(x3,x0,x0)+G(x0,x2,x0),

≤ G(x3,x1,x2)+G(x0,x1,x2),

≤ rG(x0,x1,x3)+G(x0,x1,x2),

≤ rG(x0,x3,x3)+ rG(x3,x1,x3)+G(x0,x1,x2),

≤ rG(x0,x1,x2)+ rG(x0,x1,x2)+G(x0,x1,x2).

That is,

G(x0,x2,x3)≤ (1+2r)G(x0,x1,x2)≤

(
1+2

(
r

1− r

))
G(x0,x1,x2).

Finally the third choice G(x1,x2,x3)≤ rG(x0,x2,x3) Now,

G(x0,x2,x3) = G(x3,x2,x0)

≤ G(x3,x0,x0)+G(x0,x2,x0)

≤ G(x3,x1,x2)+G(x0,x1,x2)

≤ rG(x0,x2,x3)+G(x0,x1,x2)

≤
( r

1− r

)
G(x0,x2,x3)+G(x0,x1,x2)
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This implies that
(

1− r
1−r

)
G(x0,x2,x3)≤ G(x0,x1,x2). Therefore, we have

G(x0,x2,x3)≤

(
1

1− r
1−r

)
G(x0,x1,x2).

Put

δ2 =

(
1+2

( r
1−r

)
1− r

1−r

)
G(x0,x1,x2).

Note that for the three cases δ1 ≤ δ2 and G(x0,x2,x3) ≤ δ2. Let us define the nondecreasing

sequence {δn} such that

max
{

G(x0,xi,x j)
}
≤ δn

for 1≤ i < j ≤ n, where j ∈ {i+1, i+2} . Now

G(x0,xn−1,xn) = G(xn,xn−1,x0),

≤ G(xn,xn−2,xn−2)+G(xn−2,xn−1,x0),

≤ G(xn,xn−1,xn−2)+G(x0,xn−2,xn−1),

≤
(

r
1− r

)n−2

G(x0,xi,x j)+G(x0,xn−2,xn−1).

That is,

G(x0,xn−1,xn)≤
(

r
1− r

)n−2

G(x0,xi,x j)+δn−1. (3.5)

Also since j ∈ {i+1, i+2} , we have G(x0,xi,x j)≤G(x0,xi,xi+1)+G(x0,xi,xi+2), for i < j <

n, (
r

1− r

)n−2

G(x0,xi,x j)≤
(

r
1− r

)n−2

G(x0,xi,xi+1)+

(
r

1− r

)n−2

G(x0,xi,xi+2)

≤ 2
(

r
1− r

)n−2

δn−1.

Therefore Equation (3.5) becomes

G(x0,xn−1,xn)≤

[
1+2

(
r

1− r

)n−2
]

δn−1.

For i < j = n, we have(
r

1− r

)n−2

G(x0,xi,x j)≤
(

r
1− r

)n−2

G(x0,xn−1,xn)+

(
r

1− r

)n−2

G(x0,xn−2,xn).
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Therefore Equation (3.5) becomes

[
1−
(

r
1− r

)n−2
]

G(x0,xn−1,xn)≤

[
1+
(

r
1− r

)n−2
]

δn−1

≤

[
1+2

(
r

1− r

)n−2
]

δn−1.

That is,

G(x0,xn−1,xn)≤

[
1+2

( r
1−r

)n−2

1−
( r

1−r

)n−2

]
δn−1

Let

δn =

[
1+2

( r
1−r

)n−2

1−
( r

1−r

)n−2

]
δn−1.

Note that δn−1 ≤ δn and G(x0,xn−1,xn)≤ δn. The sequence {xn} is bounded if and only if

δ = lim
n→∞

δn =
∏

∞
n=1

[
1+2

( r
1−r

)n−2
]

∏
∞
n=1

[
1−
( r

1−r

)n−2
] < ∞.

Now the series,

∞

∑
n=1

[
1+2

(
r

1− r

)n−2
]

and
∞

∑
n=1

[
1−
(

r
1− r

)n−2
]

are convergent since r
1−r < 1. Therefore,

∞

∏
n=1

[
1+2

(
r

1− r

)n−2
]
< ∞,

∞

∏
n=1

[
1−
(

r
1− r

)n−2
]
< ∞ and

∞

∏
n=1

[
1−
(

r
1− r

)n−2
]
> 0.
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Hence, δ < ∞.

Case IV: If xn = xn+2 for each n ∈ N, we proceed as we did in case III.

G(xn,xn+1,xn+2)< r.max



G(xn−1,xn,xn+1), G(xn−1,T xn−1,T xn),

G(xn−1,T xn,T xn+1), G(xn−1,T xn−1,T xn+1),

G(xn,T xn−1,T xn), G(xn,T xn,T xn+1),

G(xn,T xn−1,T xn+1), G(xn+1,T xn−1,T xn),

G(xn+1,T xn,T xn+1), G(xn+1,T xn−1,T xn+1)



≤ r.max



G(xn−1,xn,xn+1), G(xn−1,xn,xn+1),

G(xn−1,xn+1,xn+2), G(xn−1,xn,xn+2),

G(xn,xn,xn+1), G(xn,xn+1,xn+2),

G(xn,xn,xn+2), G(xn+1,xn,xn+1),

G(xn+1,xn+1,xn+2), G(xn+1,xn,xn+2)



= r.max



G(xn−1,xn+2,xn+1), G(xn−1,xn+2,xn+1),

G(xn−1,xn+1,xn+2), G(xn−1,xn+2,xn+2),

G(xn+2,xn+2,xn+1), G(xn+2,xn+1,xn+2),

G(xn+2,xn+2,xn+2), G(xn+1,xn+2,xn+1),

G(xn+1,xn+1,xn+2), G(xn+1,xn+2,xn+2)


= r.G(xn−1,xn+2,xn+1).

Thus, we have

G(xn,xn+1,xn+2)< rG(xn−1,xn+2,xn+1). (3.6)

Note that we can modify Equation (3.6) by replacing n by n−2 to get

G(xn,xn−1,xn−2)< rG(xn−3,xn,xn−1) (3.7)

Now we show by induction that for each n≥ 3 there exist 1≤ i < j≤ n, where j ∈ {i+1, i+2}

such that,
(
note that r ≤ r

1−r

)
G(xn,xn−1,xn−2)<

(
r

1− r

)n−2

G(x0,xi,x j). (3.8)
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For n = 3, we have

G(x1,x2,x3)< rG(x0,x3,x2)≤
r

1− r
G(x0,x2,x3) =

(
r

1− r

)3−2

G(x0,xi,x j).

for i = 2, j = 3. Therefore Equation (3.8) holds for n = 3. Next, we assume that Equation (3.8)

holds for all values less than n. We show that it holds for n. By our assumption

G(xn−3,xn,xn−1) = G(xn,xn−1,xn−3)

≤ G(xn,xn−2,xn−2)+G(xn−2,xn−1,xn−3)

≤ G(xn,xn−1,xn−2)+G(xn−1,xn−2,xn−3)

< rG(xn−3,xn,xn−1)+

(
r

1− r

)n−3

G(x0,xi,x j).

Therefore, we have

(1− r)G(xn−3,xn,xn−1)<

(
r

1− r

)n−3

G(x0,xi,x j).

This implies that G(xn−3,xn,xn−1)<
1

1−r

( r
1−r

)n−3 G(x0,xi,x j). Substitute in Equation (3.7) to

get,

G(xn,xn−1,xn−2)<

(
r

1− r

)n−2

G(x0,xi,x j).

This implies that Equation (3.8) holds. To show that {xn} is bounded, put δ1 = G(x0,x1,T x1).

From Equation (3.6), we have

G(x1,x2,x3)< rG(x0,x2,x3).

Now

G(x0,x2,x3) = G(x3,x2,x0),

≤ G(x3,x0,x0)+G(x0,x2,x0),

≤ G(x3,x1,x2)+G(x0,x1,x2),

< rG(x0,x2,x3)+G(x0,x1,x2),

<

(
r

1− r

)
G(x0,x2,x3)+G(x0,x1,x2).



FIXED POINT THEOREMS FOR SET-VALUED QUASI-CONTRACTION MAPS 505

This implies that
(
1− r

1−r

)
G(x0,x2,x3) < G(x0,x1,x2). Therefore, we have G(x0,x2,x3) <(

1
1− r

1−r

)
G(x0,x1,x2). Put

δ2 =

(
1+2

( r
1−r

)
1− r

1−r

)
G(x0,x1,x2).

Note that δ1 < δ2 and G(x0,x2,x3) ≤ δ2. Let us define the nondecreasing sequence {δn} such

that max
{

G(x0,xi,x j)
}
≤ δn for 1≤ i < j ≤ n, where j ∈ {i+1, i+2} . Now

G(x0,xn−1,xn) = G(xn,xn−1,x0),

≤ G(xn,xn−2,xn−2)+G(xn−2,xn−1,x0),

≤ G(xn,xn−1,xn−2)+G(x0,xn−2,xn−1),

<

(
r

1− r

)n−2

G(x0,xi,x j)+G(x0,xn−2,xn−1).

That is,

G(x0,xn−1,xn)< δn−1 +

(
r

1− r

)n−2

G(x0,xi,x j). (3.9)

Also since j ∈ {i+1, i+2} , we have G(x0,xi,x j)≤G(x0,xi,xi+1)+G(x0,xi,xi+2), for i < j <

n, we have

(
r

1− r

)n−2

G(x0,xi,x j)≤
(

r
1− r

)n−2

G(x0,xi,xi+1)+

(
r

1− r

)n−2

G(x0,xi,xi+2)

≤ 2
(

r
1− r

)n−2

δn−1.

Therefore Equation (3.9) becomes

G(x0,xn−1,xn)<

[
1+2

(
r

1− r

)n−2
]

δn−1.

For i < j = n, we have

(
r

1− r

)n−2

G(x0,xi,x j)≤
(

r
1− r

)n−2

G(x0,xn−1,xn)+

(
r

1− r

)n−2

G(x0,xn−2,xn).
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Therefore Equation (3.9) becomes

[
1−
(

r
1− r

)n−2
]

G(x0,xn−1,xn)<

[
1+
(

r
1− r

)n−2
]

δn−1

≤

[
1+2

(
r

1− r

)n−2
]

δn−1.

That is,

G(x0,xn−1,xn)<

[
1+2

( r
1−r

)n−2

1−
( r

1−r

)n−2

]
δn−1.

Let δn =

[
1+2( r

1−r)
n−2

1−( r
1−r)

n−2

]
δn−1. Note that δn−1 < δn and G(x0,xn−1,xn)< δn. The sequence {xn}

is bounded if and only if

δ = lim
n→∞

δn =
∏

∞
n=1

[
1+2

( r
1−r

)n−2
]

∏
∞
n=1

[
1−
( r

1−r

)n−2
] < ∞.

Now the series

∞

∑
n=1

[
1+2

(
r

1− r

)n−2
]

and
∞

∑
n=1

[
1−
(

r
1− r

)n−2
]

are convergent since r
1−r < 1. Therefore,

∞

∏
n=1

[
1+2

(
r

1− r

)n−2
]
< ∞,

∞

∏
n=1

[
1−
(

r
1− r

)n−2
]
< ∞ and

∞

∏
n=1

[
1−
(

r
1− r

)n−2
]
> 0.

Hence, δ < ∞.

We now show that {xn} is a Cauchy sequence for both Case III and Case IV.

For Case III. Suppose M = sup
{

G(xm,xn,xp) : m,n, p ∈ N
}

. From Equation (3.3), we have

G(xn,xn−1,xn−2)≤
(

r
1− r

)n−2

G(x0,xi,x j)≤
(

r
1− r

)n−2

M.
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Now for m,n sufficiently large with m < n, we have

G(xn,xn,xm) = G(xm,xn,xn)

≤ G(xm,xm+1,xm+1)+G(xm+1,xn,xn)

≤ G(xm,xm+1,xm+2)+G(xm+1,xm+2,xm+3)

<
n−2

∑
k=m

G(xk,xk+1,xk+2)

≤
n−2

∑
k=m

(
r

1− r

)k

M

< ε.

In a similar manner, we obtain G(xn,xn,xm)< ε for Case IV. This implies that for both Case III

and Case IV, {xn} is a Cauchy sequence. Now since {xn} is a Cauchy sequence and (X ,G) is

complete, for both Case III and Case IV there exist u ∈ X such that limn→∞ xn = u. Now

G(u,u,Tu) = lim
n→∞

(xn+1,xn+1,Tu)

≤ lim
n→∞

GH(T xn,T xn,Tu)

≤ lim
n→∞

q.max



G(xn,xn,u), G(xn,T xn,T xn), G(xn,T xn,Tu),

G(xn,T xn,Tu), G(xn,T xn,T xn), G(xn,T xn,Tu),

G(xn,T xn,Tu), G(u,T xn,T xn), G(u,T xn,Tu),

G(u,T xn,Tu)



≤ lim
n→∞

q.max



G(xn,xn,u), G(xn,xn+1,xn+1), G(xn,xn+1,Tu),

G(xn,xn+1,Tu), G(xn,xn+1,xn+1), G(xn,xn+1,Tu),

G(xn,xn+1,Tu), G(u,xn+1,xn+1), G(u,xn+1,Tu),

G(u,xn+1,Tu)


= q.G(u,u,Tu).

Therefore, we have

G(u,u,Tu)≤ q.G(u,u,Tu). (3.10)
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Since q < 1
2 the only way Equation (3.10) will hold is if G(u,u,Tu) = 0, which implies u = Tu

(that is u ∈ Tu). Hence u is a fixed point of T in X .
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