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Abstract. In this paper, we proved common fixed points for class of mappings using control functions and satisfy-

ing contractive conditions in G-metric spaces. We get some improved and extended versions of several fixed point

theorems in complete G-metric spaces.
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1. Introduction

Dhage introduced the concept of D-metric spaces as generalization of ordinary metric func-

tions and went on to present several fixed point results for single and multivalued mappings;

see [1-4] and the references therein. Mustafa and Sims [11] generalized the concept of a met-

ric space. Based on the notion of generalized metric spaces, Mustafa et al. obtained some
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fixed point theorems for mappings which satisfy different contractive conditions; see [10-14]

for more details. Abbas and Rhoades [6] initiated the study of a common fixed point theory in

generalized metric spaces. While, Abbas et al. [7] and Chugh et al. [8] obtained some fixed

point results for mappings satisfying property P in G-metric spaces. Recently, Shatanawi [9]

further proved some fixed point results for self mappings in a complete G-metric space under

some contractive conditions related to a nondecreasing map φ : R+→R+ with limn→∞ φ n(t) = 0

for all t ≥ 0; see [9] for more details.

2. Preliminaries

Now we give basic definitions and some basic results which are helpful for proving our main

result.

In 2006, Mustafa and Sims [11] introduced the concept of G-metric spaces as follows.

Definition 2.1. Let X be a nonempty set, and let G : X ×X ×X → R+ be a function satisfying

the following properties:

(G-1) G(x,y,z) = 0 if x = y = z;

(G-2) 0 < G(x,x,y), for all x,y ∈ X with x 6= y;

(G-3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y 6= z;

(G-4) G(x,y,z) = G(x,z,y) = G(y,z,x) = ......, symmetry in all three variables;

(G-5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X . The function G is called a gener-

alized or a G-metric on X and the pair (X ,G) is called a G-metric space.

Definition 2.2. A G - metric space (X ,G) is said to be G-complete if every G-Cauchy sequence

in (X ,G) is G-convergent in X .

Definition 2.3. Let (X ,G) be a G-metric space and let {xn} be a sequence of points of X . A

point x ∈ X is said to be the limit of the sequence {xn}, if limn,m→∞ G(x,xn,xm) = 0 and we say

that the sequence {xn} is G-convergent to x or {xn} G-converges to x.

Thus, xn → x in a G-metric space (X ,G) if for any ε > 0, there exists k ∈ N such that

G(x,xn,xm)< ε for all m,n > k.
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Proposition 2.1. Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G-convergent to x;

(2) G(xn,xn,x)→ 0 as n→ ∞;

(3) G(xn,x,x)→ 0 as n→ ∞;

(4) G(xn,xm,x)→ 0 as n,m→ ∞.

Definition 2.4. Let (X ,G) be a G-metric space, a sequence {xn} is called G-Cauchy if for

every ε > 0, there is k ∈ N such that G(xn,xm,xl)< ε for all n,m, l ≥ k; that is G(xn,xm,xl)→ 0

as n,m, l→ ∞.

Proposition 2.2. Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G-cauchy;

(2) for every ε > 0, there is k ∈ N, G(xn,xn,xm)< ε for all n,m≥ k.

Definition 2.5. Let A and B be two mappings from a G-metric space (X ,G). Then the pair

(A,B) is said to be weakly compatible pair if they commute at their coincidence point, that is

Ax = Bx implies that ABx = BAx for all x ∈ X .

Define Φ = {φ : R+→ R+}, where R+ = [0,∞) and for each φ ∈ Φ satisfies the following

conditions:

(φ -1) φ is strict increasing;

(φ -2) φ is upper semi continuous from the right;

(φ -3) ∑
∞
n=0 φ(t)< ∞ for all t > 0;

(φ -4) φ(0) = 0.

3. Main results

Theorem 3.1. Let A,B,C,S,R and T be self mappings of a complete G-metric space (X ,G) and

(i) A(X)⊆ T (X), B(X)⊆ S(X), C(X)⊆ R(X) and A(X) or B(X) or C(X) is a closed subset

of X.
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(ii)

G(Ax,By,Cz)≤ φ

{
max

{
α[G(Rx,Ty,Sz)+G(Rx,By,Cz)],β [G(Rx,Ax,By)+G(Ty,By,Cz)

+G(Sz,Cz,Ax)+G(Ax,Rx,Ty)+G(By,Ty,Sz)+G(Cz,Rx,Sz)],

γ[G(Rx,By,Ty)+G(Ty,Cz,Sz)

+G(Sz,Ax,Rx)+G(Sz,Cz,Ax)+G(Ty,Ax,By)]
}}

,

where α,β ,γ ≥ 0 and 3α +7β +6γ < 1.

(iii) φ : R+→ R+ is increasing function such that φ(t) < t for all t > 0 and ∑φ(t) < ∞ as

t→ ∞.

(iv) The pairs (A,R), (B,T ) and (C,S) are weakly compatible pairs.

Then the mappings A,B,C,S,T and R have a unique common fixed point in X.

Proof. Let x0 ∈X be an arbitrary point. By (i) there exist x1,x2,x3 ∈X such that Ax0 = T x1 = y0,

Bx1 = Sx2 = y1 and Cx2 = Rx3 = y2. Inductively construct a sequence {yn} in X such that

Ax3n = T x3n+1 = y3n, Bx3n+1 = Sx3n+2 = y3n+1 and Cx3n+2 =Rx3n+3 = y3n+2 for n= 0,1,2,3....



COMMON FIXED POINT THEOREMS 249

We prove the sequence is a Cauchy sequence. Let dm = G(ym,ym+1,ym+2). Then we have

d3n = G(y3n,y3n+1,y3n+2)

= G(Ax3n,Bx3n+1,Cx3n+2)

≤ φ

{
max

{
α[G(Rx3n,T x3n+1,Sx3n+2)+G(Rx3n,Bx3n+1,Cx3n+2)],

β [G(Rx3n,Ax3n,Bx3n+1)+G(T x3n+1,Bx3n+1,Cx3n+2)+G(Sx3n+2,Cx3n+2,Ax3n)

+G(Ax3n,Rx3n,T x3n+1)+G(Bx3n+1,T x3n+1,Sx3n+2)+G(Cx3n+1,Rx3n,Sx3n+2)],

γ[G(Rx3n,Bx3n+1,T x3n+1)+G(T x3n+1,Cx3n+2,Sx3n+2)+G(Sx3n+2,Ax3n,Rx3n)

+G(Sx3n+2,Cx3n+2,Ax3n)+G(T x3n+1,Ax3n,Bx3n+1)]
}}

≤ φ

{
max

{
α[G(y3n−1,y3n,y3n+1)+G(y3n−1,y3n+1,y3n+2)],β [G(y3n−1,y3n,y3n+1)

+G(y3n,y3n+1,y3n+2)+G(y3n+1,y3n+2,y3n)+G(y3n,y3n−1,y3n)+G(y3n+1,y3n,y3n+1)

+G(y3n+2,y3n−1,y3n+1)],γ[G(y3n−1,y3n+1,y3n)+G(y3n,y3n+2,y3n+1)

+G(y3n+1,y3n,y3n−1)+G(y3n+1,y3n+2,y3n)+G(y3n,y3n,y3n+1)]
}}

≤ φ

{
max

{
α[2d3n−1 +d3n],β [d3n−1 +d3n +d3n +d3n−1 +d3n +(d3n−1 +d3n)],

γ[d3n−1 +d3n +d3n−1 +d3n +d3n]
}}

.

In above inequality, there arises 3 case:

Case I. If max = α[2d3n−1 +d3n], i.e. d3n = φ(α[2d3n−1 +d3n]), we prove that d3n ≤ d3n−1

for every n ∈ N. If d3n > d3n−1 for some n ∈ N by above inequality, we have d3n ≤ φ(3αd3n);

d3n < 3αd3n as φ(t) < t; d3n < d3n as 3α + 7β + 6γ < 1, which is contradiction. So we have

d3n ≤ d3n−1.

Case II. If max = β [d3n−1 +d3n +d3n +d3n−1 +d3n +(d3n−1 +d3n)], i.e. d3n = φ(β [d3n−1 +

d3n +d3n +d3n−1 +d3n +(d3n−1 +d3n)]), we prove that d3n ≤ d3n−1 for every n ∈ N. If d3n >

d3n−1 for some n ∈ N by above inequality, we have d3n ≤ φ(7βd3n); d3n < 7βd3n as φ(t) < t;

d3n < d3n as 3α +7β +6γ < 1, which is contradiction. So we have d3n ≤ d3n−1.

Case III: If max = γ[d3n−1 + d3n + d3n−1 + d3n + d3n], i.e. d3n = φ(γ[d3n−1 + d3n + d3n−1 +

d3n +d3n]), we prove that d3n ≤ d3n−1 for every n ∈ N. If d3n > d3n−1 for some n ∈ N by above
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inequality, we have d3n ≤ φ(5γd3n); d3n < 5γd3n as φ(t) < t; d3n < d3n as 3α + 7β + 6γ < 1,

which is contradiction. So we have d3n ≤ d3n−1.

If m = 3n+1, then

d3n+1 = G(y3n+1,y3n+2,y3n+3)

= G(Ax3n+3,Bx3n+1,Cx3n+2)

≤ φ

{
max

{
α[G(Rx3n+3,T x3n+1,Sx3n+2)+G(Rx3n+3,Bx3n+1,Cx3n+2)],

β [G(Rx3n+3,Ax3n+3,Bx3n+1)+G(T x3n+1,Bx3n+1,Cx3n+2)+G(Sx3n+2,Cx3n+2,Ax3n+3)

+G(Ax3n+3,Rx3n+3,T x3n+1)+G(Bx3n+1,T x3n+1,Sx3n+2)+G(Cx3n+2,Rx3n+3,Sx3n+2)],

γ[G(Rx3n+3,Bx3n+1,T x3n+1)+G(T x3n+1,Cx3n+2,Sx3n+2)+G(Sx3n+2,Ax3n+3,Rx3n+3)

+G(Sx3n+2,Cx3n+2,Ax3n+3)+G(T x3n+1,Ax3n+3,Bx3n+1)]
}}

≤ φ

{
max

{
α[G(y3n+2,y3n,y3n+1)+G(y3n+2,y3n+1,y3n+2)],

β [G(y3n+2,y3n,y3n+1)+G(y3n,y3n+1,y3n+2)+G(y3n+1,y3n+2,y3n+3)

+G(y3n+3,y3n+2,y3n)+G(y3n+1,y3n,y3n+1)+G(y3n+2,y3n+2,y3n+1)],

γ[G(y3n+2,y3n+1,y3n)+G(y3n,y3n+2,y3n+1)+G(y3n+1,y3n+3,y3n+2)

+G(y3n+1,y3n+2,y3n+3)+G(y3n,y3n+3,y3n+1)]
}}

≤ φ

{
max

{
α[d3n +d3n+1],β [d3n+1 +d3n +d3n+1 +(d3n+1 +d3n)+d3n +d3n+1],

γ[d3n +d3n +d3n+1 +d3n+1 +(d3n +d3n+1)]
}}

.

In the above inequality, there arises 3 case:

Case I. If max = α[d3n +d3n+1], we now prove that d3n+1 ≤ d3n for every n ∈ N. If d3n+1 >

d3n for some n ∈ N by above inequality, we have d3n ≤ φ(2αd3n); d3n < 2αd3n as φ(t) < t;

d3n < d3n as 3α +7β +6γ < 1, which is contradiction. So we have d3n+1 ≤ d3n.

Case II. If max= β [d3n+1+d3n+d3n+1+(d3n+1+d3n)+d3n+d3n+1], we prove that d3n+1≤

d3n for every n∈N. If d3n+1 > d3n for some n∈N by above inequality, we have d3n≤ φ(7βd3n);

d3n < 7βd3n as φ(t) < t; d3n < d3n as 3α + 7β + 6γ < 1, which is contradiction. So we have

d3n+1 ≤ d3n.
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Case III. If max = γ[d3n + d3n + d3n+1 + d3n+1 +(d3n + d3n+1)], we prove that d3n+1 ≤ d3n

for every n ∈ N. If d3n+1 > d3n for some n ∈ N by above inequality, we have d3n ≤ φ(6γd3n);

d3n < 6γd3n as φ(t) < t; d3n < d3n as 3α + 7β + 6γ < 1, which is contradiction. So we have

d3n+1 ≤ d3n.

Further if m = 3n+2, then

d3n+2 = G(y3n+2,y3n+3,y3n+4)

= G(Ax3n+3,Bx3n+4,Cx3n+2)

≤ φ

{
max

{
α[G(Rx3n+3,T x3n+4,Sx3n+2)+G(Rx3n+3,Bx3n+4,Cx3n+2)],

β [G(Rx3n+3,Ax3n+3,Bx3n+4)+G(T x3n+4,Bx3n+4,Cx3n+2)+G(Sx3n+2,Cx3n+2,Ax3n+3)

+G(Ax3n+3,Rx3n+3,T x3n+4)+G(Bx3n+4,T x3n+4,Sx3n+2)+G(Cx3n+2,Rx3n+3,Sx3n+2)],

γ[G(Rx3n+3,Bx3n+4,T x3n+4)+G(T x3n+4,Cx3n+2,Sx3n+2)+G(Sx3n+2,Ax3n+3,Rx3n+3)

+G(Sx3n+2,Cx3n+2,Ax3n+3)+G(T x3n+4,Ax3n+3,Bx3n+4)]
}}

≤ φ

{
max

{
α[G(y3n+2,y3n,y3n+1)+G(y3n+2,y3n+4,y3n+2)],

β [G(y3n+2,y3n+3,y3n+4)+G(y3n+3,y3n+4,y3n+2)+G(y3n+1,y3n+2,y3n+3)

+G(y3n+3,y3n+2,y3n+3)+G(y3n+4,y3n+3,y3n+1)+G(y3n+2,y3n+2,y3n+1)],

γ[G(y3n+2,y3n+4,y3n+3)+G(y3n+3,y3n+2,y3n+1)+G(y3n+1,y3n+3,y3n+2)

+G(y3n+1,y3n+2,y3n+3)+G(y3n+3,y3n+3,y3n+1)]
}}

≤ φ

{
max

{
α[d3n+1 +d3n+2],β [d3n+2 +d3n+2 +d3n+1 +d3n+2 +(d3n+1 +d3n+2)+d3n+1],

γ[d3n+2 +d3n+1 +d3n+1 +d3n+1 +d3n+2]
}}

.

In the above inequality, there arises 3 case:

Case I. If max = α[d3n+1 + d3n+2], we now prove that d3n+2 ≤ d3n+1 for every n ∈ N. If

d3n+2 > d3n+1 for some n ∈ N by above inequality, we have d3n+2 ≤ φ(2αd3n+2); d3n+2 <

2αd3n+2 as φ(t) < t; d3n+2 < d3n+2 as 3α +7β +6γ < 1, which is contradiction. So we have

d3n+2 ≤ d3n+1.

Case II. If max = β [d3n+2+d3n+2+d3n+1+d3n+2+(d3n+1+d3n+2)+d3n+1], we prove that

d3n+2 ≤ d3n+1 for every n ∈ N. If d3n+2 > d3n+1 for some n ∈ N by above inequality, we have
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d3n+2 ≤ φ(7βd3n+2); d3n+2 < 7βd3n+2 as φ(t)< t; d3n+2 < d3n+2 as 3α +7β +6γ < 1, which

is contradiction. So we have d3n+2 ≤ d3n+1.

Case III. If max = γ[d3n+2+d3n+1+d3n+1+d3n+1+d3n+2], we prove that d3n+2 ≤ d3n+1 for

every n∈N. If d3n+2 > d3n+1 for some n∈N by above inequality, we have d3n+2≤ φ(5γd3n+2);

d3n+2 < 5γd3n+2 as φ(t) < t; d3n+2 < d3n+2 as 3α + 7β + 6γ < 1, which is contradiction.

So we have d3n+2 ≤ d3n+1. Hence for every n ∈ N we have dn ≤ dn−1. Thus by above in-

equality we have dn ≤ qdn−1m, where q = 3α + 7β + 6γ < 1, i.e. dn = G(yn,yn+1,yn+2) ≤

qG(yn−1,yn,yn+1)≤ qnG(y0,y1,y2). Now we have G(x,x,y)≤ G(x,y,z). Therefore we have

G(yn,yn,yn+1)≤ qnG(y0,y1,y2)

and

G(yn,yn,ym)≤ G(yn,yn,yn+1)+G(yn+1,yn+1,yn+2)+ ...+G(ym−1,ym−1,ym).

Hence, we have

G(yn,yn,ym)≤ qnG(y0,y1,y2)+qn+1G(y0,y1,y2)+ ...+qm−1G(y0,y1,y2)

≤ qn−qm

1−q
G(y0,y1,y2)

≤ qn

1−q
G(y0,y1,y2)→ 0.

So the sequence {yn} is Cauchy in X and {yn} converges to y in X , i.e., lim
n→∞

yn = y

lim
n,m→∞

yn = lim
n,m→∞

Ax3n = lim
n,m→∞

Bx3n+1 = lim
n,m→∞

Cx3n+2

= lim
n,m→∞

T x3n+1 = lim
n,m→∞

Sx3n+2 = lim
n,m→∞

Rx3n+3 = y.

Let C(X) be a closed subset of R(X). Then there exist u ∈ X such that Ru = y . Notice that

G(Au,Bx3n+1,Cx3n+2)≤ φ

{
max

{
α[G(Ru,T x3n+1,Sx3n+2)+G(Ru,Bx3n+1,Cx3n+2)],

β [G(Ru,Au,Bx3n+1)+G(T x3n+1,Bx3n+1,Cx3n+2)+G(Sx3n+2,Cx3n+2,Au)

+G(Au,Ru,T x3n+1)+G(Bx3n+1,T x3n+1,Sx3n+2)+G(Cx3n+2,Ru,Sx3n+2)],

γ[G(Ru,Bx3n+1,T x3n+1)+G(T x3n+1,Cx3n+2,Sx3n+2)+G(Sx3n+2,Au,Ru)

+G(Sx3n+2,Cx3n+2,Au)+G(T x3n+1,Au,Bx3n+1)]
}}

.
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Letting n→ ∞, we get

G(Au,Bx3n+1,Cx3n+2) = G(Au,y,y)

≤ φ

{
max

{
α[G(Ru,y,y)+G(Ru,y,y)],β [G(Ru,Au,y)+G(y,y,y)

+G(y,y,Au)+G(Au,Ru,y)+G(y,y,y)+G(y,Ru,y)],

γ[G(Ru,y,y)+G(y,y,y)+G(y,Au,Ru)+G(y,y,Au)+G(y,Au,y)]
}}

.

This implies that

G(Au,y,y)≤ φ(max{2αG(y,y,y),3βG(y,Au,y),3γG(y,Au,y)}).

In the above inequality, following case arise:

Case I. If max = 3βG(y,Au,y), G(Au,y,y) ≤ φ(3βG(y,Au,y)), G(Au,y,y) < 3βG(y,Au,y),

G(Au,y,y)< G(y,Au,y) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(Au,y,y) = 0

⇒ Au = y.

Case II. If max = 3γG(y,Au,y), G(Au,y,y) ≤ φ(3γG(y,Au,y)), G(Au,y,y) < 3γG(y,Au,y),

G(Au,y,y)< G(y,Au,y) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(Au,y,y) = 0

⇒ Au = y. Therefore Au = Ru = y. By weak compatibility of the pair (R,A), we have ARu =

RAu, hence Ay = Ry.

We prove that Ay = y. If Ay 6= y, then

G(Ay,Bx3n+1,Cx3n+2)≤ φ

{
max

{
α[G(Ry,T x3n+1,Sx3n+2)+G(Ry,Bx3n+1,Cx3n+2)],

β [G(Ry,Ay,Bx3n+1)+G(T x3n+1,Bx3n+1,Cx3n+2)+G(Sx3n+2,Cx3n+2,Ay)

+G(Ay,Ry,T x3n+1)+G(Bx3n+1,T x3n+1,Sx3n+2)+G(Cx3n+2,Ry,Sx3n+2)],

γ[G(Ry,Bx3n+1,T x3n+1)+G(T x3n+1,Cx3n+2,Sx3n+2)+G(Sx3n+2,Ay,Ry)

+G(Sx3n+2,Cx3n+2,Ay)+G(T x3n+1,Ay,Bx3n+1)]
}}

.
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Letting n→ ∞, we get

G(Ay,Bx3n+1,Cx3n+2) = G(Ay,y,y)

≤ φ

{
max

{
α[G(Ry,y,y)+G(Ry,y,y)],β [G(Ry,Ay,y)+G(y,y,y)

+G(y,y,Ay)+G(Ay,Ry,y)+G(y,y,y)+G(y,Ry,y)],

γ[G(Ry,y,y)+G(y,y,y)+G(y,Ay,Ry)+G(y,y,Ay)+G(y,Ay,y)]
}}

.

This implies that

G(Ay,y,y)≤ φ(max{2αG(Ay,y,y),4βG(y,Ay,y),4γG(y,Ay,y)}).

Now there arises 3 case:

Case I. If max = 2αG(Ay,y,y), G(Ay,y,y) ≤ φ(2αG(Ay,y,y)), G(Ay,y,y) < 2αG(Ay,y,y),

G(Ay,y,y)< G(Ay,y,y) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(Ay,y,y) = 0

⇒ Ay = y.

Case II. If max = 4βG(Ay,y,y), G(Ay,y,y) ≤ φ(4βG(Ay,y,y)), G(Ay,y,y) < 4βG(Ay,y,y),

G(Ay,y,y)< G(Ay,y,y) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(Ay,y,y) = 0

⇒ Ay = y.

Case III. If max = 4γG(Ay,y,y), G(Ay,y,y) ≤ φ(4γG(Ay,y,y)), G(Ay,y,y) < 4γG(Ay,y,y),

G(Ay,y,y)< G(Ay,y,y) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(Ay,y,y) = 0

⇒ Ay = y. Hence Ay = y and Ry = Ay⇒ Ay = Ry = y. Hencey is common fixed point of R and

A. Since y = Ay ∈ A(X)⊆ T (X), there exists v ∈ X such that T v = y. We prove that Bv = y.

G(y,Bv,Cx3n+2) = G(Ay,Bv,Cx3n+2)

≤ φ

{
max

{
α[G(Ry,T v,Sx3n+2)+G(Ry,Bv,Cx3n+2)],β [G(Ry,Ay,Bv)

+G(T v,Bv,Cx3n+2)+G(Sx3n+2,Cx3n+2,Ay)+G(Ay,Ry,T v)+G(Bv,T v,Sx3n+2)

+G(Cx3n+2,Ry,Sx3n+2)],γ[G(Ry,Bv,T v)+G(T v,Cx3n+2,Sx3n+2)

+G(Sx3n+2,Ay,Ry)+G(Sx3n+2,Cx3n+2,Ay)+G(T v,Ay,Bv)]
}}

.
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Letting n→ ∞, we get

G(y,Bv,y) = G(y,Bv,y)

≤ φ

{
max

{
α[G(y,y,y)+G(y,Bv,y)],β [G(y,y,Bv)+G(y,Bv,y)

+G(y,y,y)+G(y,y,y)+G(Bv,y,y)+G(y,y,y)],

γ[G(y,Bv,y)+G(y,y,y)+G(y,y,y)+G(y,y,y)+G(y,y,Bv)]
}}

.

This implies that

G(y,Bv,y)≤ φ(max{αG(y,Bv,y),3βG(y,y,Bv),2γG(y,y,Bv)}).

In above inequality, there arises 3 case:

Case I. If max = αG(y,Bv,y), G(y,Bv,y)≤ φ(αG(y,Bv,y)),

G(y,Bv,y)< αG(y,Bv,y)), G(y,Bv,y)< G(y,Bv,y)) as 3α +7β +6γ < 1. This leads to contra-

diction. Thus G(y,Bv,y) = 0⇒ Bv = y.

Case II. If max = 3βG(y,y,Bv), G(y,Bv,y) ≤ φ(3βG(y,y,Bv)), G(y,Bv,y) < 3βG(y,y,Bv),

G(y,Bv,y) < G(y,y,Bv) as 3α +7β +6γ < 1. This leads to contadiction. Thus G(y,Bv,y) = 0

⇒ Bv = y.

Case III. If max = 2γG(y,y,Bv), G(y,Bv,y) ≤ φ(2γGG(y,y,Bv)), G(y,Bv,y) < 2γG(y,y,Bv),

G(y,Bv,y)< G(y,y,Bv) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(y,Bv,y) = 0

⇒ Bv = y. Therefore Bv = Ty = y. By weak compatibility of (B,T ) we have BT v = T Bv.

Hence By = Ty. We prove By = y. If By 6= y, then

G(Ay,By,Cx3n+2)≤ φ

{
max

{
α[G(Ry,Ty,Sx3n+2)+G(Ry,By,Cx3n+2)],β [G(Ry,Ay,By)

+G(Ty,By,Cx3n+2)+G(Sx3n+2,Cx3n+2,Ay)+G(Ay,Ry,Ty)+G(By,Ty,Sx3n+2)

+G(Cx3n+2,Ry,Sx3n+2)],γ[G(Ry,By,Ty)+G(Ty,Cx3n+2,Sx3n+2)

+G(Sx3n+2,Ay,Ry)+G(Sx3n+2,Cx3n+2,Ay)+G(Ty,Ay,By)]
}}

.

Letting n→ ∞, we find

G(y,By,y)≤φ

{
max

{
α[G(y,y,y)+G(y,By,y)],β [G(y,y,By)+G(y,By,y)+G(y,y,y)

+G(y,y,y)+G(By,y,y)+G(y,y,y)],γ[G(y,By,y)+G(y,y,y)+G(y,y,y)

+G(y,y,y)+G(y,y,By)]
}}

.
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This implies that

G(y,By,y)≤ φ

{
max

{
αG(y,By,y),3βG(y,By,y),2γG(y,By,y)

}}
.

In above inequality, there arises 3 case:

Case I. If max = αG(y,By,y), G(y,By,y)≤ φ(αG(y,By,y)),

G(y,By,y)< αG(y,By,y)), G(y,By,y)< G(y,By,y)) as 3α +7β +6γ < 1. This leads to conta-

diction. Thus G(y,By,y) = 0⇒ By = y.

Case II. If max = 3βG(y,By,y), G(y,By,y) ≤ φ(3βG(y,By,y)), G(y,By,y) < 3βG(y,By,y),

G(y,By,y)< G(y,By,y) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(y,Bv,y) = 0

⇒ Bv = y.

Case III: If max = 2γG(y,By,y), G(y,By,y) ≤ φ(2γG(y,By,y), G(y,By,y) < 2γG(y,By,y),

G(y,By,y) < G(y,By,y) as 3α +7β +6γ < 1. This leads to contadiction. Thus G(y,By,y) = 0

⇒ By = y. Also Ty = y⇒ By = Ty = y, i.e. y is a common fixed point of B and T . similarly

since y = By ∈ B(X) ⊆ S(X) there exist w ∈ X such that Sw = y. We prove that Cw = y. If

Cw 6= y, we have

G(y,y,Cw) = G(Ay,By,Cw)

≤ φ

{
max

{
α[G(Ry,Ty,Sw)+G(Ry,By,Cw)],β [G(Ry,Ay,By)+G(Ty,By,Cw)

+G(Sw,Cw,Ay)+G(Ay,Ry,Ty)+G(By,Ty,Sw)+G(Cw,Ry,Sw)],γ[G(Ry,By,Ty)

+G(Ty,Cw,Sw)+G(Sw,Ay,Ry)+G(Sw,Cw,Ay)+G(Ty,Ay,By)]
}}

,

G(y,y,Cw)≤ φ

{
max

{
α[G(y,y,y)+G(y,y,Cw)],β [G(y,y,y)+G(y,y,Cw)+G(y,Cw,y)

+G(y,y,y)+G(y,y,y)+G(Cw,y,y)],γ[G(y,y,y)+G(y,Cw,y)+G(y,y,y)

+G(y,Cw,y)+G(y,y,y)]
}}

.

This implies that

G(y,y,Cw)≤ φ(max{αG(y,y,Cw),3βG(y,y,Cw),2γG(y,y,Cw)}).

In the above inequality, there arises 3 case:
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Case I. If max = αG(y,y,Cw), G(y,y,Cw) ≤ φ(αG(y,y,Cw)), G(y,y,Cw) < αG(y,y,Cw)),

G(y,y,Cw)<G(y,y,Cw) as 3α+7β +6γ < 1. This leads to contradiction. Thus G(y,y,Cw) = 0

⇒ cw = y.

Case II. If max = 3βG(y,y,Cw), G(y,y,Cw)≤ φ(3βG(y,y,Cw)), G(y,y,Cw)< 3βG(y,y,Cw),

G(y,y,Cw)< G(y,y,Cw) as 3α +7β +6γ < 1. This leads to contadiction. Thus G(y,y,Cw) = 0

⇒Cw = y.

Case III. If max = 2γG(y,y,Cw), G(y,y,Cw)≤ φ(2γG(y,y,Cw), G(y,y,Cw)< 2γG(y,y,Cw),

G(y,y,Cw)<G(y,y,Cw) as 3α+7β +6γ < 1. This leads to contradiction. Thus G(y,y,Cw) = 0

⇒Cw= y= Sy. Therefore Cw= Sw= y. By weak compatibility of (C,S) we have CSw= SCw.

Hence Cy = Sy. We prove that Cy = y. If Cy 6= y, then

G(y,y,Cy) = G(Ay,By,Cy)

≤ φ

{
max

{
α[G(Ry,Ty,Sy)+G(Ry,By,Cy)],β [G(Ry,Ay,By)+G(Ty,By,Cy)

+G(Sy,Cy,Ay)+G(Ay,Ry,Ty)+G(By,Ty,Sy)+G(Cy,Ry,Sy)],γ[G(Ry,By,Ty)

+G(Ty,Cy,Sy)+G(Sy,Ay,Ry)+G(Sy,Cy,Ay)+G(Ty,Ay,By)]
}}

.

This implies that

G(y,y,Cy)≤ φ

{
max

{
αG(y,y,Cy),3βG(y,y,Cy),2γG(y,y,Cy)

}}
.

In the above inequality, there arises 3 case:

Case I. If max = αG(y,y,Cy), G(y,y,Cy)≤ φ(αG(y,y,Cy)),

G(y,y,Cy) < αG(y,y,Cy)), G(y,y,Cy) < G(y,y,Cy) as 3α +7β +6γ < 1. This leads to conta-

diction. Thus G(y,y,Cy) = 0⇒ cy = y.

Case II. If max = 3βG(y,y,Cy), G(y,y,Cy)≤ φ(3βG(y,y,Cy)),

G(y,y,Cy)< 3βG(y,y,Cy), G(y,y,Cy)< G(y,y,Cy) as 3α +7β +6γ < 1. This leads to contra-

diction. Thus G(y,y,Cy) = 0⇒Cy = y.

Case III. If max = 2γG(y,y,Cy), G(y,y,Cy) ≤ φ(2γG(y,y,Cy), G(y,y,Cy) < 2γG(y,y,Cy),

G(y,y,Cy)< G(y,y,Cy) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(y,y,Cy) = 0

⇒ Cy = y. Also Sy = y ⇒ Sy = Cy = y i.e y is a common fixed point of S and C. Thus y

is Common fixed point of A,B,C,S,T and R. i.e. Ay = Sy = By = Ty = Cy = Ry = y. Next
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uniqueness is established. Let v be another fixed point of A,B,C,S,T and R. If G(y,y,v)> 0,

G(y,y,Cv)≤ φ

{
max

{
α[G(Ry,Ty,Sv)+G(Ry,By,Cv)],β [G(Ry,Ay,By)+G(Ty,By,Cv)

+G(Sv,Cv,Ay)+G(Ay,Ry,Ty)+G(By,Ty,Sv)+G(Cv,Ry,Sv)],γ[G(Ry,By,Ty)

+G(Ty,Cv,Sv)+G(Sv,Ay,Ry)+G(Sv,Cv,Ay)+G(Ty,Ay,By)]
}}

.

This implies that G(y,y,Cv)≤ φ

{
max

{
2αG(y,y,Cv),4βG(y,y,Cv),3γG(y,y,Cv)

}}
. In above

inequality, there arises 3 case:

Case I. If max = 2αG(y,y,Cv), G(y,y,Cv) ≤ φ(2αG(y,y,Cv)), G(y,y,Cv) < 2αG(y,y,Cv)),

G(y,y,Cv)< G(y,y,Cv) as 3α +7β +6γ < 1. This leads to contradiction. Thus G(y,y,Cv) = 0

⇒Cv = y.

Case II. If max = 4βG(y,y,Cv), G(y,y,Cv) ≤ φ(4βG(y,y,Cv)), G(y,y,Cv) < 4βG(y,y,Cv),

G(y,y,Cv) < G(y,y,Cv) as 3α +7β +6γ < 1. This leads to contadiction. Thus G(y,y,Cv) = 0

⇒Cv = y.

Case III: If max = 3γG(y,y,Cv), G(y,y,Cv) ≤ φ(3γG(y,y,Cv), G(y,y,Cv) < 3γG(y,y,Cv),

G(y,y,Cv) < G(y,y,Cv) as 3α +7β +6γ < 1. This leads to contadiction. Thus G(y,y,Cv) = 0

⇒Cv = y. Hence y = v is unique common fixed point of A,B,C,S,T and R. This completes the

proof.

If we put R = S and C = B in Theorem (3.1), then we obtain the following corollary.

Corollary 3.2. Let A,B,S and T be self mappings of a complete G-metric space (X ,G) and

(i) A(X)⊆ T (X), B(X)⊆ S(X) and A(X) or B(X) is a closed subset of X.

(ii)

G(Ax,By,Bz)≤ φ

{
max

{
α[G(Sx,Ty,Sz)+G(Sx,By,Bz)],β [G(Sx,Ax,By)+G(Ty,By,Bz)

+G(Sz,Bz,Ax)+G(Ax,Sx,Ty)+G(By,Ty,Sz)+G(Bz,Sx,Sz)],

γ[G(Sx,By,Ty)+G(Ty,Bz,Sz)+G(Sz,Ax,Sx)+G(Sz,Bz,Ax)

+G(Ty,Ax,By)]
}}

,

where α,β ,γ ≥ 0 and 3α +7β +6γ < 1.

(iii) φ : R+→ R+ is increasing function such that φ(t) < t for all t > 0 and ∑φ(t) < ∞ as

t→ ∞.
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(iv) The pairs (A,S), (B,T ) are weakly commuting pairs.

Then the mapping A,B,S and T have a unique common fixed point in X.

If we put S = T and B = A in Corollary 3.2, then we obtain the following corollary.

Corollary 3.3. Let A and T be self mappings of a complete G-metric space (X ,G) and

(i) A(X)⊆ T (X) and A(X) is a closed subset of X.

(ii)

G(Ax,Ay,Az)≤ φ

{
max

{
α[G(T x,Ty,T z)+G(T x,Ay,Az)],β [G(T x,Ax,Ay)+G(Ty,Ay,Az)

+G(T z,Az,Ax)+G(Ax,T x,Ty)+G(Ay,Ty,T z)+G(Az,T x,T z)],

γ[G(T x,Ay,Ty)+G(Ty,Az,T z)+G(T z,Ax,T x)+G(T z,Az,Ax)

+G(Ty,Ax,Ay)]
}}

,

where α,β ,γ ≥ 0 and 3α +7β +6γ < 1.

(iii) φ : R+→ R+ is increasing function such that φ(t) < t for all t > 0 and ∑φ(t) < ∞ as

n→ ∞.

(iv) The pairs (A,T ) is weakly commuting pair.

Then the mapping A and T have a unique common fixed point in X.

If we put T = I (identity map) in Corollary 3.3, then we obtain the following corollary.

Corollary 3.4. Let A and T be self mappings of a complete G-metric space (X ,G) and

(i) A(X)⊆ I(X) and A(X) is a closed subset of X.

(ii)

G(Ax,Ay,Az)≤ φ

{
max

{
α[G(x,y,z)+G(x,Ay,Az)],β [G(x,Ax,Ay)+G(y,Ay,Az)

+G(z,Az,Ax)+G(Ax,x,y)+G(Ay,y,z)+G(Az,x,z)],

γ[G(x,Ay,y)+G(y,Az,z)+G(z,Ax,x)+G(z,Az,Ax)

+G(y,Ax,Ay)]
}}

,

where α,β ,γ ≥ 0 and 3α +7β +6γ < 1.
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(iii) φ : R+→ R+ is increasing function such that φ(t) < t for all t > 0 and ∑φ(t) < ∞ as

n→ ∞.

(iv) The pairs (A, I) is weakly commuting pair.

Then the mapping A and I have a unique common fixed point in X.

Theorem 3.4. Let S,R,T , {Ai}i∈I , {B j} j∈J and {Ck}k∈K be the set of self mappings of a com-

plete G-metric space (X ,G) and

(i) There exists i0 ∈ I, j0 ∈ J and k0 ∈K such that Ai0(X)⊆ T (X), B j0(X)⊆ S(X), Ck0(X)⊆

R(X) and Ai0(X) or B j0(X) or Ck0(X) is a closed subset of X.

(ii)

G(Aix,B jy,Ckz)≤ φ

{
max

{
α[G(Rx,Ty,Sz)+G(Rx,B jy,Ckz)],β [G(Rx,Aix,B jy)+G(Ty,B jy,Ckz)

+G(Sz,Ckz,Aix)+G(Aix,Rx,Ty)+G(B jy,Ty,Sz)+G(Ckz,Rx,Sz)],

γ[G(Rx,B jy,Ty)+G(Ty,Ckz,Sz)+G(Sz,Aix,Rx)+G(Sz,Ckz,Aix)

+G(Ty,Aix,B jy)]
}}

,

where α,β ,γ ≥ 0 and 3α +7β +6γ < 1. For every x,y,z ∈ X and for every i ∈ I, j ∈ J,

k ∈ K.

(iii) φ : R+→ R+ is increasing function such that φ(t) < t for all t > 0 and ∑φ(t) < ∞ as

t→ ∞.

(iv) The pairs (Ai0,R), (B j0,T ) and (Ck0,S) are weakly commuting pairs.

Then the mapping Ai,B j,Ck,S,T and R have a unique common fixed point in X.

Proof. By Theorem 3.1, we can say that S,R,T , Ai0 , B j0 and Ck0 for some i0 ∈ I, j0 ∈ J, k0 ∈ K

have a unique fixed point in X . That is there exist a unique a ∈ X such that

R(a) = S(a) = T (a) = Ai0(a) = B j0(a) = ck0(a) = a
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. Let there exist λ ∈ J such that λ 6= j0 and G(a,Bλ a,a)> 0. Then we have

G(a,Bλ a,a) = G(Ai0a,Bλ a,Ck0a)

≤ φ

{
max

{
α[G(Ra,Ta,Sa)+G(Ra,B ja,Cka)],β [G(Ra,Aia,B ja)+G(Ta,B ja,Cka)

+G(Sa,Cka,Aia)+G(Aia,Ra,Ta)+G(B ja,Ta,Sa)+G(Cka,Ra,Sa)],

γ[G(Ra,B ja,Ta)+G(Ta,Cka,Sa)+G(Sa,Aia,Ra)+G(Sa,Cka,Aia)

+G(Ty,Aia,B ja)]
}}

.

This is a contradiction. Hence for every λ ∈ J we have Bλ (a) = a. Similarily for every δ ∈ I

and η ∈ K we get Aδ (a) =Cη(a) = a. Therefore for every δ ∈ I, η ∈ K and λ ∈ J, we get

Aδ (a) = Bλ (a) =Cη(a) = S(a) = T (a) = R(a) = a.

Next we give an example to validate our Theorem 3.1.

Example 3.6. Let (X ,G) be a G-metric space, where X = [0,∞] and

G(x,y,z) = |x− y|+ |y− z|+ |z− x| .

Define self maps A,B,C,S,R and T as follows

Ax =
x
8
, Bx =

x
16

, Cx =
x

32
,

T x =
x
2
, Sx =

x
4
, Rx = x,

and φ(t) = t
k . Then A(X)⊆ T (X), B(X)⊆ S(X), C(X)⊆ R(X) and the pairs (A,R), (B,T ) and

(C,S) are weakly compatible. Also for x,y,z

G(Ax,By,Cz)≤ φ

{
max

{
α[G(Rx,Ty,Sz)+G(Rx,By,Cz)],β [G(Rx,Ax,By)+G(Ty,By,Cz)

+G(Sz,Cz,Ax)+G(Ax,Rx,Ty)+G(By,Ty,Sz)+G(Cz,Rx,Sz)],

γ[G(Rx,By,Ty)+G(Ty,Cz,Sz)+G(Sz,Ax,Rx)+G(Sz,Cz,Ax)

+G(Ty,Ax,By)]
}}

.

That is, all condition of Theorem (3.1) hold and 0 is the unique common fixed point of A,B,C,S,R

and T .
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