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Abstract. In this paper, we introduce a viscosity iterative scheme for finding a common element of the set of

common fixed points of a one-parameter nonexpansive semigroup, the set of solutions to variational inclusions and

the set of solutions to generalized equilibrium problems in a real Hilbert space. Strong convergence theorems for

the common element are obtained.

Keywords: nonexpansive semigroup; variational inclusion; inverse strongly monotone mapping; generalized e-

quilibrium problem.

2010 AMS Subject Classification: 47H09, 47H10.

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let C

be a nonempty closed convex subset of H. Recall the following definitions.

A mapping T : C→ H is said to be
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(1) monotone if

〈T x−Ty,x− y〉 ≥ 0, ∀x,y ∈C.

(2) α-strongly monotone if there exists a constant α > 0 such that

〈T x−Ty,x− y〉 ≥ α‖x− y‖2, ∀x,y ∈C.

(3) α-inverse strongly monotone if there exists a constant α > 0 such that

〈T x−Ty,x− y〉 ≥ α‖T x−Ty‖2, ∀x,y ∈C.

(4) k-Lipschitz continuous if there exists a constant k > 0 such that

‖T x−Ty‖ ≤ k‖x− y‖, ∀x,y ∈C.

If T is α-inverse strongly monotone, then T is 1
α

-Lipschitz continuous. In the case that k = 1,

T : C→ H is said to be nonexpansive.

A (one parameter) nonexpansive semigroup is a family Γ = {S(t) : t ≥ 0} of self-mapping of

C if the following conditions are satisfied:

(a) S(0)x = x for all x ∈C;

(b) S(s+ t) = S(s)S(t) for all s, t ≥ 0;

(c) for each t > 0, ‖S(t)x−S(t)y‖ ≤ ‖x− y‖,x,y ∈C;

(d) for each x ∈C, the mapping S(·)x is continuous.

We use F(Γ) to denote the common fixed point set of the semigroup Γ, that is,

F(Γ) = {x ∈C : S(t)x = x, t ≥ 0}.

Let A : H → H be a single-valued nonlinear mapping and let M : H → 2H be a set-valued

mapping. The variational inclusion is to find x ∈ H such that

θ ∈ A(x)+M(x), (1.1)

where θ is a zero vector in H. The set of solutions to variational inclusion (1.1) is denoted by

I(A,M). When A = 0, then (1.1) becomes the inclusion problem introduced by Rockafellar [1].

Let ϕ : C→ H be a nonlinear mapping. The variational inequality problem is to find x ∈C

such that

〈ϕx,y− x〉 ≥ 0,∀y ∈C. (1.2)
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The set of solutions to variational inequality problem (1.2) is denoted by V I(C,ϕ). Finding a

common element of the set of fixed points of nonexpansive mappings and the set of solutions to

a variational inequality problem has been studied extensively in the literature; see, for example,

[2] and the references therein.

A set-valued mapping M : H→ 2H is called monotone if for all x,y ∈H, f ∈Mx and g ∈My

imply 〈x− y, f − g〉 ≥ 0. A monotone mapping M : H → 2H is maximal if the graph G(M)

is not properly contained in the graph of any other monotone mapping. It is known that a

monotone mapping M is maximal if and only if for (x, f ) ∈ H×H,〈x− y, f −g〉 ≥ 0 for every

(y,g) ∈ G(M) implies f ∈ Mx. The resolvent operator JM,λ associated with M and λ is the

mapping JM,λ : H→ H defined by

JM,λ (u) = (I +λM)−1(u), u ∈ H,λ > 0. (1.3)

It is known that the resolvent operator JM,λ is single-valued, nonexpansive and 1-inverse-

strongly monotone and that a solution of (1.1) is a fixed point of JM,λ (I− λA),∀λ > 0, see

[3]. If 0 < λ < 2α , it is easy to see that JM,λ (I−λA) is nonexpansive and I(A,M) is closed and

convex.

Let G be a bi-function of C×C into R, the set of reals and ϕ : C→H be a nonlinear mapping.

The generalized equilibrium problem is to find x ∈C such that

G(x,y)+ 〈ϕx,y− x〉 ≥ 0, ∀y ∈C. (1.4)

The set of solutions to this generalized equilibrium problem (1.4) is denoted by EP. Thus

EP := {x ∈C : G(x,y)+ 〈ϕx,y− x〉 ≥ 0,∀y ∈C}.

In the case of ϕ ≡ 0, the problem (1.4) reduces to an equilibrium problem, which is to find x∈C

such that

G(x,y)≥ 0,∀y ∈C. (1.5)

and EP is then denoted by EP(G). In the case of G ≡ 0, the problem (1.4) reduces to the

variational inequality problem (1.2) and EP is denoted by V I(C,ϕ). Numerous problems in

physics, optimization and economics can be reduced to the generalized equilibrium problem
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(1.4). Some methods have been proposed to solve the generalized equilibrium problems and

equilibrium problems.

For solving the equilibrium problem for a bifunction G : C×C→ R, let us assume that F

satisfies the following conditions:

(A1) G(x,x) = 0 for all x ∈C;

(A2) G is monotone, i.e., G(x,y)+G(y,x)≤ 0 for all x,y ∈C;

(A3) For each x,y,z ∈C, limsupt→0 G(tz+(1− t)x,y)≤ G(x,y);

(A4) For each x ∈C, y 7→ G(x,y) is convex and lower semicontinuous.

For finding an element of F(T ), where T is a nonexpansive mapping. Moudafi [4] introduced

the viscosity approximation method for nonexpansive mappings. Let f be a contraction on H,

starting with an arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

xn+1 = αn f (xn)+(1−αn)T xn, n≥ 0,

where {αn} is a sequence in (0,1) satisfies certain conditions, the sequence {xn} converges

strongly to the unique solution q in F(T ).

Tian [5] consider the following general iterative method

xn+1 = αnγ f (xn)+(I−µαnF)T xn, n≥ 0.

where F is a k-Lipschitzian and η-strongly monotone operator with k > 0,η > 0,0< µ < 2η

k2 . If

the sequence {αn} satisfies appropriate conditions, then the sequence {xn} converges strongly

to the unique solution q ∈ F(T ) of the variational inequality

〈(γ f −µF)q, p−q〉 ≤ 0, ∀p ∈ F(T ).

For finding a common element in F(S)∩EP, Takahashi and Takahashi [6] introduced the

following iterative scheme:
G(un,y)+ 〈ϕxn,y−un〉+

1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

xn+1 = βnxn +(1−βn)S[αnu+(1−αn)un].

(1.6)

Under the suitable conditions, some strong theorems are proved.
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For finding a common element in F(S)∩EP∩ I(A,M), Shehu [7] introduced the following

iterative scheme:
G(un,y)+ 〈ϕxn,y−un〉+

1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

xn+1 = βnxn +(1−βn)S[αn f (xn)+(1−αn)JM,λ (un−λAun)].

(1.7)

Under the suitable conditions, some strong theorems are proved which extend the results of

Takahashi and Takahashi [6].

For finding a common element in F(Γ)∩EP∩ I(A,M), Shehu [8] introduced the following

iterative scheme:
G(un,y)+ 〈ϕxn,y−un〉+

1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

xn+1 = βnxn +(1−βn)(
1
tn

∫ tn

0
S(u)[αn f (xn)+(1−αn)JM,λ (un−λAun)]du).

(1.8)

Under the suitable conditions, some strong theorems are proved which extend the results of

Shehu [7].

A nonexpansive semigroup is said to be uniformly asymptotically regular if for any t ≥ 0 and

for any bounded subset D of C,

lim
s→∞

sup
x∈D
‖S(t + s)x−S(s)x‖= 0.

Let C be a nonempty closed convex sunset of a real Hilbert space H, and Γ = {S(t) : t > 0}

a nonexpansive semigroup on C such that F(Γ) is nonempty. Let σ(t)x = 1
t
∫ t

0 S(u)xdu is an

uniformly asymptotically regular nonexpansive semigroup; see [9].

In this paper, motivated and inspired by the above results, we introduce an iterative scheme

for finding a common element of the set of common fixed points of nonexpansive semigroups,

the set of solutions to variational inclusions and the set of solutions to generalized equilibrium

problems. Our results improved and extend many recent results in the literature.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖·‖. Let C be a closed

convex subset of H. We write xn ⇀ x to indicate that the sequence {xn} converges weakly
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to x. xn → x implies that {xn} converges strongly to x. In a real Hilbert space, the following

inequality holds:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H. (2.1)

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x−PCx‖ ≤ ‖x− y‖, ∀y ∈C.

PC is called the metric projection of H onto C. PC is characterized by the following properties:

〈x−PCx,PCx− y〉 ≥ 0, ∀y ∈C. (2.2)

In the context of the variational inequality problem, this implies

p ∈V I(C,ϕ)⇔ p = PC(p−λϕ p), ∀λ > 0. (2.3)

It is well known that H satisfies the Opial’s condition [3], i.e., for any sequence {xn} with

xn ⇀ x, the inequality

limsup
n→∞

‖xn− x‖< limsup
n→∞

‖xn− y‖,∀y ∈ H,y 6= x.

In order to prove our main results, w shall make use of the following lemmas.

Lemma 2.1. [10] Let {xn}, {yn} be bounded sequences in a Banach space E and let {βn} be

a sequence in [0,1] with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose xn+1 = βnxn +(1−

βn)yn,∀ n≥ 0 and limsupn→∞(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0. Then limn→∞ ‖yn− xn‖= 0.

Lemma 2.2. [11] Let {sn} be a sequence of nonnegative real numbers such that:

sn+1 ≤ (1−λn)sn +βn, n≥ 0,

where {λn},{βn} satisfy the conditions:

(i) {λn} ⊂ (0,1) and ∑
∞
n=1 λn = ∞,

(ii) limsupn→∞

βn
λn
≤ 0 or ∑

∞
n=1 |βn|< ∞.

Then limn→∞ sn = 0.
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Lemma 2.3. [2] Let C be a nonempty closed subset of H and let G be a bifunction of C×C into

R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈C such that

G(z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C.

Lemma 2.4. [12] Assume that G : C×C→ R satisfies (A1)-(A4). For r > 0 and x ∈H, define a

mapping Tr : H→C as follows:

Trx = {z ∈C : G(z,y)+
1
r
〈y− z,z− x〉 ≥ 0,∀ y ∈C}

for all x ∈ H. Then the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x,y ∈ H,

‖Trx−Try‖2 ≤ 〈Trx−Try,x− y〉;

(3) F(Tr) = EP(G);

(4) EP(G) is closed and convex.

Lemma 2.5. [13] Let M : H → 2H be a maximal monotone mapping and let A : H → H be

a Lipschitz continuous mapping. Then the mapping M +A : H → 2H is a maximal monotone

mapping.

Lemma 2.6. [14] Let H be a real Hilbert space and let F : H → H be a k-Lipschitz and η-

strongly monotone operator with k > 0, η > 0. Let 0 < µ < 2η/k2, B = I− tµF and µ(η −
µk2

2 ) = τ . Then for t ∈ (0,min{1, 1
τ
}), B is a contraction with a constant 1− tτ .

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let G :

C×C→ R be a bifunction satisfying conditions (A1)-(A4). Let ϕ : H → H be an θ -inverse-

strongly monotone mapping, A : C→ H be an α-inverse-strongly monotone mapping and M :

H → 2H be a maximal monotone mapping. Let Γ = {S(t) : t ≥ 0} be uniform asymptotically

regular nonexpansive semigroup on C such that Ω = F(Γ)∩EP∩ I(A,M) 6= /0. Let f : H → H
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is Lipschitz mapping with the coefficient L, and F : H → H be a k-Lipschitz and η-strongly

monotone operator. Suppose that the sequences {xn}, {un}, {zn} are generated by x1 ∈ H
G(un,y)+ 〈ϕxn,y−un〉+

1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

zn = βnun +(1−βn)S(tn)un,

xn+1 = αnγ f (xn)+δnxn +[(1−δn)I−αnµF ]JM,λ (zn−λAzn),

where the sequences {αn},{βn},{δn} ⊆ (0,1) and {rn} ⊆ (0,∞), {tn} ⊆ [0,∞) satisfying the

following restrictions:

(C1) 0 < a≤ rn ≤ b < 2θ ;

(C2) limn→∞ |rn− rn+1|= 0;

(C3) limn→∞ αn = 0,∑∞
n=1 αn = ∞;

(C4) λ ∈ (0,2α];

(C5) 0 < liminfn→∞ δn ≤ limsupn→∞ δn < 1;

(C6) limn→∞ βn = 0;

(C7) {tn} ⊆ [0,∞) be a real increasing sequence such that limn→∞ tn = ∞;

(C8) 0 < µ < 2η

k2 , 0 < γ < τ/L, µ(η− µk2

2 ) = τ.

Then the sequence {xn} converges strongly to q ∈ Ω, which is the unique solution in the Ω to

the following variational inequality

〈γ f (q)−µFq, p−q〉 ≤ 0, ∀ p ∈Ω. (3.1)

Equivalently, we have q = PΩ(I + γ f −µF)q.

Proof. We divide the proof into five steps.

Step 1. Show that {xn} is bounded.

For all x,y ∈C and λ > 0, we obtain

‖(I−λA)x− (I−λA)y‖2

= ‖(x− y)−λ (Ax−Ay)‖2

= ‖x− y‖2−2λ 〈x− y,Ax−Ay〉+λ
2‖Ax−Ay‖2

≤ ‖x− y‖2 +λ (λ −2α)‖Ax−Ay‖2.
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So, I−λA is a nonexpansive mapping. Using (C1), we see that I− rnϕ is also nonexpansive.

Let vn = JM,λ (zn−λAzn) and let p ∈Ω. It follows that

‖vn− p‖2 = ‖JM,λ (zn−λAzn)− JM,λ (p−λAp)‖2

≤ ‖(zn−λAzn)− (p−λAp)‖2

≤ ‖zn− p‖2 +λ (λ −2α)‖Azn−Ap‖2

≤ ‖zn− p‖
2

and ‖zn− p‖≤ (1−βn)‖S(tn)un− p‖+βn‖un− p‖≤ ‖un− p‖. From Lemma 2.4, un = Trn(xn−

rnϕxn) and Trn is nonexpansive. Hence, we have

‖un− p‖2 = ‖Trn(xn− rnϕxn)−Trn(p− rnϕ p)‖2

≤ ‖(xn− rnϕxn)− (p− rnϕ p)‖2

≤ ‖xn− p‖2 + rn(rn−2θ)‖ϕxn−ϕ p‖2

≤ ‖xn− p‖2.

(3.2)

From (C3), (C8) and Lemma 2.6, we have ‖(1−δn)I−αnµF‖ ≤ 1−δn−αnτ . Further

‖xn+1− p‖

= ‖αn(γ f (xn)−µF p)+δn(xn− p)+ [(1−δn)I−αnµF ](vn− p)‖

≤ αn‖γ f (xn)−µF p‖+δn‖xn− p‖+(1−δn−αnτ)‖vn− p‖

≤ αnγ‖ f (xn)− f (p)‖+αn‖γ f (p)−µF p‖+δn‖xn− p‖+(1−δn−αnτ)‖xn− p‖

≤ αnγL‖xn− p‖+αn‖γ f (p)−µF p‖+δn‖xn− p‖+(1−δn−αnτ)‖xn− p‖

= [1−αn(τ− γL)]‖xn− p‖+αn‖γ f (p)−µF p‖.

By induction, we have

‖xn− p‖ ≤max{‖x1− p‖, 1
τ− γL

‖γ f (p)−µF p‖}.

Therefore {xn} is bounded, we have {vn},{un}, {S(tn)un}, {Axn}, {Fvn}, { f (xn)} are also

bounded.

Step 2. Show that limn→∞ ‖xn+1− xn‖= 0.
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Put ln =
xn+1−δnxn

1−δn
, this is, xn+1 = (1−δn)ln +δnxn. Observing that

‖ln+1− ln‖ ≤
αn+1

1−δn+1
(‖γ f (xn+1)‖+‖µFvn+1‖)+

αn

1−δn
(‖γ f (xn)‖+‖µFvn‖)

+‖vn+1− vn‖.
(3.3)

Since I−λA is a nonexpansive, we have

‖vn+1− vn‖= ‖JM,λ (zn+1−λAzn+1)− JM,λ (zn−λAzn)‖

≤ ‖(zn+1−λAzn+1)− (zn−λAzn)‖

≤ ‖zn+1− zn‖

≤ (1−βn+1)‖S(tn+1)un+1−S(tn)un‖+βn+1‖un+1−un‖

+ |βn+1−βn|‖S(tn)un−un‖

≤ ‖S(tn+1)un+1−S(tn+1)un‖+‖S[(tn+1− tn)+ tn]un−S(tn)un‖

+βn+1‖un+1−un‖+ |βn+1−βn|‖S(tn)un−un‖

≤ ‖un+1−un‖+ sup
x∈{un},t≥0

‖S(t + tn)x−S(tn)x‖

+βn+1‖un+1−un‖+ |βn+1−βn|‖S(tn)un−un‖.

(3.4)

On the other hand, from un = Trn(xn− rnϕxn) and un+1 = Trn+1(xn+1− rn+1ϕxn+1), we obtain

G(un,y)+ 〈ϕxn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C (3.5)

and

G(un+1,y)+ 〈ϕxn+1,y−un+1〉+
1

rn+1
〈y−un+1,un+1− xn+1〉 ≥ 0, ∀y ∈C. (3.6)

Substituting y = un+1 in (3.5) and y = un in (3.6), we have

G(un,un+1)+ 〈ϕxn,un+1−un〉+
1
rn
〈un+1−un,un− xn〉 ≥ 0

and

G(un+1,un)+ 〈ϕxn+1,un−un+1〉+
1

rn+1
〈un−un+1,un+1− xn+1〉 ≥ 0.

So, from (A2), we have

0≤ 〈ϕxn+1−ϕxn,un−un+1〉+ 〈un+1−un,
un− xn

rn
− un+1− xn+1

rn+1
〉
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and hence,

0≤ 〈un+1−un,rn(ϕxn−ϕxn+1)+(un− xn)−
rn

rn+1
(un+1− xn+1)〉

= 〈un+1−un,un−un+1 + xn+1− rnϕxn+1− (xn− rnϕxn)+(1− rn

rn+1
)(un+1− xn+1)〉.

It follows that

‖un+1−un‖2 ≤ ‖un+1−un‖{‖xn+1− xn‖+(1− rn

rn+1
)‖un+1− xn+1‖}.

From (C1), we have

‖un+1−un‖ ≤ ‖xn+1− xn‖+ |1−
rn

rn+1
|‖un+1− xn+1‖

≤ ‖xn− xn+1‖+
1
a
|rn− rn+1|‖un+1− xn+1‖.

(3.7)

Substituting (3.4) and (3.7) into (3.3), we have

‖ln+1− ln‖−‖xn+1− xn‖

≤ αn+1

1−δn+1
(‖γ f (xn+1)‖+‖µFvn+1‖)+

αn

1−δn
(‖γ f (xn)‖+‖µFvn‖)

+βn+1‖un+1−un‖+ sup
x∈{un},t≥0

‖S(t + tn)x−S(tn)x‖

+ |βn+1−βn|‖S(tn)un−un‖+
1
a
|rn− rn+1|‖un+1− xn+1‖.

Since (C2), (C3), (C6), (C7) and the uniform asymptotic regularity of nonexpansive semigroup,

we have

limsup
n→∞

(‖ln+1− ln‖−‖xn− xn+1‖)≤ 0.

By Lemma 2.1, we have limn→∞ ‖ln− xn‖= 0. Consequently, we have

lim
n→∞
‖xn+1− xn‖= lim

n→∞
(1−βn)‖ln− xn‖= 0. (3.8)

Step 3. Show that limn→∞ ‖xn−S(t)xn‖= 0,∀t ≥ 0.

Observing that

‖xn− vn‖ ≤ ‖xn− xn+1‖+‖xn+1− vn‖

≤ ‖xn− xn+1‖+αn‖γ f (xn)−µFvn‖+δn‖xn− vn‖.

It follows that

(1−δn)‖xn− vn‖ ≤ ‖xn− xn+1‖+αn‖γ f (xn)−µFvn‖.
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From (C3), (C5) and (3.8), we have

lim
n→∞
‖vn− xn‖= 0. (3.9)

Let M > 0 be a constant such that M > supn≥1 max{‖γ f (xn)− µFvn‖,‖xn− p‖}. From (2.1),

(3.2) and the convexity of ‖.‖2, we obtain

‖xn+1− p‖2

≤ ‖δn(xn− p)+(1−δn)(vn− p)‖2 +2αn〈γ f (xn)−µFvn,xn+1− p〉

≤ (1−δn)‖vn− p‖2 +δn‖xn− p‖2 +2αnM2

≤ (1−δn)‖un− p‖2 +δn‖xn− p‖2 +2αnM2

≤ (1−δn)[‖xn− p‖2 + rn(rn−2θ)‖ϕxn−ϕ p‖2]+δn‖xn− p‖2 +2αnM2

≤ ‖xn− p‖2 +a(b−2θ)‖ϕxn−ϕ p‖2 +2αnM2.

Hence,

a(2θ −b)‖ϕxn−ϕ p‖2 ≤ 2αnM2 +(‖xn+1− p‖+‖xn− p‖)‖xn− xn+1‖.

Using (C3) and (3.8), we have ‖ϕxn−ϕ p‖→ 0,n→∞. Similarly, we also have ‖Azn−Ap‖→

0, as n→ ∞. Since Trn is 1-inverse-strongly-monotone, we have

‖un− p‖2 = ‖Trn(xn− rnϕxn)−Trn(p− rnϕ p)‖2

≤ 〈xn− rnϕxn− (p− rnϕ p),un− p〉

=
1
2
[‖xn− rnϕxn− (p− rnϕ p)‖2 +‖un− p‖2−‖xn− rnϕxn− (p− rnϕ p)− (un− p)‖2]

≤ 1
2
[‖xn− p‖2 +‖un− p‖2−‖xn−un− rn(ϕxn−ϕ p)‖2]

=
1
2
[‖xn− p‖2 +‖un− p‖2−‖xn−un‖2 +2rn〈xn−un,ϕxn−ϕ p〉− r2

n‖ϕxn−ϕ p‖2].

This implies that

‖un− p‖2 ≤ ‖xn− p‖2−‖xn−un‖2 +2rn〈xn−un,ϕxn−ϕ p〉− r2
n‖ϕxn−ϕ p‖2

≤ ‖xn− p‖2−‖xn−un‖2 +2rn‖xn−un‖‖ϕxn−ϕ p‖.
(3.10)
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From (2.1) and (3.10), we obtain

‖xn+1− p‖2

= ‖δn(xn− p)+(1−δn)(vn− p)+αn(γ f (xn)−µFvn)‖2

≤ ‖δn(xn− p)+ [(1−δn)(vn− p)]‖2 +2αn〈γ f (xn)−µFvn,xn+1− p〉

≤ (1−δn)‖vn− p‖2 +δn‖xn− p‖2 +2αnM2

≤ (1−δn)‖un− p‖2 +δn‖xn− p‖2 +2αnM2

≤ (1−δn)[‖xn− p‖2−‖xn−un‖2 +2rn‖xn−un‖‖ϕxn−ϕ p‖]+δn‖xn− p‖2 +2αnM2

≤ ‖xn− p‖2− (1−δn)‖xn−un‖2 +2rn‖xn−un‖‖ϕxn−ϕ p‖+2αnM2.

This implies that

(1−δn)‖xn−un‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2rn‖xn−un‖‖ϕxn−ϕ p‖+2αnM2.

Since (C3), (C5), (3.8) and limn→∞ ‖ϕxn−ϕ p‖= 0, we have

lim
n→∞
‖xn−un‖= 0. (3.11)

Since JM,λ is also 1-inverse-strongly-monotone, By the similar argument above, we also have

lim
n→∞
‖vn− zn‖= 0. (3.12)

From zn = βnxn +(1−βn)S(tn)un, we have from (C6)

lim
n→∞
‖zn−S(tn)un‖= lim

n→∞
βn‖un−S(tn)un‖= 0. (3.13)

From (3.9), (3.11), (3.12) and (3.13), we have

‖xn−S(tn)xn‖ ≤ ‖xn− vn‖+‖vn− zn‖+‖zn−S(tn)un‖+‖S(tn)un−S(tn)xn‖

≤ ‖xn− vn‖+‖vn− zn‖+‖zn−S(tn)un‖+‖un− xn‖→ 0.

Further, we have

‖xn−S(t)xn‖ ≤ ‖xn−S(tn)xn‖+‖S(tn)xn−S(t)S(tn)xn‖+‖S(t)S(tn)xn−S(t)xn‖

≤ 2‖xn−S(tn)xn‖+‖S(tn)xn−S(t)S(tn)xn‖

≤ 2‖xn−S(tn)xn‖+ sup
x∈{xn},t≥0

‖S(t + tn)x−S(tn)x‖.
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From (C7) and the uniform asymptotic regularity of the nonexpansive semigroup, we get

lim
n→∞
‖xn−S(t)xn‖= 0, ∀t ≥ 0. (3.14)

Step 4. We show that limsupn→∞〈γ f (q)−µFq,xn−q〉 ≤ 0.

From (C8), we obtain µF− γ f is strongly monotone. Then q is the uniqueness of a solution

of (3.1). Choose a subsequence {xni} of {xn} such that

limsup
n→∞

〈γ f (q)−µFq,xn−q〉= lim
i→∞
〈γ f (q)−µFq,xni−q〉.

As {xni} is bounded, Without loss of generality that xni ⇀ z, We first show that z ∈ I(A,M).

Since A is 1
α

Lipschitz monotone and D(A) = H, we obtain from Lemma 2.5, M+A is maximal

monotone. Let (v,g) ∈ G(M+A), that is, g−Av ∈M(v). Since vni = JM,λ (zni−λAzni), we get

(I−λA)zni ∈ (I +λM)vni , that is,

zni−λAzni− vni

λ
∈M(vni).

Using the maximal monotonicity of M+A, we obtain

〈v− vni,g−Av− zni−λAzni− vni

λ
〉 ≥ 0. (3.15)

By the monotonicity of A and (3.15), we have

〈v− vni,g〉 ≥ 〈v− vni,Av+
zni−λAzni− vni

λ
〉

= 〈v− vni,Av−Avni +Avni−Azni +
zni− vni

λ
〉

≥ 〈v− vni,Avni−Azni〉+ 〈v− vni,
zni− vni

λ
〉.

It follow from (3.12), limi→∞ ‖Avni−Azni‖= 0. From (3.9), vni ⇀ z, we have

lim
n→∞
〈v− vni,g〉= 〈v− z,g〉 ≥ 0.

Using the maximal monotonicity of M+A, we obtain θ ∈ (M+A)(v), this implies z ∈ I(A,M).

Since un = Trn(xn− rnϕxn), for any y ∈C

G(un,y)+ 〈ϕxn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0.
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Replace n by ni and using (A2), we have

〈ϕxni,y−uni〉+ 〈y−uni,
uni− xni

rni

〉 ≥ G(y,uni). (3.16)

Let yt = ty+(1− t)z for all 0 < t ≤ 1 and y ∈C. Since y ∈C and z ∈C, we have yt ∈C. From

(3.16), we have

〈yt−uni,ϕyt〉 ≥ 〈yt−uni,ϕyt〉−〈yt−uni,ϕxni〉−〈yt−uni,
uni− xni

rni

〉+G(yt ,uni)

= 〈yt−uni,ϕyt−ϕuni〉+ 〈yt−uni,ϕuni−ϕxni〉

−〈yt−uni,
uni− xni

rni

〉+G(yt ,uni).

From the monotonicity of ϕ , we have 〈yt −uni,ϕyt −ϕuni〉 ≥ 0. From (3.11), we have uni ⇀ z

and ‖ϕxni−ϕuni‖→ 0. From (A4), we have

〈yt− z,ϕyt〉 ≥ G(yt ,z). (3.17)

From (A1), (A4) and (3.17), we have

0 = G(yt ,yt)≤ tG(yt ,y)+(1− t)G(yt ,z)

≤ tG(yt ,y)+(1− t)〈yt− z,ϕyt〉

= tG(yt ,y)+(1− t)t〈y− z,ϕyt〉

and hence G(yt ,y)+ (1− t)〈y− z,ϕyt〉 ≥ 0. Letting t → 0 and (A3), we have G(z,y)+ 〈y−

z,ϕz〉 ≥ 0 for all y ∈C and hence z ∈ EP.

Finally, we show that z ∈ F(Γ). Assume the contrary that z 6= S(t)z for some t ∈ [0,+∞).

Then by the Opial’s condition, we obtain from (3.14) that

liminf
i→∞

‖xni− z‖< liminf
i→∞

‖xni−S(t)z‖

≤ liminf
i→∞

(‖xni−S(t)xni‖+‖S(t)xni−S(t)z‖)

≤ liminf
i→∞

‖xni− z‖.

This is a contradiction. Hence z ∈ F(Γ). Thus z ∈Ω. This follows that

limsup
n→∞

〈γ f (q)−µFq,xn−q〉= 〈γ f (q)−µFq,z−q〉 ≤ 0. (3.18)

Step 5. Show that xn→ q.
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We compute that

‖xn+1−q‖2

= αn〈γ f (xn)−µFq,xn+1−q〉+δn〈xn−q,xn+1−q〉

+ 〈[(1−δn)I−αnµF ](vn−q),xn+1−q〉

≤ αnγ〈 f (xn)− f (q),xn+1−q〉+αn〈γ f (q)−µFq,xn+1−q〉

+δn‖xn−q‖‖xn+1−q‖+(1−δn−αnτ)‖vn−q‖‖xn+1−q‖

≤ αnγL‖xn−q‖‖xn+1−q‖+αn〈γ f (q)−µFq,xn+1−q〉

+δn‖xn−q‖‖xn+1−q‖+(1−δn−αnτ)‖xn−q‖‖xn+1−q‖

= (1−αn(τ− γL))‖xn−q‖‖xn+1−q‖+αn〈γ f (q)−µFq,xn+1−q〉

≤ 1−αn(τ− γL)
2

‖xn−q‖2 +
1
2
‖xn+1−q‖2 +αn〈γ f (q)−µFq,xn+1−q〉,

which implies that

‖xn+1−q‖2 ≤ [1−αn(τ− γL)]‖xn−q‖2 +2αn〈γ f (q)−µFq,xn+1−q〉.

By (3.18), (C3) and Lemma 2.2, we obtain limn→∞ ‖xn−q‖= 0. This completes the proof.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

G : C×C→ R be a bifunction satisfying conditions (A1)-(A4), ϕ : H → H be an θ -inverse-

strongly monotone mapping and let A : C→ H be an α-inverse-strongly monotone mapping.

Let Γ = {S(t) : t ≥ 0} be uniform asymptotically regular nonexpansive semigroup on C such

that Ω := F(Γ)∩EP∩V I(C,A) 6= /0. Let f : H→ H is Lipschitz mapping with the coefficient L

and let F : H→ H be a k-Lipschitz and η-strongly monotone operator. Suppose the sequences

{xn}, {un}, {zn} are generated by x1 ∈ H
G(un,y)+ 〈ϕxn,y−un〉+

1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

zn = βnun +(1−βn)S(tn)un,

xn+1 = αnγ f (xn)+δnxn +[(1−δn)I−αnµF ]PC(zn−λAzn).

where the sequences {αn},{βn},{δn} ⊆ (0,1) and {rn} ⊆ (0,∞), {tn} ⊆ [0,∞) satisfying the

following restrictions:
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(C1) 0 < a≤ rn ≤ b < 2θ ;

(C2) limn→∞ |rn− rn+1|= 0;

(C3) limn→∞ αn = 0,∑∞
n=1 αn = ∞;

(C4) λ ∈ (0,2α];

(C5) 0 < liminfn→∞ δn ≤ limsupn→∞ δn < 1;

(C6) limn→∞ βn = 0;

(C7) {tn} ⊆ [0,∞) be a real increasing sequence such that limn→∞ tn = ∞;

(C8) 0 < µ < 2η

k2 , 0 < γ < τ/L, µ(η− µk2

2 ) = τ.

Then the sequence {xn} converges strongly to q ∈ Ω, which is the unique solution in the Ω to

the variational inequality (3.1). Equivalently, we have q = PΩ(I + γ f −µF)q.

Proof. Take M = ∂δC : H → 2H , where δC : H → [0,∞) is the indicator function of C, the

subdifferential ∂δC of δC is a maximal monotone operator. Then JM,λ = PC and I(A,M) =

V I(C,A). From the Theorem 3.1, we have the desired conclusion immediately.

Recall that mapping T : C→C is called α-strictly pseudocontractive if there exists α ∈ [0,1)

such that

‖T x−Ty‖2 ≤ ‖x− y‖2 +α‖(T − I)x− (T − I)y‖2, ∀x,y ∈C.

If α = 0, then T is nonexpansive. Put A = I−T , Then, we have

‖(I−A)x− (I−A)y‖2 ≤ ‖x− y‖2 +α‖Ax−Ay‖2, ∀x,y ∈C.

Hence we have

〈x− y,Ax−Ay〉 ≥ 1−α

2
‖Ax−Ay‖2, ∀x,y ∈C.

Then A is 1−α

2 -inverse strongly monotone.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

G : C×C→ R be a bifunction satisfying conditions (A1)-(A4), ϕ : H → H be an θ -inverse-

strongly monotone mapping and let T : C→C be an α-strictly pseudocontractive maping. Let

Γ = {S(t) : t ≥ 0} be uniform asymptotically regular nonexpansive semigroup on C such that

Ω := F(Γ)∩EP∩F(T ) 6= /0. Let f : H→H is Lipschitz mapping with the coefficient L, and let

F : H → H be a k-Lipschitz and η-strongly monotone operator. Suppose the sequences {xn},



342 LIJUAN ZHANG, HUI TONG

{un}, {zn} are generated by x1 ∈ H


G(un,y)+ 〈ϕxn,y−un〉+

1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

zn = βnun +(1−βn)S(tn)un,

xn+1 = αnγ f (xn)+δnxn +[(1−δn)I−αnµF ][(1−λ )zn +λT zn].

where the sequences {αn},{βn},{δn} ⊆ (0,1) and {rn} ⊆ (0,∞), {tn} ⊆ [0,∞) satisfying the

following restrictions:

(C1) 0 < a≤ rn ≤ b < 2θ ;

(C2) limn→∞ |rn− rn+1|= 0;

(C3) limn→∞ αn = 0,∑∞
n=1 αn = ∞;

(C4) λ ∈ (0,2α];

(C5) 0 < liminfn→∞ δn ≤ limsupn→∞ δn < 1;

(C6) limn→∞ βn = 0;

(C7) {tn} ⊆ [0,∞) be a real increasing sequence such that limn→∞ tn = ∞;

(C8) 0 < µ < 2η

k2 , 0 < γ < τ/L, µ(η− µk2

2 ) = τ.

Then the sequence {xn} converges strongly to q ∈ Ω, which is the unique solution in the Ω to

the variational inequality (3.1). Equivalently, we have q = PΩ(I + γ f −µF)q.

Proof. Putting A = I− T , we have A is 1−α

2 -inverse strongly monotone. We have F(T ) =

V I(C,A) and PC(zn− λAzn) = (1− λ )zn + λT zn. From Corollary 3.2, we have the desired

conclusion immediately.
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