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Abstract. In this paper, we obtain existence and uniqueness results of fixed points of nonlinear operators satisfying

the condition of the form (Φ1,Φ2) given as a perturbation of Φ2 contraction by a convenable function Φ1 in metric

and Banach spaces, which enable us to extend the Banach’s mapping principle and other results in the literature.

Also, the Φ-quasinonexpansive character of our context is shown in order to obtain results of convergence and

stability of iterative processes of Mann and Ishikawa.
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1. Introduction

Let (X ,d) be a complete metric space and let f : X −→ X be a mapping. Recall that f is said

to be contractive if there exists a positive constant k with k < 1 such that

d( f (x), f (y))≤ kd(x,y), ∀x,y ∈ X . (1.1)
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The classical theorem of Banach that has emerged with the appearance of his work in 1922

[4] says that any self-map f defined on X satisfying an inequality of the form (1.1) (called

contraction mapping) has a unique fixed point x0 in X ( f (x0) = x0).

A fixed point is seen as an invariant point by the transformation f . This point is obtained as

a limit of iterative scheme of the form

xn = f (n)(x0) = ( f ◦ f ◦ .......◦ f )︸ ︷︷ ︸
n times

(x0),

where x0 is an arbitrary point in X . Note that, recently, this result has been proved in Palais [33]

by using a simple proof based on the triangular inequality.

The Banach Contraction Principle (BCP) is a major tool in functional analysis, nonlinear

analysis and differential equations (existence, uniqueness and stability of solutions). Many

variants of BCP and some results of its extensions have been established by several authors; see

[1, 5, 7, 8, 9, 12, 13, 17, 19, 22, 23, 25, 27, 34, 35, 36, 37, 39, 40, 41, 43] and the references

therein.

Recall that the condition k strictly less than 1 ensures the existence and uniqueness of the

fixed point as the following example shown: If X = {0,1} equipped with the discreet metric,

then the map T given by

T (x) =

 1 if x = 0,

0 if x = 1,

satisfies that d(T (0),T (1)) = d(0,1) = 1 but T has not any fixed point in X . On the other hand,

if S = IdX on any metric space X , then d(S(x),S(y)) = d(x,y) but it is easy to observe that every

point of X is a fixed point.

In the case where the metric space (X ,d) is compact and the inequality (1.1) is strict with

k = 1, Edelstein [16] has established the existence and uniqueness of the fixed point of the map

f . However, this result is not much used in the case of Banach spaces of infinite dimensional,

this is due to the fact that compact sets in theses spaces have empty interiors according to the

Riesz Theorem. We also remark here that the mapping T is nonexpansive if and only if k = 1

in inequality (1.1).

If X is a Banach space, it was be naturel to ask if nonexpansive self maps defined on convex,

closed and bounded sets possess fixed points. The answer to this question is negative as the
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following example shown due to Kakutani in 1943 and constructed on the closed unit ball of

the Banach space c0.

Example 1.1. Let B the unit ball in c0 and T : B −→ B defined by T (x1,x2, ....) = (1−

‖x‖,x1,x2, ....). It is easy to check that T is nonexpansive and fixed-point free.

After around twenty years, two surprising results due respectively to Browder [10] and Kirk

[23] appeared and revolutionized the theory by showing the role played by the geometry of

Banach spaces in the existence of fixed points for this class of maps. Since, this direction was

the object of several significant contributions, let us quote for example the works of [2, 3, 11,

18, 28].

In this paper, in the case of complete metric spaces, we establish some results of the existence

and uniqueness of fixed points for nonlinear maps T satisfying an inequality where the distance

between the values T (x) and T (y) are dominated by suitably selected perturbation of a Φ-

contraction. Also, the fact that if M is a convex set of a Banach space X , T a self map on

M and P is a real polynomial for which the sum of its coefficients is equal to one implies

that P(T ) is also a self map on M pushed us to study the set of fixed points of P(T ) and the

possible coincidence with those of T including the framework of iterates as a particular case.

In addition, taking into account the recent results of Ruiz [38], we show the convergence of the

iterative processes of Mann and Ishikawa and the almost stability of the Picard’s process.

2. Main results

We start our results by the principal one given by the following theorem.

Theorem 2.1. Let (X ,d) be a complete metric space and let T : X −→ X be a continuous map

satisfying the following condition:

d(T (x),T (y))≤Φ1[d(x,T (x)),d(y,T (y)),d(x,y)]+Φ2[d(x,y)],

for all x,y ∈ X. Here, Φ1 : [0,∞[×[0,∞[×]0,∞[−→ [0,∞[ and Φ2 : [0,∞[−→ [0,∞[ are functions

such that

(1) Φ1(t1, t, t)≤ Φ̃1(t1) ∀t1 ≥ 0 and ∀t > 0;
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(2) Φ2 is nondecreasing and lim
n−→+∞

Φ
(n)
2 (t) = 0;

(3) (I−Φ̃1)
−1 exists with (I−Φ̃1)

−1 nondecreasing such that Φ2(I−Φ̃1)
−1≤ (I−Φ̃1)

−1Φ2

and
+∞

∑
n=0

(I− Φ̃1)
−(n)

Φ
(n)
2 (t)< ∞ for all t ≥ 0.

Then T has at least a fixed point in X. In addition, if Φ1(0,0, t3) = 0 ∀t3 > 0, one obtains the

uniqueness of the fixed point of T .

Remark 2.1. Every function Φ which satisfies condition 2 of Theorem 2.1 must check that

Φ(0) = 0 and Φ(t)< t for all t > 0.

Proof of Theorem 2.1. Let x0 be an arbitrary point of X and let (xn)
∞
1 , where xn = T (n)(x0) and

n is a positive integer, be the sequence of iterates of T at x0. If xn = xn+1 for some n then the

result is immediate. So let xn 6= xn+1, for all n. Note that

d(xn+1,xn)≤Φ1[d(xn,T (xn)),d(xn−1,T (xn−1)),d(xn,xn−1)]+Φ2[d(xn,xn−1)]

= Φ1[d(xn,xn+1),d(xn−1,xn),d(xn,xn−1)]+Φ2[d(xn,xn−1)].

d(xn+1,xn)≤ Φ̃1[d(xn,xn+1)]+Φ2[d(xn,xn−1)],

which implies that

(I− Φ̃1)[d(xn,xn+1)]≤Φ2[d(xn,xn−1)].

Since (I− Φ̃1) is invertible and nondecreasing, we find that

d(xn,xn+1)≤ (I− Φ̃1)
−1[Φ2(d(xn,xn−1))].

Moreover, the nondecreasing property of Φ2, and (I− Φ̃1)
−1 yields that

d(xn,xn+1)≤ (I− Φ̃1)
−1[Φ2((I− Φ̃1)

−1(Φ2(d(xn−1,xn−2))))].

By use of the first part of the assumption (3), we obtain that

d(xn,xn+1)≤ (I− Φ̃1)
−(2)[Φ

(2)
2 (d(xn−1,xn−2))].

In addition by conduction, we see that

d(xn,xn+1)≤ (I− Φ̃1)
−(n)[Φ

(n)
2 (d(x1,x0))].
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By the triangle inequality, we have, for m≥ n,

d(xn,xm)≤ d(xn,xn+1)+d(xn+1,xn+2)+ ....+d(xm−1,xm)

≤ (I− Φ̃1)
(−n)

Φ
(n)
2 [d(x1,x0)]+(I− Φ̃1)

−(n+1)
Φ

(n+1)
2 [d(x1,x0)]+ ...

.....+(I− Φ̃1)
−(m−1)

Φ
(m−1)
2 [d(x1,x0)].

Put H = (I− Φ̃1)
−1Φ2. Using the second part of the assumption 3, we infer that

d(xn,xm)≤ (H(n)+H(n+1)+ ........+H(m−1))d(x0,x1)

−→ 0 as m,n−→+∞.

This shows that (xn)
+∞

1 is a Cauchy sequence and since X is a complete, there exists u ∈ X such

that lim
n−→+∞

xn = u. Further, the continuity of T in X implies Tu = u. This implies that u is a

fixed point of T in X .

Moreover, assume that the condition Φ1(0,0, t3) = 0,∀t3 > 0 is satisfied. To show the unique-

ness, let v 6= u in X such that T (v) = v. Then

d(u,v) = d(T (u),T (v))

≤Φ1[d(u,T (u)),d(v,T (v)),d(u,v)]+Φ2[d(u,v)]

= Φ1[0,0,d(u,v)]+Φ2[d(u,v)]

≤Φ2[d(u,v)]

< d(u,v).

This is a contradiction. Hence u is a unique fixed point of T in X .

Remark 2.2. As a particular cases of Theorem 2.1, we find the following situations

First case: If Φ1 ≡ 0 and Φ2 = αt such that α ∈ [0,1[. We obtain the Banach contraction

principle.

Second case: If Φ1 ≡ 0. We obtain one of the main result of Berinde ([6], Theorem 2).

Third case: If Φ1(t1, t2, t3) =
αt1t2

t3
and Φ2(t) = β t for some α,β ∈ [0,1[ with α +β < 1.

We obtain the main result of D. S. Jaggy ([25], Theorem 1).
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Remark 2.3. It is easy to observe that the technics of the proof of Theorem 2.1 can be used to

establish one of the main result of Imoru et al. ([20], Theorem 2.1).

Example 2.1. Let Φ1 : [0,+∞[×[0,+∞[×]0,+∞[−→ [0,+∞[ and Φ2 : [0,+∞[−→ [0,+∞[ given

by

Φ1(t1, t2, t3) = |Sin(t1)|t2e−t3

and

Φ2(t) = αt;(0≤ α <
e−1

e
).

We can check that Φ1 and Φ2 satisfy assumptions of Theorem 2.1. Indeed, we have |Sin(t1)| ≤

|t1| for all t1 ≥ 0 and te−t ≤ 1
e for t > 0, which gives that the assumption 1 is established

by taking Φ̃1(t1) =
1
e

t1. Furthermore, we have Φ1(t1,0, t3) = 0. On the other hand, the fact

that (I − Φ̃1)
−1Φ2 = Φ2(I − Φ̃1)

−1 =
αe

e−1
t implies trivially the convergence of the series

+∞

∑
n=0

(I− Φ̃1)
−(n)

Φ
(n)
2 (t) =

+∞

∑
n=0

(
αe

e−1
)nt.

Next, we show the existence of unique common fixed point of two mappings which are

commuting.

Lemma 2.1. Let T1 and T2 be two self-maps defined on a metric space (X ,d) satisfying the

following conditions:

(ı): T1 ◦T2 = T2 ◦T1;

(ıı): F(Ti)⊆ F(Tj)(i 6= j)(i, j = 1,2) , where F(Tk),k = 1,2 is the set of fixed points of Tk.

If Tj has a unique fixed point x0 ∈ X, then x0 is the unique fixed point of Ti.

Proof. If x0 is a fixed point of Tj, then Tj(x0) = x0. It follows that Ti[Tj(x0)] = Ti(x0) Since Ti

and Tj are commuting, we have Tj[Ti(x0)] = Ti(x0). This shows that Ti(x0) is a fixed point of Tj.

The fact that x0 is the unique fixed point of Tj, implies that Ti(x0) = x0. Therefore x0 is a fixed

point of Ti. The uniqueness concerning the fixed point of Ti is trivial.

Corollary 2.1. Let M be a non empty, convex subset of a Banach space (X ,‖.‖) and T : M−→M

a map ( not necessarily continuous) and let P a real polynomial given by:

P(x) = λ0 +λ1x+ .....+λnxn
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with
n

∑
i=0

λi = 1 and λi ≥ 0 for i = 0,1, ...,n. Then,

(ı): If x0 ∈M is a fixed point of T , then x0 is a fixed point of P(T ) defined by

P(T ) = λ0I +λ1T + .....+λnT n

(ıı): If x0 ∈M is a unique fixed point of P(T ) and P(T )◦T = T ◦P(T ), then x0 is a unique

fixed point of T in M.

(ııı): If x0 ∈M is a unique fixed point of P(T ) and P(T )◦T 6= T ◦P(T ). Then either:

(a): T does not have a fixed point in M, or

(b): T has x0 as a unique fixed point in M.

Proof.

(ı): It is easy to observe that P(T ) : M −→M. If x0 ∈M is a fixed point of T , then

P(T )(x0) = {
n

∑
i=0

λi}x0 = x0 ∈M.

This shows that x0 ∈M is a fixed point of P(T ).

(ıı): Follows from Lemma 2.1 since we have F(T )⊆ F(P(T )).

(ııı): Assume that x1 6= x0 is another fixed point of T in M, the assertion (ı) shows that x1

is a fixed point of P(T ) which is a contradiction.

Remark 2.4. Let X be a Banach space and K a convex subset of X . A self mapping T on K is

called a nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x,y ∈ K. Let P a real polynomial

given as in assertion (ı) of Corollary 2.1 with λ1 > 0. Kirk [24] showed that in this case

F(T ) = F(P(T )), we note also that the condition λ1 > 0 is crucial as the following example

shows.

Example 2.2. Let T : [0,1]−→ [0,1] be defined as follows: T (x) = 1− x. It is easy to observe

that T is nonexpansive and x0 =
1
2 is the unique fixed point of T.

Now consider the polynomial P(z) = 1
2z2 + 1

2 . It follows that

P(T ) : [0,1]−→ [0,1], x 7−→ P(T )(x) = x

and P(T )◦T = T ◦P(T ) = 1−x. In this case, we observe that the set of fixed points of P(T ) is

the interval [0,1]. Here, we have F(T )( F(P(T )).
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The following theorem generalizes Theorem 2.1 as well.

Theorem 2.2. Let M be a non empty, closed, convex subset of a Banach space (X ,‖.‖) and

T : M −→M a map (not necessarily continuous). Assume that Φ1 and Φ2 satisfy assumptions

given in Theorem 2.1. Let P the following real polynomial:

P(x) = λ0 +λ1x+ .....+λnxn,

where
n

∑
i=0

λi = 1. and λi ≥ 0 for i = 0,1, ...,n for which P(T ) commutes with T and for all

x,y ∈M,

‖P(T )(x)−P(T )(y)‖ ≤Φ1(‖x−P(T )(x)‖,‖y−P(T )(y)‖,‖x− y‖)+Φ2(‖x− y‖).

If P(T ) is continuous, then T has a unique fixed point.

Proof. Since P(T ) satisfies the assumptions given in Theorem 2.1. Then we can deduce that

P(T ) has a unique fixed point denoted by u. Hence, the result follows immediately from the

assertion (ıı) of Corollary 2.1.

Example 2.3. let X = R and let a map T : X −→ X defined as follows:

T (x) =

 0 if x ∈Q

1 if x /∈Q

That T is discontinuous can be easily seen. Now, consider the polynomial P(z) = z2. It can be

verified that P(T ) ≡ 0 satisfy the conditions of Theorem 2.2, and 0 is a unique fixed point of

P(T ) and T .

In the next theorem, we establish a sufficient conditions for the existence of a unique common

fixed point of two mappings which are not necessarily continuous or commuting.

Theorem 2.3. Let T1 and T2 be two self-maps defined on a Banach space (X ,‖.‖) and P1 and

P2 be two polynomials defined as in Corollary 2.1 such that:

(ı): ‖P1(T1)(x)−P2(T2)(y)‖ ≤ Φ1(‖x−P1(T1)(x)‖,‖y−P2(T2)(y)‖,‖x− y‖)+Φ2(‖x−

y‖), for all x,y ∈ X with Φ1 and Φ2 satisfy assumptions of Theorem 2.1 .

(ıı): P1(T1)◦T1 = T1 ◦P1(T1) and P2(T2)◦T2 = T2 ◦P2(T2).

(ııı): P1(T1)◦P2(T2) is continuous.
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Then T1 and T2 have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X , we define a sequence xn as follows

xn =

 P1(T1)(xn−1) if n is odd

P2(T2)(xn−1) if n is even

xn 6= xn−1 for all n. It follows that

‖x2n− x2n+1‖= ‖P1(T1)(x2n)−P2(T2)(x2n−1)‖

≤Φ1(‖x2n−P1(T1)(x2n)‖,‖x2n−1−P2(T2)(x2n−1)‖,‖x2n− x2n−1‖)+

Φ2(‖x2n− x2n−1‖)

= Φ1(‖x2n− x2n+1‖,‖x2n−1− x2n‖,‖x2n− x2n−1‖)+Φ2(‖x2n− x2n−1‖),

which implies that:

‖x2n− x2n+1‖ ≤ Φ̃1(‖x2n− x2n+1‖)+Φ2(‖x2n−1− x2n‖).

It follows that

(I− Φ̃1)(‖x2n− x2n+1‖)≤Φ2(‖x2n−1− x2n‖).

Since (I− Φ̃1) is invertible and (I− Φ̃1)
−1 is nondecreasing, we have

‖x2n− x2n+1‖ ≤ (I− Φ̃1)
−1

Φ2(‖x2n−1− x2n‖).

By the properties of (I− Φ̃1)
−1 and Φ2, we have

‖x2n− x2n+1‖ ≤ (I− Φ̃1)
−1

Φ2(I− Φ̃1)
−1

Φ2(‖x2n−2− x2n−1‖)

≤ (I− Φ̃1)
−(2)

Φ
(2)
2 (‖x2n−2− x2n−1‖).

In addition, we have

‖x2n− x2n+1‖ ≤ (I− Φ̃1)
−(2n)

Φ
(2n)
2 (‖x0− x1‖).

Similarly, we can show that

‖x2n+1− x2n+2‖ ≤ (I− Φ̃1)
−(2n+1)

Φ
(2n+1)
2 (‖x0− x1‖).
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Now it can be easily seen that (xn) is a Cauchy sequence. Let xn −→ u. Then the sequence

xnk −→ u, where nk = 2k−1. Note that

[P1(T1)◦P2(T2)](u) = [P1(T1)◦P2(T2)]( lim
k−→+∞

xnk)

= lim
k−→+∞

xnk+1

= u.

We now show that P2(T2)(u) = u. If P2(T2)(u) 6= u, then

‖P2(T2)(u)−u‖= ‖P2(T2)(u)− [P1(T1)◦P2(T2)](u)‖

≤Φ1(‖u−P2(T2)(u)‖,‖P2(T2)(u)− [P1(T1)◦P2(T2)](u)‖,‖u−P2(T2)(u)‖)

+Φ2(‖u−P2(T2)(u)‖).

Again the assumption on Φ1 gives

‖P2(T2)(u)−u‖ ≤ Φ̃1(‖u−P2(T2)(u)‖)+Φ2(‖u−P2(T2)(u)‖),

which implies

(I− Φ̃1)‖u−P2(T2)(u)‖ ≤Φ2(‖u−P2(T2)(u)‖).

Since (I− Φ̃1) is invertible and (I− Φ̃1)
−1 is nondecreasing, we have

‖P2(T2)(u)−u‖ ≤ (I− Φ̃1)
−1

Φ2(‖u−P2(T2)(u)‖).

Let H = (I− Φ̃1)
−1Φ2. It is clear that H is nondecreasing and H(t)< t ∀t > 0. Thus

‖P2(T2)(u)−u‖< ‖P2(T2)(u)−u‖.

This is a contradiction. Hence P2(T2)(u) = u. Also

‖P1(T1)(u)−u‖= ‖P1(T1)(u)◦P2(T2)(u)−u‖= 0,
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which shows that P1(T1)(u) = u. Now, if Φ1(0,0, t3) = 0 ∀t3 > 0, let v 6= u ∈ X be such that

P1(T1)(v) = v. It follows that

‖v−u‖= ‖P1(T1)(v)−P2(T2)(u)‖

≤Φ1(‖v−P1(T1)(v)‖,‖u−P2(T2)(u)‖,‖v−u‖)+Φ2(‖v−u‖)

= Φ1(0,0,‖v−u‖)+Φ2(‖v−u‖)

< ‖v−u‖,

which is a contradiction. Hence u is a unique fixed point of P1(T1). Also, it is easy to check that

u is a unique fixed point of P2(T2). Finally using the assertion (ıı) of Corollary 2.1, we deduce

that u is a common fixed point of T1 and T2 which completes the proof.

3. Applications

We start this section with the concept of ϕ-quasinonexpansive mappings.

Definition 3.1. Let T be a self-map defined on a metric space (X ,d). We say that T : X −→ X is

a ϕ-quasinonexpansive mapping if F(T ) 6= /0 and there exists a function ϕ : [0,+∞[−→ [0,+∞[

such that

d(T (x),z)≤ ϕ(d(x,z)), ∀x ∈ X ,z ∈ F(T ).

It is easy to observe that every contraction mapping is ϕ-quasinonexpansive (here ϕ(t) =

αt,0 ≤ α < 1 and t ∈ [0,+∞[) but the converse is false in general as the following example

shows:

Example 3.1. Let ϕ : [0,+∞[−→ [0,+∞[ satisfying condition (2) given in Theorem 2.1 and let

X = R, then the mapping T : R−→ R defined by

T (x) =

 ϕ(|x|)sin(1
x ) if x 6= 0;

0 if x = 0.

is ϕ-quasinonexpansive but not a contraction mapping. This implies that the class of ϕ-quasinonexpansives

mappings contains strictly that of contraction mappings. In the case where ϕ = IdX , we obtain

the concept of quasinonexpansive mappings introduced by Tricomi [44] and studied by Diaz
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and Metcalf [14, 15]; for more details on the class of ϕ-quasinonexpansives, see [29, 31] and

the references therein.

Theorem 3.1. Adding the condition:

Φ1(t1,0, t3) = 0,∀t1, t3 > 0, (3.1)

to the assumptions of Theorem 2.1, then T is Φ2-quasinonexpansive.

Proof. By the same theorem, we have proven that T has a unique fixed point x0. Let x ∈ X with

x 6= x0. Then

d(T (x),x0)≤Φ1[d(x,T (x)),0,d(x,x0)]+Φ2(d(x,x0))

= 0+Φ2(d(x,x0)) = Φ2(d(x,x0)).

Now, we give the definition of convex metric spaces introduced by Takahashi [42] which play an

important role in the development of the fixed point theory, in particular, in the case of Banach

spaces.

Definition 3.2. A convex metric space (X ,d,⊕) is a metric space (X ,d) together with a con-

vexity mapping ⊕ : X×X× [0,1]−→ X satisfying

d(z,(1−λ )x⊕λy)≤ (1−λ )d(z,x)+λd(z,y),∀x,y,z ∈ X ,λ ∈ [0,1].

Example 3.2. Normed spaces, Hilbert balls and R-trees are good examples of convex metric

spaces.

In the case of metric and convex metric spaces, several iterative processes have been defined

by many mathematicians. Some of them are the following:

Picard iteration: Let (X ,d) be a metric space and T : X −→ X a self mapping. Let x0 ∈ X be

fixed, we define the sequence {xn}n recursively by

xn+1 = T (xn) = T n+1(x0), for all n ∈ N. (3.2)

Mann iteration ([26]): If (X ,d,⊕) is a convex metric space, Mann iteration is defined by the

following algorithm

xn+1 = (1−αn)xn⊕αnT (xn), for all n ∈ N, (3.3)
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where x0 ∈ X and {αn}n ⊂ [0,1].

Ishikawa iteration ([21]): Another iterative process of interest in the case of convex metric

spaces is the Ishikawa scheme of two steps given as follows: Let x0 ∈ X be fixed, consider the

sequence {xn}n defined by yn = (1−βn)xn⊕βnT (xn),

xn+1 = (1−αn)xn⊕αnT (yn), for all n ∈ N,
(3.4)

where {αn}n and {βn}n are sequences in [0,1].

Following the proof of Theorem 2.1, it is easy to establish the following result for the con-

vergence of the Picard’s iteration process.

Proposition 3.1. Let (X ,d) be a complete metric space. Under the assumptions of Theorem

2.1, the Picard iterative process (3.2) converges to the unique fixed point of T , for any x0 ∈ X.

Moreover, by using Theorem 3.1 together with ([38], Theorem 3.7), we obtain the following

result for the convergence of the iteratives schemes of Mann and Ishikawa.

Proposition 3.2. Let (X ,d,⊕) be a convex complete metric space. Let {αn}n and {βn}n be two

real sequences in [0,1] such that {αnβn}n converges to some positive real number, let x0 ∈ X.

Under the assumptions of Theorem 3.1 with Φ2 continuous. Then, the Ishikawa sequence given

by (3.4) converges to the unique fixed point of T . Moreover, if {βn}n is the constant sequence

equal to 0, the Mann iteration given by (3.3) converges to the same unique fixed point of T .

For the remainder of our study, we need the following two definitions about stability of a

general iterative processes.

Definition 3.3. Let (X ,d) be a metric space and T : X −→X a self mapping of X . Let {xn}n⊂X

be the sequence generated by an iteration involving T and defined by

xn+1 = f (T,xn), for all n ∈ N (3.5)

where x0 ∈ X and f is some function. Assume that {xn}n converges to a fixed point z0 of T . Let

{yn}n ⊂ X and we define

εn := d(yn+1, f (T,yn)) for all n ∈ N. (3.6)

Then
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(ı) the iteration process (3.5) is said to be T -stable if lim
n−→∞

εn = 0 implies lim
n−→∞

yn = z0.

(ıı) the iteration process (3.5) is said to be almost T -stable if ∑
n∈N

εn < ∞ implies lim
n−→∞

yn = z0.

For more informations and interesting comments on these notions of stability, we can see

[30]. On the other hand, it is easy to observe that an iterative process (3.5) which is T -stable

is almost T -stable but the converse is not true in general; for the counter example, see [32] and

the references therein.

In the following result, we establish the almost stability of Picard’s iterative process for our

context of self mappings.

Corollary 3.1. Let (X ,d) be a complete metric space. Assume that T : X −→ X is a self

mapping of X satisfying the assumptions of Theorem 3.1 with Φ2 continuous. If z0 is the unique

fixed point of T and x0 ∈ X with xn+1 := T (xn),n ∈ N be the Picard process and {yn}n ⊂ X.

Define {εn}n by

εn := d(yn+1,T (yn)) for all n ∈ N.

If ∑
n∈N

εn < ∞, then lim
n−→∞

yn = z0. In other words, the Picard process is almost T -stable.

Proof. The result is established by combining the fact that T is Φ2-quasinonexpansive together

with Theorem 4.5 in [38]. This completes the proof.
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