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Abstract. In this paper, we prove a generalization of the Banach contraction fixed point theorem in a space with

two metrics. The results presented in this paper improve the corresponding results announced by many authors. As

an application, we study the existence of the solution for a functional equation arising in dynamic programming.
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1. Introduction

Fixed point methods have emerged as an effective and powerful tool for studying a wide class

of problems which arise in economics, finance, image reconstruction, ecology, transportation,

and network. Fixed point problems include many nonlinear problems as special cases, such as

variational inequality problems, complementarity problems, and saddle point problems. The

most well known result in metric spaces is the Banach contraction principle.

∗Corresponding author

E-mail address: marhrani@gmail.com

Received June 18, 2014
1



2 EL-MILOUDI MARHRANI, KARIM CHAIRA

Theorem 1.1. Let (E,d) be a complete metric space and let T be a mapping of E into E. If

there exists k ∈ [0,1[ such that

d(T x,Ty)≤ kd(x,y), ∀x,y ∈ E,

then there exists an unique point x∗ ∈ E such that T x∗ = x∗.

The result has been improved and generalized by many authors in different directions based

on different methods. The purpose of this article is to get a generalization of the Banach con-

traction fixed point theorem in a space with two metrics. As an application, the existence of the

solution for a functional equation arising in dynamic programming is investigated.

2. Preliminaries

Let (X ,d) be a metric space. Denote by CB(X) the set of all nonempty closed and bounded

subsets of X and by H the Hausdorff distance defined on CB(X) by

H(A,B) = max{sup
a∈A

d(a,B) ; sup
b∈B

d(b,A)}, ∀A,B ∈CB(X).

The following results is due to Mizoguchi and Takahashi [1].

Theorem MT-1. Let (X ,d) be a complete metric space. Let T and S be two multi-valued

functions from X into CB(X) satisfying

H(T (x),S(y))≤ α(d(x,y))d(x,y), ∀(x,y) ∈ X2.

where α : [0,+∞[→ [0,1[ is a function such that limsups→r+ α(s)< 1, for all r ≥ 0. Then there

exists z ∈ X such that z ∈ T (z)∩S(z).

Theorem MT-2. Let (X ,d) be a complete metric space and let T : X → X be a mapping

satisfying

d(T (x),T (y))≤ α(d(x,y))d(x,y), ∀x,y ∈ X ,

where α : [0,+∞[→ [0,1[ is a function such that limsups→r+ α(s)< 1, for all r ≥ 0. Then T has

a unique fixed point.
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Let φ be the function defined from [0,1[ into ]0,1] by

φ(r) =

 1, if 0≤ r ≤ 1
2 ,

1− r if 1
2 ≤ r < 1,

and put

M(Sx,Ty) = max
(

d(x,y),d(x,Sx),d(y,Ty),
d(x,Ty)+d(y,Sx)

2

)
.

The following results is due to Singh, Mishra, Chugh and Kamal [2].

Theorem SMCK-1. Let X be a complete metric space and S,T : X → CL(X). Assume there

exists r ∈ [0,1[ such that for every x,y ∈ X ,

φ(r)min(d(x,Sx),d(y,Ty))≤ d(x,y)⇒ H(Sx,Ty)≤ rM(Sx,Ty).

Then there exists an element u ∈ X such that u ∈ Su∩Tu

Theorem SMCK-2. Let (X ,d) be a complete metric space and let T a self-mapping on X .

Assume there exists r ∈ [0,1[ such that

φ(r).min{d(x,T x);d(y,Ty)} ≤ d(x,y) =⇒ d(T x,Ty)≤ r.M(x,y),

for all x,y ∈ X . Then T has a unique fixed point.

3. Main results

Let X be a nonempty set and let d,δ be two metrics on X .

Definition 3.1. (X ,d,δ ) is called an (M)-space if for all Cauchy sequence (xn)n in (X ,d) and

(X ,δ ), there exist x∗,y∗ ∈ X such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = 0.

Example 3.1. If (X ,d) and (X ,δ ) are complete metric spaces, then (X ,d,δ ) is an (M)-space.

Example 3.2. Let X be the set of all C1 functions u from [0,1] into IR with u(0) = 0. We define

two metrics on X by

d(u,v) = sup
x∈[0,1]

|u(x)− v(x)| and δ (u,v) = sup
x∈[0,1]

|u′(x)− v′(x)|,
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for all u,v ∈ X . It is well known that the sequence of the polynomial functions defined by:

u1(x) = 0 and un+1(x) = un(x)+
1
2
(x−u2

n(x))

are in X and converges uniformly to
√

x which is not in X . Hence, (X ,d) is non complete. If

(vn)n is a Cauchy sequence in (X ,d) and (X ,δ ), there exist two continuous functions u and

v such that (vn)n and (v′n)n converges uniformly to u et v, respectively. Then u is derivable

and u′ = v. Thus, u ∈ X and limn d(vn,u) = limn δ (vn,u) = 0. It follows that (X ,d,δ ) is an

(M)-space.

We define mapping α as before. Now, we are in a position to state our main results.

Theorem 3.1. Let X be a non-empty set, d and δ two metrics on X ; and T : X → X a mapping

such that

(1) (X ,d,δ ) is an (M)-space.

(2) For all x,y ∈ X , one of the following two conditions:

(i) d(x,Ty)≤ δ (x,y),

(ii) δ (x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(d(x,y))d(x,y).

Then T has a unique fixed point in X .

Proof. We divide the proof into four steps.

Setp 1. Letting xo ∈ X , we define the sequence (xn)n by xn+1 = T xn. For each n∈ IN, we have

δ (xn+1,T xn) = 0≤ d(xn,xn+1).

It follows that 
δ (T xn,T xn+1) = δ (xn+1,xn+2)≤ α(d(xn,xn+1))d(xn,xn+1),

d(T xn,T xn+1) = d(xn+1,xn+2)≤ α(δ (xn,xn+1))δ (xn,xn+1).
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For any n ∈ IN∗, we have
δ (xn+1,xn+2)≤ α(d(xn,xn+1))α(δ (xn−1,xn))δ (xn−1,xn)≤ δ (xn−1,xn),

d(xn+1,xn+2)≤ α(δ (xn,xn+1))α(d(xn−1,xn))d(xn−1,xn)≤ d(xn−1,xn).

It follows that (d(x2p,x2p+1))p, (d(x2p+1,x2p+2))p, (δ (x2p,x2p+1))p and (δ (x2p+1,x2p+2))p

converges to d1, d2, δ1 and δ2, respectively. Since limsupt→d+
1

α(t)< 1 and limsupt→δ
+
2

α(t)<

1, there exist r1 ∈ [0,1[ and an integer p1 such that

δ (x2p+1,x2p+2)≤ r1δ (x2p−1,x2p), ∀p≥ p1.

Since limsupt→d+
2

α(t) < 1 and limsupt→δ
+
1

α(t) < 1, there exist r2 ∈ [0,1[ and an integer p2

such that

δ (x2p+2,x2p+3)≤ r2δ (x2p,x2p+1), ∀p≥ p2.

It follows that ∑p≥0 δ (x2p,x2p+1) and ∑p≥1 δ (x2p−1,x2p) are convergent. Then

∑
n≥0

δ (xn,xn+1) = ∑
p≥0

δ (x2p,x2p+1)+ ∑
p≥1

δ (x2p−1,x2p)

is convergent. In the same way, we find ∑n≥0 d(xn,xn+1) is convergent. Hence, (xn)n is a

Cauchy sequence in (X ,d) and in (X ,δ ). Since, (X ,d,δ ) is an (M)-space, there exist x∗,y∗ ∈ X

such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = 0.

Step 2. Assume x∗ 6= y∗. Since limn d(T xn,x∗) = 0 and limn δ (xn,x∗) = δ (y∗,x∗) > 0, we

obtain d(T xn,x∗)≤ δ (xn,x∗), for large integers, which gives
d(xn+1,T x∗) = d(T xn,T x∗)≤ α(δ (xn,x∗))δ (xn,x∗),

δ (xn+1,T x∗) = δ (T xn,T x∗)≤ α(d(xn,x∗))d(xn,x∗).

The second inequality in turn implies y∗=T x∗. On the other hand, we have limsupn α(δ (xn,x∗))<

1 implies that there exists k1 ∈ [0,1[ such that d(T xn,T x∗) ≤ k1δ (xn,x∗), for large integers.

It follows that d(x∗,y∗) ≤ k1δ (y∗,x∗). Similarly, we obtain, for some k2 ∈ [0,1[, δ (x∗,y∗) ≤

k2d(y∗,x∗). Hence, we find that x∗ = y∗, which is contradiction. Thus x∗ = y∗.

Step 3. To prove that T x∗ = x∗, we consider the sets A and B defined by

A = {n ∈ IN/d(T xn,x∗)≤ δ (xn,x∗)},
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and

B = {n ∈ IN/δ (T xn,x∗)≤ d(xn,x∗)}.

We asserts that A or B is infinite. If A and B are finite, there exists an integer N such that, for all

integers n≥ N, 
d(T xn,x∗)> δ (xn,x∗),

δ (T xn,x∗)> d(xn,x∗).

Hence, we have d(xn,x∗) < d(xn+2,x∗), for all integers n ≥ N. Thus, the sequence d(x2n,x∗)n

is strictly increasing to 0, which is a false assertion. If we assume that A is infinite, there exists

some subsequence (xσ(n))n such that d(T xσ(n),x∗)≤ δ (xσ(n),x∗). Then
d(T xσ(n),T x∗)≤ α(δ (xσ(n),x∗))δ (xσ(n),x∗)

δ (T xσ(n),T x∗)≤ α(d(xσ(n),x∗))d(xσ(n),x∗),

which implies that d(xσ(n)+1,T x∗) ≤ δ (xσ(n),x∗). Thus, d(x∗,T x∗) = 0. Hence, x∗ is a fixed

point of T.

Step 4. For the uniqueness of the fixed point, we assume that x̄ and ȳ are two different

fixed points of T. We have d(x̄, ȳ) ≤ δ (x̄, ȳ) or δ (x̄, ȳ)≤ d(x̄, ȳ). For the first case, we obtain

d(x̄,T ȳ)) = d(x̄, ȳ)≤ δ (x̄, ȳ) and then
d(x̄, ȳ) = d(T x̄,T ȳ)≤ α(δ (x̄, ȳ))δ (x̄, ȳ)< δ (x̄, ȳ)

δ (x̄, ȳ) = δ (T x̄,T ȳ)≤ α(d(x̄, ȳ))d(x̄, ȳ)< d(x̄, ȳ)

which is a contradiction. Thus, T has a unique fixed point in X .

If d = δ , we obtain the following results.

Corollary 3.1. Let (X ,d) be a complete metric space and let T : X → X be a mapping such

that, for all x,y ∈ X , we have

d(x,Ty)≤ d(x,y) implies d(T x,Ty)≤ α(d(x,y)) d(x,y).

Then here exists an unique element x∗ ∈ X such that T x∗ = x∗.

Corollary 3.2. Let X a non-empty set and let d, δ be two metrics on X . Let T : X → X a

mapping such that



FIXED POINT THEOREMS IN A SPACE WITH TWO METRICS 7

(1) (X ,d,δ ) is an (M)-space.

(2) There exists r ∈ [0,1[ such that for all x,y ∈ X , one of the following assertions

(i): d(x,Ty)≤ δ (x,y),

(ii): δ (x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ r δ (x,y),

δ (T x,Ty)≤ r d(x,y).

Then, there exists an unique element x∗ ∈ X such that T x∗ = x∗.

If d = δ , we find the following.

Corollary 3.3. Let (X ,d) a complete metric space and let T : X → X be a mapping. Assume

there exists r ∈ [0,1[, such that for all x,y ∈ X , d(x,Ty)≤ d(x,y) implies d(T x,Ty)≤ rd(x,y).

Then, there exists a unique element x∗ ∈ X such that T x∗ = x∗.

Let ψ the function from [0,1[ into ]0,1]. We have the following result.

Theorem 3.2. Let X be a non-empty set and let d and δ be two metrics of X. Let T : X → X be

a mapping such that

(1) (X ,d,δ ) is an (M)-space.

(2) For all x,y ∈ X , one of the conditions:

(i): ψ(α(d(x,Ty)))d(x,Ty)≤ δ (x,y),

(ii): ψ(α(δ (x,Ty)))δ (x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(d(x,y))d(x,y).

Then T has a unique fixed point in X .

Corollary 3.4. Let (X ,d) an complete metric space and let T : X → X be a mapping such that,

for all (x,y) ∈ X2,

ψ(α(d(x,Ty)))d(x,Ty)≤ d(x,y) implies d(T x,Ty)≤ α(d(x,y)) d(x,y).

Then, there exists an unique element x∗ ∈ X such that T x∗ = x∗.
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Corollary 3.5. Let X a non-empty set and let d, δ be two metrics on X . Let T : X → X a

mapping such that:

(1) (X ,d,δ ) is an (M)-space.

(2) There exists r ∈ [0,1[ such that for all x,y ∈ X , one of the following assertions

(i): ψ(r)d(x,Ty)≤ δ (x,y),

(ii): ψ(r)δ (x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ r.δ (x,y),

δ (T x,Ty)≤ r.d(x,y).
.

Then, there exists an unique element x∗ ∈ X such that T x∗ = x∗.

Example 3.3. Let X = [0,1]∪{2,3,4,5} endowed with the usual distance d and the distance δ

defined by

δ (x,y) =


|x− y| if x,y ∈ [0,1],

x+ y if x or y is not in [0,1] and x 6= y,

0 if x = y.

(X ,d) and (X ,δ ) are complete metric spaces. We define α from [0,+∞[ into [0,1[ by α(t) =
2
3e−t , and consider the mapping defined on X by

T x =

 kx if x ∈ [0,1[,

0 if x≥ 1,

where k ∈]0, 4
3e6 [. We asserts that


d(T x,Ty) ≤ α(δ (x,y))δ (x,y),

δ (T x,Ty) ≤ α(d(x,y))d(x,y),

for all x,y ∈ X −{1}. This assertion is obviously satisfied if x,y ∈ [0,1[ or x,y ∈ {2,3,4,5}.

Assume x ∈ [0,1[ and y = 1. If d(T x,Ty)≤ α(δ (x,y))δ (x,y), we obtain kx ≤ 2
3e−(1−x)(1− x),

which is not true for x near 1. If d(x,Ty) ≤ δ (x,y) or δ (x,Ty) ≤ d(x,y), we obtain x ∈ [0, 1
2 ].
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Then 
d(T x,Ty) = kx≤ 2

3e ≤
2
3e−(1−x)(1− x) = α(δ (x,y))δ (x,y),

δ (T x,Ty) = kx≤ 2
3e ≤

2
3e−(1−x)(1− x) = α(d(x,y))d(x,y).

If d(T x,y)≤ δ (x,y) or δ (T x,y)≤ d(x,y), we obtain x = 0. Thus the assertion is satisfied. Note

that 0 is the unique fixed point of T

Example 3.4 Let X = [0,1] and d, δ two distances on X defined by

d(x,y) = |x− y| and δ (x,y) = 2|x− y|, ∀(x,y) ∈ X2.

Considering T : X → X such that

T (x) =


x
8 if x ∈ [0,1[,

0 if x = 1.
.

T satisfies the hypotheses of corollary 3.2, but does not meet the assumption: for all (x,y) ∈ X2
d(T x,Ty)≤ r δ (x,y),

δ (T x,Ty)≤ r d(x,y),

where r = 2
3 .

Example 3.5 Let X = [0,1] and let d, δ be two distances on X defined by

d(x,y) = |x− y| and δ (x,y) = 2|x− y|,∀(x,y) ∈ X2.

Considering T : X → X such that

T (x) =


x

20 if x ∈ [0,1[,

0 if x = 1.

T satisfies the hypotheses of corollary 3.2

(i) φ(r)d(x,Ty)≤ δ (x,y),

(ii) φ(r)δ (x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ r.δ (x,y).

δ (T x,Ty)≤ r.d(x,y),
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where φ is the function defined from [0,1[ into ]0,1] by

φ(r) =

 1 if 0≤ r ≤ 1
2 ,

1− r if 1
2 ≤ r < 1.

But it does not meet the assumption for all (x,y) ∈ X2
d(T x,Ty) ≤ r.δ (x,y),

δ (T x,Ty) ≤ r.d(x,y),

where r = 2
3 .

4. Application

We assume that E and F are Banach spaces, X ⊂ E and Y ⊂ F . Let g : X ×Y → IR and

G : X ×Y × IR→ IR two mappings. A problem arising in dynamic programming reduces to the

problem of solving the functional equation:

(E) p(x) = sup
y∈Y
{g(x,y)+G(x,y, p(x)}, ∀x ∈ X .

Denote by B(X) the space of all real bounded functions on X and define the metric of uniform

convergence d∞ by

d∞(h,k) = sup
x∈X
|h(x)− k(x)|, ∀h,k ∈B(X).

Define the functional A on B(X) by:

Ah(x) = sup
y∈Y
{g(x,y)+G(x,y,h(x))}, ∀h ∈B(X).

And consider the following conditions:

(C1): g and G are bounded functions,

(C2): For every (x,y,z) ∈ X×Y ×Y, t ∈ X and (h,k) ∈B(X)×B(X)

φ(α(d∞(h,Ak)))|h(t)−Ak(t)| ≤ |h(t)− k(t)|

implies

|(g(x,y)−g(x,z))+(G(x,y,h(t))−G(x,z,k(t))| ≤ α(d∞(h,k))|h(t)− k(t)|,
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where φ and α is defined as before.

Theorem 4.1. Under the conditions (C1) and (C2) the functional equation (E) has a unique

solution in B(X).

Proof. For any strictly positive real ε and for all h,k ∈B(X) and x ∈ X , there exists yh,yk ∈ Y

such that 
Ah(x)− ε < g(x,yh)+G(x,yh,h(x))≤ Ah(x),

Ak(x)− ε < g(x,yk)+G(x,yk,k(x))≤ Ak(x),

which gives
g(x,yh)−g(x,yk)+G(x,yh,h(x))−G(x,yk,k(x))− ε < Ah(x)−Ak(x),

Ah(x)−Ak(x)< g(x,yh)−g(x,yk)+G(x,yh,h(x))−G(x,yk,k(x))+ ε.

It follows that

|Ah(x)−Ak(x)|< |(g(x,yh)−g(x,yk))+(G(x,yh,h(x))−G(x,yk,k(x)))|+ ε.

Hence conditions (C2) becomes

φ(α(d∞(h,Ak))).|h(t)−Ak(t)| ≤ |h(t)− k(t)|,

which implies

|(g(x,y)−g(x,z))+(G(x,y,h(t))−G(x,z,k(t))| ≤ α(d∞(h,k)).|h(t)− k(t)|.

Then,

|Ah(x)−Ak(x)| ≤ α(d∞(h,k)).|h(t)− k(t)|+ ε ≤ α(d∞(h,k)).d∞(h,k)+ ε.

Since this inequality is true for any x ∈W , and ε > 0 is arbitrary, we obtain

φ(α(d∞(h,Ak)))d∞(h,Ak)≤ d∞(h,k)

implies

d∞(Ah,Ak)≤ α(d∞(h,k)).d∞(h,k).
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Since (B(X),d∞) is a complete metric space, the corollary prove that there exists an unique

element h∗ ∈ B(X) such that Ah∗ = h∗ and then h∗ is the unique bounded solution of the

functional equation (E).
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