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Abstract. Matthews (1994) introduced the concept of nonzero self-distance called a partial metric and extended

the Banach contraction principle in the context of partial metric spaces. This was followed by Aydi et al. (2012)

by extending Nadler’s fixed point theorem to partial metric spaces and introducing the concept of partial Hausdorff

metric. In this paper, we prove some fixed point theorems in the context of partial metric spaces endowed with

partial ordering using partial Hausdorff metric and a notion of monotone multivalued mappings. Moreover, an

example is provided to illustrate the usability of our results.
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1. Introduction

Fixed point theorems of multivalued mappings play fundamental roles in economics and en-

gineering, control theory, convex optimization, and game theory. The first well known theorem

E-mail address: rommel gregorio15@yahoo.com

Received January 22, 2014

571



572 ROMMEL O. GREGORIO1,2

for multivalued contraction mapping was given by Nadler [1] in 1967, which is a generalization

of Banach’s contraction principle [2].

Theorem 1.1 [1] Let (X ,d) be a complete metric space, and F : X →CB(X) is a multivalued

mapping, where CB(X) is the set of all nonempty closed bounded subsets of X. Assume that

there exists α ∈ [0,1) such that H(Fx,Fy)≤ αd(x,y) for all x,y ∈ X. Then F has a fixed point.

The Nadler’s fixed point theorem has been generalized in many ways. One generalization

of Nadler’s fixed point theorem was given by Reich in 1972 [3], which was followed with a

relaxed condition by Mizoguchi and Takahashi in 1989 [4] where they used the concept of

MT −function (R−function).

Definition 1.1 A function ϕ : [0,∞)→ [0,1) is said to be an MT −function if limsup
r→t+

ϕ(r)< 1

for all t ∈ [0,∞).

Theorem 1.2 [3] Let (X ,d) be a complete metric space, and F : X →Comp(X) is a multival-

ued mapping, where Comp(X) is the set of all nonempty compact subsets of X. Assume that

H(Fx,Fy) ≤ ϕ(d(x,y))d(x,y) for all x,y ∈ X, where ϕ is an MT −function. Then F has a

fixed point.

Theorem 1.3 [4] Let (X ,d) be a complete metric space, and F : X → CB(X) is a multi-

valued mapping. Assume that H(Fx,Fy) ≤ ϕ(d(x,y))d(x,y) for all x,y ∈ X, where ϕ is an

MT −function. Then F has a fixed point.

Recently, many fixed point theorems have been extended to partially ordered spaces. Some

single valued fixed point theorems for partially ordered metric spaces were proved by Ran and

Reurings [5], and Nieto and Lopez and applied their results to study a problem of ordinary

differential equation. Moreover, fixed point theorems of multivalued mappings in partially or-

dered metric spaces were established by Beg and Butt [7], and Gregorio and Macansantos [8],

and references therein.

Theorem 1.4 [5] Let (X ,�) be a partially ordered set, and suppose that there exists a metric d

on X such that (X ,d) is a complete metric space. Furthermore, suppose that every pair x,y ∈ X
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has a lower bound and an upper bound. If f is a continuous monotone (either order-preserving

or order-reversing) map from X into X such that

(i). there exists α ∈ (0,1) such that d( f x, f y)≤ αd(x,y) for all x� y

(ii). there exists x0 ∈ X such that x0 � f x0 or f x0 � x0

Then f has a unique fixed point.

On the other hand, Matthews in 1994 [9] introduced the concept of partial metric, where self-

distance need not be equal to zero, as part of the study of denotational semantics of dataflow

networks. He gave a modified version of Banach’s contraction principle in partial metric spaces.

For multivalued mappings, Aydi et al. [10] and Macansantos [11] established an analogue of

Nadler’s fixed point theorem in the context of partial metric spaces.

Theorem 1.5 [9] Let (X , p) be a complete partial metric space. If f is a mapping from X

into itself such that there exists a real number α ∈ [0,1) satisfying p( f x, f y)≤ α p(x,y) for all

x,y ∈ X. Then f has a unique fixed point.

Theorem 1.6 [10] Let (X , p) be a complete partial metric space. If F : X → CBp(X) is a

multivalued mapping, where CBp(X) is the set of all nonempty closed and bounded subsets of

X, assume that for all x,y ∈ X, we have Hp(Fx,Fy)≤ α p(x,y) where α ∈ (0,1). Then F has a

fixed point.

Motivated by these works, we are going to combine the techniques employed by Mizoguchi

and Takahashi [4] and Ran and Reurings [5] in generalizing and extending Nadler’s fixed point

theorem and the fixed point theorem established by Aydi et al. [10] in the context of ordered

partial metric spaces.

2. Preliminaries

We recall some definitions and important results on partial metric spaces and partial Haus-

dorff metric from [9], [10], and [12]. The notations R,R+ and N denote the set of all real

numbers, the set of all nonnegative real numbers, and the set of all positive integer numbers,

respectively.
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Definition 2.1 Let X be a nonempty set. A function p : X×X→R+ is said to be a partial metric

on X if for any x,y,z ∈ X , the following conditions hold:

(P1). p(x,x) = p(y,y) = p(x,y) if and only if x = y;

(P2). p(x,x)≤ p(x,y);

(P3). p(x,y) = p(y,x);

(P4). p(x,z)≤ p(x,y)+ p(y,z)− p(y,y).

The pair (X , p) is then called a partial metric space.

Remark 2.1 If p(x,y) = 0, then P1 and P2 imply that x = y. But the converse does not always

hold.

Example 2.1 A trivial example of a partial metric space is the pair (R+, p), where p : R+×

R+→ R+ is defined as p(x,y) = max{x,y}.

Example 2.2 If X = {[a,b] : a,b ∈ R,a ≤ b}, then p([a,b], [c,d]) = max{b,d} −min{a,c}

defines a partial metric p on X .

Definition 2.2 A sequence {xn} in a partial metric space (X , p) converges to a point x ∈ X , with

respect to τp, if and only if p(x,x) = lim
n→∞

p(x,xn).

Definition 2.3 If p is a partial metric on X , then the mapping ps : X × X → R+ given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y), defines a metric on X . Furthermore, a sequence {xn}

converges in (X , ps) to a point x ∈ X if and only if lim
n,m→∞

p(xn,xm) = lim
n→∞

p(xn,x) = p(x,x).

Definition 2.4 Let (X , p) be a partial metric space.

(i). A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

p(xn,xm) exists and is

finite.

(ii). (X , p) is said to be complete if every Cauchy sequence {xn} in X converges with respect

to τp to a point x ∈ X such that lim
n→∞

p(xn,x) = p(x,x).

Lemma 2.1 Let (X , p) be a partial metric space, then

(i). A sequence {xn} in X is a Cauchy sequence in (X , p) if and only if it is a Cauchy

sequence in metric space (X , ps).
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(ii). A partial metric space (X , p) is complete if and only if the metric space (X , ps) is com-

plete.

Let CBp(X) be the set of all nonempty, closed and bounded subsets of the partial metric

space (X , p). Closedness is in the context of (X ,τp), where τp is the topology induced by p,

and boundedness is defined as follows: A is a bounded set in (X , p) if there exists x0 ∈ X and

M ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0,M), that is, p(x0,a)< p(a,a)+M.

For A,B ∈CBp(X) and x ∈ X , define

(i). p(x,A) = inf{p(x,a),a ∈ A}

(ii). δp(A,B) = sup{p(a,B) : a ∈ A}

(iii). δp(B,A) = sup{p(b,A) : b ∈ B}

Note that if p(x,A) = 0 then ps(x,A) = 0 where ps(x,A) = {inf ps(x,a) : a ∈ A}.

From these natural extensions of partial metric p on X , if (X , p) is a partial metric space and

A,B ∈ CBp(X), define Hp : CBp(X)×CBp(X)→ R+ as Hp(A,B) = max{δp(A,B),δp(B,A)}.

We call Hp as the partial Hausdorff metric induced by p.

Remark 2.2. Let (X , p) be a partial metric space and A be any nonempty set in (X , p), then

a ∈ A if and only if p(a,A) = p(a,a), where A denotes the closure of A with respect to the

partial metric p. Thus, A is closed in (X , p) if and only if A = A.

Theorem 2.1 Let (X , p) be a partial metric space. For all A,B,C ∈CBp(X), we have

(i). Hp(A,A)≤ Hp(A,B)

(ii). Hp(A,B) = Hp(B,A)

(iii). Hp(A,B)≤ Hp(A,C)+Hp(C,B)− infc∈C p(c,c).

Corollary 2.1 Let (X , p) be a partial metric space. For A,B ∈ CBp(X) then, Hp(A,B) = 0

implies that A = B.

Remark 2.3 The converse of Corollary 2.1 is not true in general. Also, note that any Hausdorff

metric is a partial Hausdorff metric, but the converse is not true.

Lemma 2.2 Let (X , p) be a partial metric space, A,B∈CBp(X) and h > 1. For any a∈ A, there

exists b = b(a) ∈ B such that p(a,b)≤ hHp(A,B).
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For our results, we use the following relations between nonempty subsets of a partially or-

dered partial metric space which give us a notion of monotone multivalued mappings. The first

relation appeared in [13].

Definition 2.5 Let (X ,�) be a partially ordered set, and suppose that there exists a partial metric

p on X such that (X , p) is a complete partial metric space. Let F : X→CBp(X) be a multivalued

mapping. Define the following relations:

(i). A <(I) B if for each a ∈ A, there exists b ∈ B such that a� b.

(ii). A <(II) B if for each a ∈ A, there exists b ∈ B such that a� b and p(a,b)≤ Hp(A,B).

Moreover, let x,y ∈ X such that x� y, then F is said to be:

(i). monotone nondecreasing of type (I) if Fx <(I) Fy.

(ii). monotone nondecreasing of type (II) if Fx <(II) Fy.

3. Main results

Theorem 3.1 Let (X ,�) be a partially ordered set. Suppose that there exists a partial metric p

on X such that (X , p) is a complete partial metric space. Let F : X →CBp(X) be a multivalued

mapping such that the following conditions are satisfied:

(i). There exists x0 ∈ X such that {x0}<(I) Fx0.

(ii). F is monotone nondecreasing of type (II).

(iii). If xn→ x is a nondecreasing sequence in X then xn � x for all n.

(iv). For all x,y ∈ X with x� y,

(1) Hp(Fx,Fy)≤ ϕ(p(x,y))p(x,y),

where ϕ is an MT −function.

Then F has a fixed point.

Proof. By assumption (i), there exists x0 ∈ X and x1 ∈ Fx0 such that x0 � x1. If x0 = x1, then

x0 is a fixed point of F , and we are done.
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Suppose that x0 6= x1, then by assumptions (ii) and (iv), there exists x2 ∈ Fx1 such that x1� x2

and

p(x1,x2) ≤ Hp(Fx0,Fx1)

≤ ϕ(p(x0,x1))p(x0,x1)

< p(x0,x1),

where ϕ is an MT −function. By induction, we obtain a sequence {xn} ∈ X with the property

that xn+1 ∈ Fxn and xn � xn+1 such that

p(xn,xn+1) ≤ Hp(Fxn−1,Fxn)

≤ ϕ(p(xn−1,xn))p(xn−1,xn)

< p(xn−1,xn) ∀n ∈ N.

Note that {p(xn,xn+1)} is strictly decreasing and bounded below. It follows that

lim
n→∞

p(xn,xn+1) = r ≥ 0.

Suppose that r > 0. By assumptions (ii) and (iv), we find that

p(xn,xn+1) ≤ Hp(Fxn−1,Fxn)

≤ ϕ(p(xn−1,xn))p(xn−1,xn).

Therefore, we have

r = limsup
n

p(xn,xn+1)

≤ limsup
n

ϕ(p(xn−1,xn)) limsup
n

p(xn−1,xn)

< limsup
n

p(xn−1,xn) = r,

which is a contradiction. Thus, r = 0, that is,

lim
n→∞

p(xn,xn+1) = 0

and it follows from (P2) that

(2) lim
n→∞

p(xn,xn) = 0.
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By definition, we also have

(3) lim
n→∞

ps(xn,xn+1) = 0.

Next, we show that {xn} is a Cauchy sequence in (X , ps). By sense of contradiction, suppose

that {xn} is not a Cauchy sequence in (X , ps). Then there exists ε > 0 and m(k),n(k) ∈ N such

that for all k ≥ 0

n(k)> m(k)> k,

ps(xm(k),xn(k))≥ ε

and

ps(xm(k),xn(k)−1)< ε.

Hence, for k ∈ N, we have

ε ≤ ps(xm(k),xn(k))

≤ ps(xm(k),xn(k)−1)+ ps(xn(k)−1,xn(k))

< ps(xn(k)−1,xn(k))+ ε.

Taking k→ ∞ in the above inequality and using (3), we obtain

(4) lim
k→∞

ps(xm(k),xn(k)) = ε.

By definition, we have

ps(xm(k),xn(k)) = 2p(xm(k),xn(k))− p(xm(k),xm(k))− p(xn(k),xn(k)).

Taking k→ ∞ and using (2) and (4), we obtain

(5) lim
k→∞

p(xm(k),xn(k)) =
ε

2
.

Since m(k) < n(k) and {xn} is a nondecreasing sequence, we find that xm(k) � xn(k), and by

condition ii, for xm(k)+1 ∈ Fxm(k), there exists xn(k)+1 ∈ Fxn(k) such that xm(k)+1 � xn(k)+1 and

p(xm(k)+1,xn(k)+1) ≤ Hp(Fxm(k),Fxn(k))

≤ ϕ(p(xm(k),xn(k)))p(xm(k),xn(k))

< p(xm(k),xn(k)).
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With this, we have

ps(xm(k)+1,xn(k)+1) = 2p(xm(k)+1,xn(k)+1)− p(xm(k)+1,xm(k)+1)− p(xn(k)+1,xn(k)+1)

< 2p(xm(k),xn(k))− p(xm(k)+1,xm(k)+1)− p(xn(k)+1,xn(k)+1).

Taking k→ ∞ and using (2) and (5), we have

(6) lim
n→∞

ps(xm(k)+1,xn(k)+1)< ε.

By using triangle inequality, we have

ps(xm(k),xn(k))≤ ps(xm(k),xm(k)+1)+ ps(xm(k)+1,xm(k)+1)+ ps(xn(k)+1,xn(k)).

Taking k→ ∞ and using (3), (4), and (6), we obtain

ε ≤ 0+ lim
k→∞

ps(xm(k)+1,xn(k)+1)+0

< ε,

which is a contradiction. Therefore, {xn} is a Cauchy sequence in (X , ps). Since (X , p) is

complete. Then (X , ps) is a complete metric space, and {xn} converges to some x ∈ X with

respect to the metric ps, that is, lim
n→∞

ps(xn,x) = 0.

Now, we need to show that x ∈ X is a fixed point of F . By definition, {xn} → x in (X , ps)

implies that

(7) p(x,x) = lim
n→∞

p(xn,x) = lim
n→∞

p(xn,xn) = 0.

By conditions iii and iv, since {xn} is a nondecreasing sequence that converges to x ∈ X , then

xn � x and Hp(Fxn,Fx)≤ ϕ(p(xn,x))p(xn,x) for all n. Taking (7) into consideration, we obtain

lim
n→∞

Hp(Fxn,Fx) = 0. Since xn+1 ∈ Fxn, we see that

p(xn+1,Fx)≤ δp(Fxn,Fx)≤ Hp(Fxn,Fx)

and hence

(8) lim
n→∞

p(xn+1,Fx) = 0.
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By Property 4 (P4) of a partial metric, we have

p(x,Fx) ≤ p(x,xn+1)+ p(xn+1,Fx)− p(xn+1,xn+1)

≤ p(x,xn+1)+ p(xn+1,Fx).

Taking n→ ∞ and using (7) and (8), we obtain p(x,Fx) = 0 Therefore, p(x,x) = p(x,Fx), and

this implies that x ∈ Fx = Fx, because Fx ∈CBp(X). Thus x is a fixed point of F .

The following corollary considers the case when the MT −function is constant.

Corollary 3.1 Let (X ,�) be a partially ordered set, and suppose that there exists a partial

metric p on X such that (X , p) is a complete partial metric space. Let F : X → CBp(X) be a

multivalued mapping such that the following conditions are satisfied:

(i). There exists x0 ∈ X such that {x0}<(I) Fx0.

(ii). F is monotone nondecreasing of type (II).

(iii). If xn→ x is a nondecreasing sequence in X then xn � x for all n.

(iv). For all x,y ∈ X with x� y, there exists α ∈ (0,1) such that

(9) Hp(Fx,Fy)≤ α p(x,y).

Then F has a fixed point.

Remark 3.1 Single valued fixed point theorems in partial metric spaces analogous to our mul-

tivalued results can also be established, and are stated as follows.

Corollary 3.2 Let (X ,�) be a partially ordered set, and suppose that there exists a partial

metric p on X such that (X , p) is a complete partial metric space. Let f : X → X be a single

valued nondecreasing mapping such that the following conditions are satisfied:

(i). There exists x0 ∈ X such that x0 � f x0.

(ii). If xn→ x is a nondecreasing sequence in X then xn � x for all n.

(iii). For all x,y ∈ X with x� y,

(10) p( f x, f y)≤ ϕ(p(x,y))p(x,y),

where ϕ is an MT −function.
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Then f has a fixed point.

Corollary 3.3 Let (X ,�) be a partially ordered set, and suppose that there exists a partial

metric p on X such that (X , p) is a complete partial metric space. Let f : X → X be a single

valued nondecreasing mapping such that the following conditions are satisfied:

(i). There exists x0 ∈ X such that x0 � f x0.

(ii). If xn→ x is a nondecreasing sequence in X then xn � x for all n.

(iii). For all x,y ∈ X with x� y, there exists α ∈ (0,1) such that

(11) p( f x, f y)≤ α p(x,y),

where ϕ is an MT −function.

Then f has a fixed point.

Next theorem gives additional condition to ensure uniqueness of fixed point of single valued

mapping.

Theorem 3.2 Suppose that all assumptions of Corollary 3.2 are satisfied, and in addition, for

arbitrary elements x,y ∈ X, there exists z ∈ X which is comparable with both x and y. Then the

fixed point of f is unique.

Proof. Let u,v ∈ X be two fixed points of f , i.e., f u = u and f v = v. We note the following two

cases:

Case 1. u and v are comparable. WLOG, let u� v. By assumption (iv) of Corollary 3.2,

p(u,v) = p( f u, f v)≤ ϕ(p(u,v))p(u,v)

and this implies that p(u,v) = 0, thus u = v.

Case 2. u and v are not comparable. By the virtue of the additional assumption, there exists

w ∈ X that is comparable to both of u and v. Note also that u = f nu is comparable with

f nw for each n because of transitivity and nondecreasing property of f . Let n ∈ N, then

by assumption (iv) of Corollary 3.2,

p(u, f nw) = p( f f n−1u, f f n−1w)≤ ϕ(p( f n−1u, f n−1w))p( f n−1u, f n−1w)

< p( f n−1u, f n−1w) = p(u, f n−1w).
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Hence, {p(u, f n−1w)} is strictly decreasing and bounded, thus

lim
n→∞

p(u, f nw) = l ≥ 0.

Suppose that l > 0. Getting the limit of p(u, f nw) ≤ ϕ(p(u, f n−1w))p(u, f n−1w) as

n→ ∞, one arrives at a contradiction, and thus lim
n→∞

p(u, f nw) = 0. Similarly, it can be

shown that lim
n→∞

p(v, f nw) = 0.

Consider,

(12) p(u,v)≤ p(u, f nw)+ p( f nw,v).

Taking n→ ∞ in (12), we have p(u,v) = 0, and so, u = v.

Therefore, in any case, the fixed point of f is unique.

To illustrate the usability of our results, we provide the following example where the result

in [10] is not applicable.

Example 3.1. Let X =

{
(0,0) ,

(
0,

1
5

)
,

(
1
8
,
1
6

)
,

(
1
7
,
1
7

)}
, where� is defined as: for x,y∈ X

such that x = (x1,y1), and y = (x2,y2), x � y if and only if x1 ≤ x2 and y1 ≤ y2, and let X be

endowed with the partial metric p : X×X → R+ defined as

(13) p(x,y) =
1
4
|x1− x2|+

1
2

max{x1,x2}+
1
4
|y1− y2|+

1
2

max{y1,y2}.

Note that p
((

0,
1
5

)
,

(
0,

1
5

))
=

1
10
6= 0, p

((
1
6
,
1
8

)
,

(
1
8
,
1
6

))
=

7
48
6= 0, and

p
((

1
7
,
1
7

)
,

(
1
7
,
1
7

))
=

1
7
6= 0, so p is not a metric on X . Moreover ps = |x1−x2|+ |y1−y2| is

a complete metric space, and so (X , p) is a complete partial metric space. Let F : X →CBp(X)

be defined as

Fx =



{(0,0)} if x = (0,0),

{(0,0)} if x = (0, 1
5),

{(0,0),(1
7 ,

1
7)} if x = (1

8 ,
1
6),

{(0,0),(0, 1
5)} if x = (1

7 ,
1
7).
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Note that {(0,0)}, {(0,0),(1
7 ,

1
7)}, and {(0,0),(0, 1

5)} are bounded sets in (X , p). If (x,y) ∈ X ,

then

(x,y) ∈ {(0,0)} ⇐⇒ p((x,y),{(0,0)}) = p((x,y),(x,y)

⇐⇒ 3
4

x+
3
4

y =
1
2

x+
1
2

y

⇐⇒ x = 0,y = 0

⇐⇒ (x,y) ∈ {(0,0)}.

Hence, {(0,0)} is closed with respect to the partial metric p. Moreover,

(x,y) ∈ {(0,0),(1
7
,
1
7
)} ⇐⇒ p((x,y),{(0,0),(1

7
,
1
7
)}) = p((x,y),(x,y)

⇐⇒ min{3
4

x+
3
4

y,
1
4
|x− 1

7
|+ 1

2
max{x, 1

7
}+ 1

4
|y− 1

7
|+

1
2

max{y, 1
7
}= 1

2
x+

1
2

y

⇐⇒ (x,y) ∈ {(0,0),(1
7
,
1
7
)}.

Hence, {(0,0),(1
7 ,

1
7)} is closed with respect to the partial metric p. Also,

(x,y) ∈ {(0,0),(0, 1
5
)} ⇐⇒ p((x,y),{(0,0),(0, 1

5
)}) = p((x,y),(x,y)

⇐⇒ min{3
4

x+
3
4

y,
1
4

x+
1
2

max{x,0}+ 1
4
|y− 1

5
|+

1
2

max{y, 1
5
}= 1

2
x+

1
2

y

⇐⇒ (x,y) ∈ {(0,0),(0, 1
5
)}.

Hence, {(0,0),(0, 1
5)} is closed with respect to the partial metric p.

Let us consider (0, 1
5), (

1
8 ,

1
6) ∈ X . For these elements of X , F(0, 1

5) = {(0,0)} and F(1
8 ,

1
6) =

{(0,0),(1
7 ,

1
7)}, and p

(
(0, 1

5),(
1
8 ,

1
6)
)
= 97

480 while Hp(F(0, 1
5),F(1

8 ,
1
6))=max{0, 3

14}=
3

14 . Note

that these two specific elements of X do not satisfy the contraction condition established by Ay-

di et al. [10], that is, there is no α ∈ (0,1) such that Hp(Fx,Fy) ≤ α p(x,y). Therefore, we

cannot use the fixed point theorem established by Aydi et al. [10] to show that F has a fixed

point.
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Now, we use our result to show that F has fixed point. Let us first demonstrate that the

contraction condition is satisfied for comparable elements of X . For this, we consider cases

summarized in Table 1.

Table 1. p(x,y) and Hp(Fx,Fy) of comparable elements x,y ∈ X

x� y p(x,y) Hp(Fx,Fy)

(0,0)� (0, 1
5)

3
20 0

(0,0)� (1
8 ,

1
6)

7
32

3
14

(0,0)� (1
7 ,

1
7)

3
14

3
20

(0,0)� (0,0) 0 0

(0, 1
5)� (0, 1

5)
1
10 0

(1
8 ,

1
6)� (1

8 ,
1
6)

7
48

1
7

(1
7 ,

1
7)� (1

7 ,
1
7)

1
7

1
10

Thus we can choose α = 859
875 ∈ (0,1) such that Hp(Fx,Fy) ≤ α p(x,y) whenever x � y. It

can also be shown that the remaining assumptions of our result (specifically Theorem 3.1 and

Corollary 3.1) are satisfied. Therefore, it can be invoked F has a fixed point.
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