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Abstract. In this paper, we prove some new type of fixed point theorems in generalized complete metric spaces.

The results presented in this paper mainly improve the corresponding results announced by Wardowski [D. War-

dowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory

Appl. 2012 (2012), Article ID 94] from metric spaces to generalized metric spaces.

Keywords: F-contraction; fixed point; complete metric space.

2010 AMS Subject Classification: 47H10, 55M20.

1. Introduction and Preliminaries

In 1992, Dhage [2], introduced the notion of generalized metric or D-metric spaces and

claimed that D-metric convergence define a Hausdorff topology and that D-metric is sequen-

tially continuous in all the three variables. Many authors have taken these claims for granted

and used them in proving fixed point theorems in D-metric spaces. Also in 1996, Rhoades

[1], generalized Dhages contractive condition by increasing the number of factors and proved

the existence of unique fixed point of a self map in D-metric space. D. Wardowski in [3] has
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introduced a new type of contraction and proved a new fixed point theorem. On the other

hand, Suzuki generalized the notion of contractive mappings in 2008 (see, [7],[8],[9]). After

this time, some authors published many results by using the Suzuki’s method for mappings

and multifunctions (see for example, [10] and [11] and the references therein). In this paper

we prove the result obtained by Wardowski in generalized metric spaces. Also by combining

Samet’s and Wardowski’s methods, (see [5], [3]) and by using the result obtained by Karapinar

in [4] we get a new result in generalized metric spaces. Again by combining results of Suzuki

and Wardowski we obtain a new result in the generalized metric spaces.

Let X be a nonempty set. A generalized D∗-metric on X is a function, D∗ : X3→ R+ that satis-

fies the following conditions for all x,y,z,a ∈ X ,

(D1) D∗(x,y,z)≥ 0,

(D2) D∗(x,y,z) = 0 if and only if x = y = z,

(D3) D∗(x,y,z) = D∗(p{x,y,z}),(symmetry) where p is a permutation function,

(D4) D∗(x,y,z)≤ D∗(x,a,a)+D∗(a,y,z),

the function D∗ is called a generalized D∗-metric and the pair (X ,D∗) is called a generalized

D∗-metric space.

Note that every D∗-metric on X induces a metric dD∗ on X defined by

dD∗(x,y) = D∗(x,y,y)+D∗(y,x,x), ∀x,y ∈ X .(1)

Remark 1.1. In a D∗-metric space, we prove that D∗(x,x,y) = D∗(x,y,y)

(i) D∗(x,x,y)≤ D∗(x,x,x)+D∗(x,y,y) = D∗(x,y,y),

(ii) D∗(y,y,x)≤ D∗(y,y,y)+D∗(y,x,x) = D∗(y,x,x),

Hence by (i),(ii) we get D∗(x,x,y) = D∗(x,y,y).

Definition 1.2. [6] Let (X ,D∗) be a D∗-metric space, and let {xn} be a sequence of points of X.

We say that {xn} is D∗-convergent to x ∈ X if

lim
n,m→+∞

D∗(x,xn,xm) = 0.

that is, for any ε > 0, there exists N ∈ N such that D∗(x,xn,xm)< ε , for all n,m≥ N.

Proposition 1.3. [6] Let (X ,D∗) be a D∗-metric space. The following are equivalent
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(i) {xn} is D∗-convergent to x,

(ii) D∗(xn,xn,x)→ 0 as n→ ∞,

(iii) D∗(xn,x,x)→ 0 as n→ ∞,

(vi) D∗(xn,xm,x)→ 0 as n,m→ ∞.

Definition 1.4. [6] Let (X ,D∗) be a D∗-metric space. A sequence {xn} is called a D∗-Cauchy

sequence if for any ε > 0, there exists N ∈N such that D∗(xn,xm,xl)< ε for all m,n, l ≥ N, that

is, D∗(xn,xm,xl)→ 0 as n,m, l→ ∞.

Proposition 1.5. [6] Let (X ,D∗) be a D∗-metric space. Then the following are equivalent

(1) the sequence {xn} is D∗-Cauchy,

(2) for any ε > 0, there exists N ∈ N such that D∗(xn,xm,xm)< ε , for all m,n≥ N.

Definition 1.6. [6] A D∗-metric space (X ,D∗) is called D∗-complete if every D∗-Cauchy se-

quence is D∗-convergent in (X ,D∗).

Note that in D∗-metric space a nonempty set A ⊂ X is D∗-closed in the D∗-metric space

(X ,D∗) if A = A.

Proposition 1.7. Let (X ,D∗) be a D∗-metric space and A be a nonempty subset of X. A is

D∗-closed if for any D∗-convergent sequence {xn} in A with limit x, one has x ∈ A.

Definition 1.8. [2] A D∗-metric space X is said to be compact if every τ-open cover of X has a

finite subcover.

Theorem 1.9. [2] In a D∗-metric space X, the following statement are equivalent.

(a) X is compact,

(b) X is countably compact,

(c) X has Bolzano-Weierstrass property,

(d) X is sequentially compact.

Theorem 1.10. [2] In a D∗-metric space X,

(a) a compact subset of a D∗-metric space is closed and bounded,
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(b) a D∗-metric space X is a compact if and only if it is complete and totally bounded,

(c) a subset S of a complete D∗-metric space is compact if and only if it is closed and totally

bounded.

Theorem 1.11. [2] Every real-valued continuous function on a compact D∗-metric space X is

bounded and attains its supremum and infimum on X.

Wardowski has defined F-contraction as the following (see [3]).

Definition 1.12. Let F : R+→ R be a mapping satisfying,

(F1) F is strictly increasing, i.e. for all α,β ∈ R+ such that α < β ,F(α)< F(β );

(F2) for each sequence {αn}n∈N of positive real numbers limn→∞ αn = 0 if and only if

limn→∞ F(αn) =−∞;

(F3) there exists k ∈ (0,1) such that limα→0+ αkF(α) = 0.

A mapping T : X → X is said to be an F-contraction if there exists τ > 0 such that

∀ x,y ∈ X d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(d(x,y))).

Example 1.13. Let F(α) =− 1√
α
,α > 0. It is clear that F satisfies (F1)-(F3). In this case, each

F-contraction T satisfies

d(T x,Ty)≤ 1
(1+ τ

√
d(x,y))2

d(x,y), f or all x,y ∈ X , T x 6= Ty.

Example 1.14. If F(α)=− 1
α2 , α > 0 then F satisfies (F1)-(F3). In this case, each F-contraction

T satisfies

d(T x,Ty)
d(x,y)

≤

√
d(x,y)2

1+ τd(x,y)2 .

Example 1.15. Consider F(α) = tan(α + π

2 ). F satisfies conditions (F1)-(F3).

Wardowski has stated modified Banach contraction theorem as the following.

Theorem 1.16. [3] Let (X ,d) be a complete metric space and let T : X→X be an F-contraction.

Then T has a unique fixed point x∗ ∈X and for every x0 ∈X a sequence {T nx0}n∈N is convergent

to x∗.
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Now state and prove the main results.

2. Main results

We define modified F-contraction as the following.

Definition 2.17. A mapping T : X → X is said to be a GF-contraction if there exists τ > 0 such

that for all x,y ∈ X,

(D∗(T x,Ty,T z)> 0⇒ τ +F(D∗(T x,Ty,T z))≤ F((D∗(x,y,z)))),(2)

where F : R+→ R satisfies the following conditions:

(GF1) F is strictly increasing, i.e. for all α,β ∈ R+ such that α < β ,F(α)< F(β );

(GF2) for each sequence {αn}n∈N of positive real numbers limn→∞ αn = 0 if and only if

limn→∞ F(αn) =−∞;

(GF3) there exists k ∈ (0,1) such that limα→0+ αkF(α) = 0.

Theorem 2.18. Let (X ,D∗) be a D∗complete D∗-metric space and T : X→X be a GF-contraction

mapping. Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X a sequence {T nx0}n∈N

is convergent to x∗.

Proof. Take an arbitrary x0 ∈ X and define the sequence {xn} as

xn = T xn−1, n = 1,2,3, . . . .

If xn0+1 = xn0 for some n∈N, then obviously, the fixed point of T is xn0 . Assume that xn+1 6= xn

for all n ∈ N. Put x = xn−1 and y = z = xn in (2). Then

F(D∗(T xn−1,T xn,T xn))≤ F((D∗(xn−1,xn,xn)))− τ

≤F(D∗(xn−2,xn−1,xn−1))− τ− τ

=F(D∗(xn−2,xn−1,xn−1))−2τ
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≤F(D∗(xn−2,xn−1,xn−1))−3τ

...

≤F(D∗(x0,x1,x1))−nτ,

tending n→ ∞, we have

lim
n→∞

F(D∗(xn,xn+1,xn+1)) =−∞.

Thus from (GF2), we obtain

lim
n→∞

D∗(xn,xn+1,xn+1) = 0.

On the other hand, by symmetry (D3) and the rectangle (D4), we have

D∗(x,y,y) = D∗(y,y,x)≤ D∗(y,x,x)+D∗(x,y,x) = 2D∗(y,x,x).(3)

The inequality (3) with x = xn and y = xn−1 becomes,

D∗(xn,xn−1,xn−1)≤ 2D∗(xn−1,xn,xn).

Hence, we get

lim
n→∞

D∗(xn,xn−1,xn−1) = 0.

On the other hand if put γn = D∗(xn−1,xn,xn), then by using (2), we obtain,

(γn)
kF(γn) ≤ (γn)

kF(γ0)− (γn)
knτ.(4)

Thus

(γn)
kF(γn)− (γn)

kF(γ0)≤ (γn)
k(F(γ0)−nγ)− (γn)

kF(γ0) =−(γn)
knτ ≤ 0.
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By attention to, limn→∞ γk
nF(γn) = 0 and by limn→∞ γn = 0 and Letting n→ ∞ in (4), we get

lim
n→∞

(γn)
kn = 0.(5)

So there exists n1 ∈ N such that (γn)
kn≤ 1 for all n≥ n1. Consequently we have

γn ≤
1

n
1
k
, ∀n≥ n1.

Now, we show next that the sequence {xn} is a cauchy sequence in the metric space (X ,dD∗)

where dD∗ is given in (1). Let n, l ∈ N with n > l > n1 we obtain

dD∗(xn,xl)≤ dD∗(xn,xn−1)+dD∗(xn−1,xn−2)+ ...+dD∗(xl+1,xl)

= D∗(xn,xn−1,xn−1)+D∗(xn−1,xn,xn)

+D∗(xn−1,xn−2,xn−2)+D∗(xn−2,xn−1,xn−1)+ ...

+D∗(xl+1,xl,xl)+D∗(xl,xl+1,xl+1)

=
n

∑
i=l+1

[D∗(xi,xi−1,xi−1)+D∗(xi−1,xi,xi)].(6)

By using of (3), we get

0≤ dD∗(xn,xl)≤
n

∑
i=l+1

[2D∗(xi−1,xi,xi)+D∗(xi−1,xi,xi)]

=
n

∑
i=l+1

3D∗(xi−1,xi,xi).(7)

Hence for n > l > n1 we have,

0≤ dD∗(xn,xl)≤
n

∑
i=l+1

3γn ≤ 3
n

∑
i=l+1

1

i
1
k
.

From the above and from the convergence of the series ∑
n
i=l+1

1

i
1
k

we receive that {xn} is a

cauchy sequence in (X ,dD∗). Since (X ,d) is D∗-complete then (X ,dD∗) is complete (see propo-

sition 10 in [6]) and hence {xn} converges to a number say, u ∈ X . Suppose that u 6= Tu or
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dD∗(u,Tu)> 0, then we have,

0≤ dD∗(xn,Tu) = D∗(xn,Tu,Tu)+D∗(Tu,xn,xn)

= D∗(T xn−1,Tu,Tu)+D∗(Tu,T xn−1,T xn−1)

≤ D∗(T xn−1,Tu,Tu)+2D∗(T xn−1,Tu,Tu)

≤ 3D∗(T xn−1,Tu,Tu) = 3D∗(xn,u,u).

Passing to Limit as n→∞, we end up with 0≤ dD∗(u,Tu)≤ 0 which contradicts the assumption

dD∗(u,Tu)> 0, Hence u = Tu. therefore u ∈ X is a fixed point of T . To prove the uniqueness,

we assume that v ∈ X is another fixed point of T such that u 6= v. we can substitute x = u and

y = z = v in (2). This yields

τ +F(D∗(u,v,v))≤ F((D∗(u,v,v))), which is contradiction.

Definition 2.19. Let T : X → X and α : X ×X ×X → [0,+∞). We say that T is α-admissible

mapping if

x,y ∈ X , α(x,y,z)≥ 1 =⇒ α(T x,Ty,T z)≥ 1.

Denote with Ψ the family of nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that ψ(t)<

t.

Lemma 2.20. For every function ψ : [0,+∞)→ [0,+∞) the following holds:

if ψ is nondecreasing then for each t > 0, limn→+∞ ψn(t) = 0 implies ψ(t)< t.

Theorem 2.21. Let (X ,D∗) be a D∗−complete D∗-metric space and {A j}m
j=1 be a family of

nonempty D∗-closed subsets of X. Let Y = ∪m
j=1A j and T : Y →Y be a α−admissible mapping

satisfying

T (A j)⊆ A j+1, j = 1, ...,m, where Am+1 = A1.

If there exist two functions α : Y ×Y ×Y → [0,+∞) and ψ ∈Ψ such that

∀ x,y ∈ X (D∗(T x,Ty,T z)> 0⇒ τ +α(x,y,T z)F(D∗(T x,Ty,T z))(8)

≤ F(ψ(D∗(x,y,z)))).

holds for all x∈A j and y,z∈A j+1, j = 1, ...,m, and there exists x0 ∈Y such that α(x0,T x0,T 2x0)≥

1, then T has a unique fixed point in ∩m
j=1A j.
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Proof Let x0 ∈ Y such that α(x0,T x0,T 2x0) ≥ 1 and without loss of generality assume that

x0 ∈ A1. Define the sequence {xn} in Y as follows

xn = T xn−1 f or all n ∈ N.

Since T is cyclic, x0 ∈ A1, x1 = T (x0) ∈ A2, ... and so on. If xn0+1 = xn0 for some n0 ∈ N,

then obviously, the fixed point of T is xn0 . Assume that xn 6= xn+1 for all n ∈ N. Since T is

α−admissible, we have

α(x0,x1,x2) = α(x0,T x0,T 2x0)≥ 1⇒ α(T x0,T x1,T x2) = α(x1,x2,x3)≥ 1.

By induction, We get

α(xn−1,xn,xn+1)≥ 1, f or all n ∈ N.(9)

Applying the inequality (8) with x = xn−1 and y = z = xn, and using (9), we obtain

0≤ F(D∗(xn,xn+1,xn+1)) = F(D∗(T xn−1,T xn,T xn))

≤ α(xn−1,xn,T xn)F(D∗(T xn−1,T xn,T xn))

≤ F(ψ(D∗(xn−1,xn,xn)))− τ

< F((D∗(xn−1,xn,xn)))− τ.

Therefore, by repetition of the above inequality, we have that

F(D∗(xn,xn+1,xn+1))≤ F(D∗(x0,x1,x1))−nτ, f or all n ∈ N.(10)

tending n→ ∞ we have

lim
n→∞

F(D∗(xn,xn+1,xn+1)) =−∞.

Thus,

lim
n→∞

D∗(xn,xn+1,xn+1) = 0.



80 HOJJAT AFSHARI, HOSSEIN PIRI

By similar proof in Theorem (2.18) we get

lim
n→∞

D∗(xn,xn−1,xn−1) = 0.

On the other hand if put γn = D∗(xn−1,xn,xn), then by using (2) we obtain,

(γn)
kF(γn) ≤ (γn)

kF(γ0)− (γn)
knτ.(11)

Thus

(γn)
kF(γn)− (γn)

kF(γ0)≤ (γn)
k(F(γ0)−nγ)− (γn)

kF(γ0) =−(γn)
knτ ≤ 0.

By attention to, limn→∞ γk
nF(γn) = 0 and by limn→∞ γn = 0 and Letting n→ ∞ in (11), we get

lim
n→∞

(γn)
kn = 0.(12)

Now, from let us observe that from (12) there exists n1 ∈ N such that (γn)
kn≤ 1 for all n≥ n1.

Consequently we have

γn ≤
1

n
1
k
, ∀n≥ n1.

We show next that the sequence {xn} is a cauchy sequence in the metric space (X ,dD∗) where

dD∗ is given in (1). Let n, l ∈ N with n > l > n1 we obtain

dD∗(xn,xl)≤ dD∗(xn,xn−1)+dD∗(xn−1,xn−2)+ ...+dD∗(xl+1,xl)

= D∗(xn,xn−1,xn−1)+D∗(xn−1,xn,xn)

+D∗(xn−1,xn−2,xn−2)+D∗(xn−2,xn−1,xn−1)+ ...

+D∗(xl+1,xl,xl)+D∗(xl,xl+1,xl+1)

=
n

∑
i=l+1

[D∗(xi,xi−1,xi−1)+D∗(xi−1,xi,xi)].(13)

Again by using a similar proof in Theorem (2.18) we obtain that {xn} is a Cauchy sequence

in the (X ,dD∗). Since the space (X ,D∗) is D∗-complete, hence, {xn} converges to a number

say, u ∈ X . Moreover, {xn} is D∗-Cauchy in (X ,D∗) (see Proposition 9 in [6]). Now we

show that u ∈ ∩m
j=1A j. if x0 ∈ A1, then the subsequence {xm(n−1)}∞

n=1 ∈ A1, the subsequence

{xm(n−1)+1}∞
n=1 ∈ A2, and continuing in this way, the subsequence {xmn−1}∞

n=1 ∈ Am. All the m
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subsequences are D∗-convergent and hence, they all converge to the same limit u. In addition,

the sets A j are D∗-closed, thus the limit u ∈ ∩m
j=1A j. We show that u ∈ X is a fixed point of T ,

Consider now (1 ) and (8 ) with x = xn, y = z = Tu and suppose that u 6= Tu or dD∗(u,Tu)> 0,

then we have,

0≤ dD∗(xn,Tu) = D∗(xn,Tu,Tu)+D∗(Tu,xn,xn)

= D∗(T xn−1,Tu,Tu)+D∗(Tu,T xn−1,T xn−1)

≤ D∗(T xn−1,Tu,Tu)+2D∗(T xn−1,Tu,Tu)

= 3D∗(T xn−1,Tu,Tu)

= 3(D∗(xn,u,u)).(14)

Passing to Limit as n→∞, we end up with 0≤ dD∗(u,Tu)≤ 0 which contradicts the assumption

dD∗(u,Tu)> 0, Hence u = Tu. therefore u ∈ X is a fixed point of T . To prove the uniqueness,

We assume that v ∈ X is another fixed point of T such that v 6= u. Both u and v lie in ∩m
j=1A j,

thus we can substitute x = u and y = z = v in (8). This yields

F(D∗(Tu,T v,T v))+ τ ≤ α(u,v,v)F(D∗(Tu,T v,T v))+ τ ≤ F(ψ(D∗(u,v,v))),

and hence

F(D∗(Tu,T v,T v))≤ F(ψ(D∗(u,v,v))),

since F is strictly increasing therefore by 2.20 we get

D∗(Tu,T v,T v)≤ ψ(D∗(u,v,v))< D∗(u,v,v).

This is a contradiction, Thus u = v, and the fixed point of T is unique.

Example 2.22. If F(α) = lnα, α > 0, then consider the sequence {Sn}n∈N as follows,

S1 = 1, S2 = 1+2, · · ·Sn = 1+2+ · · ·+n =
n(n+1)

2
, n ∈ N, · · ·

Let X = {Sn : n ∈ N} and

D∗(x,y,z) =

 0 x = y = z,

max{x,y,z} otherwise.
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Then (X ,D∗) is a D∗-complete D∗-metric space. Define the mapping T : X → X by the formu-

late:

T (Sn) = Sn−1, f or n > 1,T (S1) = 1.

The mapping T is not the Banach contraction and is not the F-contraction. Indeed, for n 6= m 6=

k, we get

lim
n→∞

D∗(T (Sn),T (Sm),T (Sk))

D∗(Sn,Sm,Sk)
= lim

n→∞

max{Sn−1,Sm−1,Sk−1}
max{Sn,Sm,Sk}

= 1.

On the other side taking F(α) = lnα +α we obtain that T is F-contraction with τ = 1. To see

this, let us consider the following calculation

D∗(T (Sn),T (Sm),T (Sk))

D∗(Sn,Sm,Sk)
eD∗(T (Sn),T (Sm),T (Sk))−D∗(Sn,Sm,Sk)

=
max{Sn−1,Sm−1,Sk−1}

max{Sn,Sm,Sk}
emax{Sn−1,Sm−1,Sk−1}−max{Sn,Sm,Sk}

< e−max{n,m,k} < e−1.

Clearly S1 is a fixed point of T .

Definition 2.23. A mapping T : X → X is said to be an GF−Suzuki-contraction if there exists

τ > 0 such that for all x,y,z ∈ X with (D∗(T x,Ty,T z)> 0

1
2

D∗(x,x,T x)< D∗(x,y,z)⇒ τ +F(D∗(T x,Ty,T z))≤ F(D∗(x,y,z))),

where F : R+→ R satisfies in (GF1)− (GF3).

If F is satisfies conditions F1 and F2 in 1.12, we can prove the following theorem.

Theorem 2.24. Let (X ,D∗) be a D∗-compact D∗-metric space and let T : X→X be an GF−Suzuki-

contraction mapping. Then T has a unique fixed point.

Proof. We put

β = inf{D∗(x,x,T x) : x ∈ X}

and choose a sequence {xn} in X satisfying limn→∞ D∗(xn,xn,T xn) = β . Since X is compact.

without loss of generality, we may assume that {xn} and {T xn} converge to some elements
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v,w ∈ X , respectively. We shall show β = 0. Arguing by contradiction, we assume β > 0. For

every ε > 0 there exists x j ∈ X for some j ∈ N, such that

D∗(x j,x j,T x j)< β + ε.

So from (GF2), we have

F(D∗(x j,x j,T x j))< F(β + ε).

On the other hand,
1
2

D∗(x j,x j,T x j)< D∗(x j,x j,T x j),

therefore by assumption of theorem there exists τ > 0 such that

τ +F(D∗(T x j,T x j,T 2x j))≤ F(D∗(x j,x j,T x j))< F(β + ε),

thus

F(D∗(T x j,T x j,T 2x j))< F(β + ε)− τ

Similarly, since 1
2D∗(T x j,T x j,T 2x j)< D∗(T x j,T x j,T 2x j), thus

τ +F(D∗(T 2x j,T 2x j,T 3x j))< F(D∗(T x j,T x j,T 2x j))

≤ F(D∗(x j,x j,T x j))− τ

< F(β + ε)− τ.

So

F(D∗(T 2x j,T 2x j,T 3x j))< F(β + ε)−2τ.

Now by continuing similar method we obtain

F(D∗(T nx j,T nx j,T n+1x j))< F(β + ε)−nτ.

This implies that

lim
n→∞

F(D∗(T nx j,T nx j,T n+1x j)) =−∞.

From (GF2), we have limn→∞ D∗(T nx j,T nx j,T n+1x j) = 0, so that there exists n0 ∈ N such that

D∗(T nx j,T nx j,T n+1x j)< β , ∀ n≥ n0.
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This is a contradiction with definition of β . So, β = 0. We have

lim
n→∞

D∗(v,v,T xn) = D∗(v,v,w) = lim
n→∞

D∗(xn,xn,T xn) = β = 0,

which implies that {T xn} also converges to v. Since, limn→∞ D∗(xn,xn,T xn) = β = 0, then

limn→∞ F(D∗(xn,xn,T xn)) =−∞ and we have

lim
n→∞

F(D∗(T xn,T xn,T 2xn))≤ lim
n→∞

F(D∗(xn,xn,T xn))− τ ,τ > 0.

Thus, limn→∞ F(D∗(T xn,T xn,T 2xn)) =−∞. Hence limn→∞ D∗(T xn,T xn,T 2xn) = 0. Since

lim
n→∞

d(v,v,T 2xn)≤ lim
n→∞

(D∗(v,v,T xn)+D∗(T xn,T xn,T 2xn)) = 0.

And so {T 2xn} converges to v. If

1
2

D∗(xn,xn,T xn)≥ D∗(xn,xn,v) and
1
2

D∗(T xn,T xn,T 2xn)≥ D∗(T xn,T xn,v),

then there exists 0 < τ < ∞ such that

τ +F(2D∗(T xn,T xn,v))≤ τ +F(D∗(T xn,T xn,T 2xn))≤ F(D∗(xn,xn,T xn)),

F(2D∗(T xn,T xn,v))≤ F(D∗(xn,xn,T xn))− τ,

F(2D∗(T xn,T xn,v))< F(D∗(xn,xn,T xn)).

From (GF1), we have

2D∗(T xn,T xn,v)< D∗(xn,xn,T xn)< D∗(xn,xn,v)+D∗(v,v,T xn),

and so,

D∗(T xn,T xn,v)<
1
2

D∗(xn,xn,v)≤
1
2

D∗(xn,xn,v)+
1
2

D∗(v,v,T xn).

Hence

D∗(xn,xn,v)<
1
2

D∗(xn,xn,v)+
1
2

D∗(v,v,T xn)

≤ 1
2

D∗(xn,xn,v)+
1
2

D∗(xn,xn,v)

= D∗(xn,xn,v).
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This is a contradiction. Hence for every n ∈ N, either

1
2

D∗(xn,xn,T xn)< D∗(xn,xn,v) or
1
2

D∗(T xn,T xn,T 2xn)< D∗(T xn,T xn,v),

holds. By assumption, either τ +F(D∗(T xn,T xn,T v))≤ F(D∗(xn,xn,v)) or

τ +F(D∗(T 2xn,T 2xn,T v))≤ F(D∗(T xn,T xn,v)),

holds. Hence one of the following holds:

* There exists an infinite subset I of N such that τ +F(D∗(T xn,T xn,T v))≤ F(D∗(xn,xn,v)) for

all n ∈ I.

* There exists an infinite subset J of N such that τ+F(D∗(T 2xn,T 2xn,T v))≤F(D∗(T xn,T xn,T v))

for all n ∈ J.

In the first case, we obtain

F(D∗(T xn,T xn,T v))≤ F(D∗(xn,xn,v))− τ,

F(D∗(T xn,T xn,T v))< F(D∗(xn,xn,v)).

Hence from (GF1), we have

D∗(T xn,T xn,T v)< D∗(xn,xn,v),

D∗(v,v,T v) = lim
n∈I,n→∞

D∗(T xn,T xn,T v)≤ lim
n∈I,n→∞

D∗(xn,xn,v) = 0

Also, in the second case, we obtain

F(D∗(T 2xn,T 2xn,T v))≤ F(D∗(T xn,T xn,v))− τ,

therefore

F(D∗(T 2xn,T 2xn,T v))< F(D∗(T xn,T xn,v)),

So from (GF1), we have

D∗(T 2xn,T 2xn,T v)< D∗(T xn,T xn,v),
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and

D∗(v,v,T v) = lim
n∈J,n→∞

D∗(T 2xn,T 2xn,T v)

≤ lim
n∈J,n→∞

D∗(T xn,T xn,v) = 0.

Hence, v is a fixed point of T . T has at most one fixed point. Indeed, if x∗1,x
∗
2 ∈ X ,T x∗1 = x∗1 6=

x∗2 = T x∗2. Then we get

D∗(x∗1,x
∗
1,T x∗1) = 0, τ ≤ F(D∗(x∗1,x

∗
1,x
∗
2))−F(D∗(T x∗1,T x∗1,T x∗2)) = 0.

This is a contradiction.
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