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Abstract: The objective of this paper is to utilize the notion of integral type implicit relation in fuzzy metric space. 
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several known results. 
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1. Introduction 

The concept of Fuzzy sets was initially investigated by Zadeh[11] as a new way to represent 

vagueness in everyday life.  Subsequently, it was developed extensively by many authors and 

used in various field. To use this concept in Topology and Analysis several researcher have 

defined several fuzzy metric space in various ways.  

Commutativity of two mappings was given by sessa[10] with weakly commuting mappings. 

Later on, Jungck[3] enlarged the class non-commuting mappings by compatible mappings which 

asserts that a pair of self-mappings S and T be a metric space (X, d) is compatible if  

lim
n→∞

d(TSxn, STxn) = 0   whenever lim
n→∞

Sxn = lim
n→∞

Txn = t   for some t ∈ X. 
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A concept of compatible mappings was further improved by Jungck and Rhoades[4] with the 

notion of coincidentally commuting mappings which merely commute at their coincidence points.  

Recently, implicit relations are used as a tool for finding common fixed point of contraction 

maps. (See [1],[5],[6],[7],[9],[8]). These implicit relations guarantee coincidence point of pair of 

maps that ultimately leads to the existence of common fixed points of quadruple of maps 

satisfying weak compatibility criterion. In 2008, Altun and Turkoglu[2] proved two common 

fixed points theorems on complete FM-Space with an implicit relation. 

 

2. Preliminaries 

Throughout this paper, we use following definitions.  

Definition 2.1. Let X be any set. A set in X is a function with domain X and values in [0,1]. 

Definition 2.2. A binary operation : [0, 1]  [0, 1] is continuous t-norm if  is satisfying the 

following conditions: 

a.  is commutative and associative. 

b.  is continuous. 

c. a 1 ≤ a for all a  [0,1]. 

d. ab = cd whenever a ≤ c and b ≤ d for all a, b, c, d [0,1]. 

Example a b = min a and a b = ab 

Definition 2.3. A triplet (X, M, ) is a fuzzy metric space whenever X is an arbitrary set,  is 

continuous t – norm and M is fuzzy set on X × X × [0, ∞](X2 × [0, ∞])satisfying for every x, y, 

z  X and S, T > 0, the following condition. 

FM-1              M(x, y, t) > 0; 

FM-2              M(x, y, 0) = 0; 

FM-3              M(x, y, t) =1 for all t > 0 if and only if x=y; 

FM-4              M(x, y, t) =M(y, x, t); 

FM-5              M(x, y, t)  M(y, z, s) ≤ M(x, z, t + s); 

FM-6              M(x, y, ) :[0,∞)  [0, 1] is left continuous; 

Definition 2.4. Let (X, M, ) be a fuzzy metric space. The sequence {xm} in X is said to be 

convergent to a point uX  if  

lim
n→∞

M(xm, u, t) = 1 for all t > 0 
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A sequence {xn} in X is said to be Cauchy sequence in X if  

lim
n→∞

M(xn, xn+p, t) = 1 for all t > 0 , p > 0 

The space is said to be complete if every Cauchy sequence in it converges to a point of it. 

In this paper (X, M, ) is considered to be the fuzzy metric space with condition  

FM-7               

lim
n→∞

M(x, y, t) = 1 for all x, yX. 

Lemma 2.1. Let {yn} be a sequence is a fuzzy metric space (X, M, ) with the condition (FM-7) 

is there exists a number k  (0, 1) such that  

M(yn+2, yn+1, kt)   ≥  M(yn+1, yn, t) for all t > 0, 

then{yn} is a Cauchy sequence in X. 

Lemma 2.2. Let A and B be two self-maps on a complete fuzzy metric space (X, M, ) such that 

for some k  (0, 1) for all x, y X and t > 0. 

M(Ax, By, kt) min{M(x, y, t), M(Ax, x, t)}then A and B have a unique common fixed point in X. 

Definition 2.5. Let A and S be mappings from a fuzzy metric space (X, M, ) into itself then 

a. The mappings are said to be weak compatible if they commute at their coincidence point 

i.e.Ax=Sx implies thatASx = SAx. 

b. The mappings are said to be compatible if 

lim
n→∞

M(ASxn, SAxn) = 1   ∀t > 0 

Where {xn} is a sequence in X such that 

lim
n→∞

Axn =  lim
n→∞

Sxn  = x ∈ X 

c. The mappings are said to be semi compatible if 

lim
n→∞

M(ASxn, SAxn, t) = 1,   t > 0 

Where {xn} is a sequence in X such that  

lim
n→∞

Axn =  lim
n→∞

Sxn  = x ∈ X 

Implicit Relation: 

Let K4 be the set of all real continuous functions F: R+
4 → R, non-decreasing in first argument and 

satisfying the following condition. 

∫ ∅(t) dt ≥ 0  
F (u,   v,   v,   u)

0
 or    ∫ ∅(t) dt ≥ 0  

F (u,   v,   u,   v)

0
(i) 

Then implies u ≥ v for u, v ≥ 0. 
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∫ ∅(t) dt ≥ 0  implies u ≥  1.
F (u,   u,   1,   1)

0
                                                  (ii) 

Example: 

(i) Let F(u1,u2,u3,u4) = u1 ‒ min(u2,u3,u4) and ∅(t) =
9π

10(1+t)2
cos (

9πt

10(1+t)
)for all t in R+ and 

(u, v) ≥ 0 are non-decreasing function in first argument. Now suppose that 

∫ ∅(t) dt ≥ 0  
F (u,   v,   v,   u)

0
implies  

∫
9π

10(1 + t)2
cos (

9πt

10(1 + t)
)  dt ≥ 0  

F (u,   v,   v,   u)

0

 

∫
9π

10(1 + t)2
cos (

9πt

10(1 + t)
)  dt ≥ 0       implies that

(u−v)

0

 

sin (
9π(u − v)

10(1 + (u − v))
)  ≥ 0   

It shows that u ≥ v for all u, v ≥ 0. 

(ii) ∫ ∅(t) dt ≥ 0 
F (u,   u,   1,   1)

0
 

∫
9π

10(1 + t)2
cos (

9πt

10(1 + t)
)  dt ≥ 0  

F (u,   u,   1,   1)

0

 

∫
9𝜋

10(1 + 𝑡)2
cos (

9𝜋𝑡

10(1 + 𝑡)
)  dt ≥ 0       implies that

(u−1)

0

 

sin (
9π(u − 1)

10(1 + (u − 1))
)  ≥ 0   

It shows that u ≥ 1. 

 

3. Main Result  

Theorem 3.1 Let (X, M, ) be a complete fuzzy metric space and let A, B, S, T, I and J be 

self-maps on a complete metric space (X, M, ) satisfying. 

a. AB(X)  J(X) , ST(X)  I(X) 

b. AB = BA,  ST = TS,  IB = BI and JT = TJ 

c. Either AB or I is continuous 

d. (AB, I) is semi compatible and (ST, J) is weak compatible. 

For some F K4 there exists k (0, 1) such that for all x, y  X and t>0 
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∫ ξ (υ) dυ ≥ 0 
F(M(ABx,STy,kt),   M(Ix,Jy,t),   M(Ix,ABx,t),   M(Jy,STy,kt))

0

(1)            and  

∫ ξ (υ) dυ ≥ 0 
F(M(ABx,STy,kt),   M(Ix,Jy,t),   M(Ix,ABx,kt),   M(Jy,STy,t))

0

                     (2) 

Where ξ: [0, +∞] → [0, +∞] is a lebesgue integral mapping which is summable. 

∫ ξ (υ) dυ > 0.
ε

0
Then A, B, S, T, I and J have unique common fixed point in X. 

Proof: Suppose x0 be an arbitrary point in X. since AB(X)  J(X) and since ST(X)  I(X) there 

exist x1, x2X such that ABx0 Jx1 and since STx1 Ix2. In general, we can construct sequences 

{yn} and {xn} in X such that 

y2n+1 =  ABx2n =  Jx2n+1  and y2n+2 =  STx2n+1 =  Ix2n+2    for n = 0, 1, 2, … … 

(I) put x=x2n , y = x2n+1  in (1) we get  

∫ ξ (υ)dυ  ≥ 0 
F(M(ABx2n,STx2n+1,kt),   M(Ix2n,Jx2n+1,t),   M(Ix2n,ABx2n,t),   M(Jx2n+1,STx2n+1,kt))

0

 

∫ ξ (υ)dυ  ≥ 0
F(M(y2n+1,y2n+2,kt),   M(y2n,y2n+1,t),   M(y2n,y2n+1,t),   M(y2n+1,y2n+2,kt))

0

                (3) 

using (i) we get 

M (y2n+1, y2n+2, kt) ≥ M (y2n+1, y2n, t)                                                                      (4) 

Similarly, by putting x= x2n+2 and y=x2n+1 in (2)  

∫ ξ (υ)dυ  ≥ 0
F(M(ABx2n+2,STx2n+1,kt),   M(Ix2n+2,Jx2n+1,t),   M(Ix2n+2,ABx2n+2,kt),   M(Jx2n+1,STx2n+1,t))

0

 

∫ ξ (υ)dυ  ≥ 0
F(M(y2n+3,y2n+2,kt),   M(y2n+2,y2n+1,t),   M(y2n+2,y2n+3,t),   M(y2n+1,y2n+2,t))

0

 

Using (i) we get, 

M(y2n+3, y2n+2, kt)  ≥  M(y2n+1, y2n+2, t)                   (5) 

Thus from (4) and (5) for n and t, we have 

M(yn, yn+2, kt)  ≥  M(yn+1, yn, t)                                    (6) 

Hence by lemma 2.2 {yn} is a Cauchy sequence in X, which complete therefore {yn} converges 

topX. The sequences {ABx2n}, {STx2n+1}, {Ix2n}, {Jx2n+1} being subsequences of {yn} also 

converges to p that is 

ABx2n→ p, STx2n+1→ p, Ix2n→ p, Jx2n+1→ p.       (7) 

Case 1: I is continuous, since I is continuous, we get  
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I(ABx2n) → Ip,   I2x2n → Ip                                                                            (8) 

The semi compatibility of the pair (AB, I) gives  

lim
𝑛→∞

AB(Ix2n) = Ip                                                                                                     (9) 

1.1.Putting x=Ixn, y=x2n+1 in (1) we obtain 

∫ ξ (υ)dυ  ≥ 0
F(M((AB)Ix2n,(ST)x2n+1,kt),   M(I.Ix2n,Jx2n+1,t),   M(I.Ix2n,(AB)Ix2n,t),   M(Jx2n+1,(ST)x2n+1,kt))

0

 

           (10) 

Letting n→∞ and using (8), (9), (10) and the continuity of the t-norm  we have  

∫ ξ (υ)dυ  ≥ 0
F(M(Ip,p,kt),   M(Ip,p,t),   M(Ip,Ip,t),   M(p,p,kt))

0

                                      (11) 

that is  

∫ ξ (υ)dυ  ≥ 0
F(M(Ip,p,kt),   M(Ip,p,t),   1,   1)

0

                                                               (12) 

Using (ii) we obtain 

M(Ip, p, t) ≥ 1 for all t > 0 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠M(Ip, p, t) = 1   i. e.  Ip = p           (13) 

1.2.  Putting x=p,  y=x2n+1 in (1) we obtain 

∫ ξ (υ)dυ  ≥ 0            
F(M(ABp,STx2n+1,kt),   M(Ip,Jx2n+1,t),   M(Ip,ABp,t),   M(Jx2n+1,STx2n+1,kt))

0
(14) 

letting n→∞ and using (8) and (14) we obtain 

∫ ξ (υ)dυ  ≥ 0
F(M(ABp,p,kt),   M(p,p,t),   M(p,ABp,t),   M(p,p,kt))

0

 

∫ ξ (υ)dυ  ≥ 0                                                                        
F(M(ABp,p,Kt),   1,   M(ABp,p,t) ,   1)

0

(15) 

As F is non-decreasing in first argument, we have  

∫ ξ (υ)dυ  ≥ 0
F(M(ABp,p,t),   1,   M(ABp,p,t) ,   1)

0

 

Using (i) we obtain  ABp = p                             (16) 

from equation (13) and (16)   ABp = p = Ip                                                    (17) 

Now put x=Bp and y=x2n+1 in (1) we get 

∫ ξ (υ)dυ  ≥ 0
F(M((AB)Bp,(ST)x2n+1,kt),   M(I(Bp),Jx2n+1,t),   M(I(Bp),(AB)Bp,t),   M(Jx2n+1,STx2n+1,kt))

0
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As IB =  BI,    AB = BA                                                                                                          (18) 

We have 

I(Bp) =  B(Ip) =  Bp and AB(Bp) =  B(AB)p = Bp. 

Letting n→∞ and using (7) and the continuity of t–norms   we get 

I(Bp) =  B(Ip) =  Bp and AB(Bp) =  B(AB)p = Bp.  

∫ ξ (υ)dυ  ≥ 0
F(M(Bp,p,kt),   M(Bp,p,t),   M(p,p,t),   M(p,p,kt))

0

 

That is 

∫ ξ (υ)dυ  ≥ 0
F(M(Bp,p,kt),   M(Bp,p,t),   1 ,   1)

0

            (19) 

Using (ii) we get 

M(Bp, p, t)  ≥ 1,   ∀t ≥ 0  which gives   M(Bp, p, t) = 1       

Bp = p and so   p = ABp = Ap 

therefore      Ip =  Ap =  Bp = p                                                                           (20) 

1.3.  Since AB(X)  J(X) there exist ux such that 

ABP = Ip = p = Ju . 

Putting x=x2n, y=u in (1) we have  

∫ ξ (υ)dυ  ≥ 0
F(M(ABx2n,STu,kt),   M(Ix2n,Ju,t),   M(Ix2n,ABx2n,t),   M(Ju,STu,kt))

0

           (21) 

Letting n→∞ and using (7) we get 

∫ ξ (υ)dυ  ≥ 0
F(M(p,STu,kt),   M(p,Ju,t),   M(p,p,t),   M(Ju,STu,kt))

0

 

∫ ξ (υ)dυ  ≥ 0
F(M(p,STu,kt),   M(p,p,t),   M(p,p,t),   M(p,STu,kt))

0

 

∫ ξ (υ)dυ  ≥ 0
F(M(p,STu,kt),   1 ,   1 ,   M(p,STu,kt))

0

 

Using (i) we have   M(p, STu, kt) = 1 

Thus p = STu 

Therefore STu =  Ju =  p. since (ST, J) is weak compatible. we have J(ST)u =  (ST)Ju,   

That is  

         STp =  Jp                                                                                                                                     (22) 
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1.4. Put x=x2n, y=p  in (1) we get 

∫ ξ (υ)dυ  ≥ 0
F(M(ABx2n,STp,Kt),   M(Ix2n,Jp,t),   M(Ix2n,ABx2n,t),   M(Jp,STp,Kt))

0

 

Letting n→∞ and using (7) and (22) we get 

∫ ξ (υ)dυ  ≥ 0
F(M(p,STp,kt),   M(p,STp,t),    M(p,p,t) ,    M(STp,STp,kt))

0

 

∫ ξ (υ)dυ  ≥ 0
F(M(p,STp,kt),   M(p,STp,t),   1 ,   1 )

0

 

As F is non-decreasing in first argument, we have  

∫ ξ (υ)dυ  ≥ 0
F(M(p,STp,t),   M(p,STp,t),   1 ,   1 )

0

                                                                               (23)   

Using (ii) we get M(p, STp, t)  ≥  1 for all t > 0. 

Thus we have STp =  p 

Put x = x2nand y = Tp in (1) we get 

∫ ξ (υ)dυ  ≥ 0
F(M(ABx2n,(ST)Tp,kt),   M(Ix2n,JTp,t),   M(Ix2n,ABx2n,t),   M(JTp,(ST)Tp,kt))

0

 

As JT = TJ and ST = TS we have  

JTp =  TJp =  Tp   and   ST (Tp)  =  T (STp)  =  Tp. 

Letting n→∞, we get 

∫ ξ (υ)dυ  ≥ 0    
F(M(p,Tp,kt),   M(p,p,t),   M(p,p,t),   M(Tp,Tp,kt))

0

 

∫ ξ (υ)dυ  ≥ 0  
F(M(p,Tp,Kt),   1 ,   1 ,   1)

0

 

As F is non-decreasing in first argument, we have 

∫ ξ (υ)dυ  ≥ 0  
F(M(p,Tp,Kt),   1 ,   1 ,   1)

0

 

Thus M(p, Tp, t)  ≥  1 

Then Tp = p 

Now STp = Tp = p implies Sp = p 

Hence Sp = Tp = Jp = p                                                                                                             (24) 

Combining (20) and (24) 
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Ap = Bp= Ip = Jp = Sp = Tp 

i.e. p is common fixed point of A, B, I, J 

Case 2: AB is continuous, since AB is continuous and (AB, I) is semi compatible, we get  

(AB) Ix2n → ABp, (AB)2x2n → Bp,  IABx2n → ABp                                                         (25) 

Thus  

lim
n→ ∞

ABIx2n  =  lim
n→ ∞

IABx2n  =  ABp. 

Now we prove ABp =  p 

2.1. Put x = ABx2n, y = x2n+1 in (1) and assuming ABp ≠   p. 

∫ ξ (υ)dυ  ≥ 0
F(M((AB)2x2n,STx2n+1,kt),   M(IABx2n,Jx2n+1,t),   M(IABx2n,(AB)2x2n,t),   M(Jx2n+1,STx2n,kt))

0

 

Letting n→∞ and using (25) 

∫ ξ (υ)dυ  ≥ 0    
F(M(ABp,p,kt),   M(ABp,p,t),   M(ABp,ABp,t),   M(p,p,kt))

0

 

∫ ξ (υ)dυ  ≥ 0                                       
F(M(ABp,p,kt),   M(ABp,p,t),   1 ,   1)

0

 

As F is non-decreasing in first argument, we have 

∫ ξ (υ)dυ  ≥ 0                                        
F(M(ABp,p,kt),   M(ABp,p,t),   1 ,   1)

0

 

Using (ii) we have M(ABp, p, t) ≥  1 for all t > 0 

ThusABp =  p                                                                                                                                  (26) 

2.2. Put x = p, y = x2n+1 in (1) we get 

∫ ξ (υ)dυ  ≥ 0    
F(M(ABp,STx2n+1,kt),   M(Ip,Jx2n+1,t),   M(Ip,ABp,t),   M(Jx2n+1,STx2n+1,kt))

0

 

Letting n→∞ and using (8) and (26), we get 

∫ ξ (υ)dυ  ≥ 0    
F(M(p,p,kt),   M(Ip,p,t),   M(Ip,p,t),   M(p,p,kt))

0

 

∫ ξ (υ)dυ  ≥ 0                            
F( 1,   M(Ip,p,t),   M(Ip,p,t),   1 )

0

 

Using (ii) we obtain 

M(Ip, p, t)  ≥  1, ∀t > 0 

Thus  Ip = p 
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HenceIp =  p =  ABp 

Further using (1.2) we get  Bp =  p 

Thus ABp =  p gives Ap = p and so Ap =  Bp =  Ip =  p 

also it follows from step (1.3) that  Sp =  Tp =  Jp = p 

Hence we get 

𝐀𝐩 =  𝐁𝐩 =  𝐈𝐩 =  𝐉𝐩 =  𝐒𝐩 =  𝐓𝐩 =  𝐩 

The uniqueness of common fixed point is an easy consequence of inequality (1) and (2) in view 

of ϕ1 and ϕ2. 

Corollary 3.1 

Let (X, M, ) be a complete fuzzy metric space and let A, B, S, T, I and J be self-maps on a 

complete metric space (X, M, ) satisfying. 

a. AaBb(X)Jj(X), SsTt(X)Ii(X) 

b. AB = BA,  ST = TS,  IB = BI and JT = TJ 

c. Either AB or I is continuous 

d. (AB, I) is semi compatible and (ST, J) is weak compatible. 

For some F K4 there exists k (0, 1) such that for all x, y  X and t>0 

∫ ξ (υ) dυ ≥ 0 
F(M(AaBbx,SsTty,kt),   M(Iix,Jjy,t),   M(Iix,AaBbx,t),   M(Jjy,SsTty,kt))

0

                  (1) 

and 

∫ ξ (υ) dυ ≥ 0 
F(M(AaBbx,SsTty,kt),   M(Iix,Jjy,t),   M(Iix,AaBbx,kt),   M(Jjy,SsTty,t))

0

                     (2) 

for all x, y ∈  X and a, b, s, t, i, j ∈ N. 

Where ξ: [0, +∞] → [0, +∞] is a lebesgue integral mapping which is summable.  

∫ ξ (υ) dυ > 0.
ε

0
Then A, B, S, T, I and J have unique common fixed point in X. 
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