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Abstract. In this paper, Some new unique common fixed point results for an infinite family of self-mappings satis-

fying φ -contractive condition or ψ-ϕ-contractive condition on complete 2-metric spaces are obtained, in which the

mappings satisfy some contractive condition determined by semi-continuous functions, but do not satisfy continu-

ity and commutation. The main results generalize and improve many well-known and corresponding conclusions.
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1. Introduction and preliminaries

There have appeared many common fixed point theorems of mappings with some contractive

conditions on 2-metric spaces. But most of them held under subsidiary conditions [1-2], for

examples; commutativity of mappings or uniform boundness of mappings at some point, and

so on. In [3-9], the author obtained some generalized results for infinite or finite family of
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mappings satisfying generalized linear or non-linear contractive or quasi-contractive conditions

and expansive conditions under removing the above subsidiary conditions.

In this paper, using real continuous functions, we establish contractive conditions of an infi-

nite family of self-mappings on 2-metric spaces, and discuss the existence problems of common

fixed points for the given mappings and obtain unique common fixed point theorems.

Definition 1.1. [2-5] A 2-metric space (X ,d) consists of a nonempty set X and a function

d : X×X×X → [0,+∞) such that

(i) for distant elements x,y ∈ X , there exists an u ∈ X such that d(x,y,u) 6= 0;

(ii) d(x,y,z) = 0 if and only if at least two elements in {x,y,z} are equal;

(iii) d(x,y,z) = d(u,v,w), where {u,v,w} is any permutation of {x,y,z};

(iv) d(x,y,z)≤ d(x,y,u)+d(x,u,z)+d(u,y,z) for all x,y,z,u ∈ X .

Definition 1.2. [2-5] A sequence {xn}n∈N in 2-metric space (X ,d) is said to be Cauchy, if for

each ε > 0 there exists a positive integer N ∈ N such that d(xn,xm,a) < ε for all a ∈ X and

n,m > N.

Definition 1.3. [2-5] A sequence {xn}n∈N is said to be convergent to x ∈ X , if for each a ∈ X ,

limn→+∞ d(xn,x,a) = 0. And we write that xn→ x and call x the limit of {xn}n∈N.

Definition 1.4. [2-5] A 2-metric space (X ,d) is said to be complete, if every cauchy sequence

in X is convergent.

Lemma 1.5. [10] Let {xn} be a sequence in 2-metric space (X ,d) such that limn→∞ d(yn,yn+1,a)=

0 for all a ∈ X. If {xn} is not a Cauchy sequence, then there exist a ∈ X and ε > 0 such that for

each i ∈ N there exist m(i),n(i) ∈ N with m(i),n(i)> i such that

(i) m(i)> n(i) and n(i)→ ∞ as i→ ∞;

(ii) d(xm(i),xn(i),a)> ε , but d(xm(i)−1,xn(i),a)≤ ε.

Lemma 1.6. [6-8] If a sequence {xn} in a 2-metric space (X ,d) converges to x ∈ X. Then

limn→∞ d(xn,b,c) = d(x,b,c),∀b,c ∈ X .

2. Common fixed point theorems
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Theorem 2.1. Let (X ,d) be a complete 2-metric space, { fi}i∈N a family of self mappings on X.

Suppose that for each i, j ∈ N with i 6= j and x,y,a ∈ X,

d( fix, f jy,a)≤ φ
(
max{d(x,y,a),d(x, fix,a),d(y, f jy,a),d(x, f jy,a),d(y, fix,a)}

)
, (2.1)

where φ : [0,∞)→ [0,∞) is a upper semi-continuous and non-decreasing real function satisfying

φ(t)< t
2 for all t > 0. Then { fi}i∈N have a unique common fixed point.

Proof. Take an x0 ∈ X . We construct a sequence {xn} as follows xn+1 = fn+1xn, n = 0,1,2, · · · .

For fixed n, by (2.1), for any a ∈ X ,

d(xn+1,xn+2,a)

=d( fn+1xn, fn+2xn+1,a)

≤φ
(
max{d(xn,xn+1,a),d(xn,xn+1,a),d(xn+1,xn+2,a),d(xn,xn+2,a),0}

)
≤φ

(
max{d(xn,xn+1,a),d(xn+1,xn+2,a), [d(xn,xn+1,xn+2)+d(xn,xn+1,a)+d(xn+1,xn+2,a)]}

)
=φ

(
d(xn,xn+1,xn+2)+d(xn,xn+1,a)+d(xn+1,xn+2,a)

)
.

(2.2)

Take a = xn in (2.2), then we obtain

d(xn+1,xn+2,xn)≤ φ
(
2d(xn,xn+1,xn+2)

)
.

If d(xn+1,xn+2,xn) > 0, then d(xn+1,xn+2,xn) <
1
2 2d(xn+1,xn+2,xn) = d(xn+1,xn+2,xn). This

is a contradiction. Hence we have the following fact

d(xn+1,xn+2,xn) = 0, n = 0,1,2, · · · . (2.3)

Fix k ∈ N and suppose that d(xk,xn−1,xn) = 0, where n > k+2. Then by (2.1) and (2.3),

d(xn,xn+1,xk)

=d( fnxn−1, fn+1xn,xk)

≤φ
(
max{d(xn−1,xn,xk),d(xn−1,xn,xk),d(xn,xn+1,xk),d(xn−1,xn+1,xk),0}

)
≤φ

(
d(xn−1,xn,xn+1)+d(xn−1,xn,xk)+d(xn,xn+1,xk)

)
=φ(d(xn,xn+1,xk)).
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Hence using the property of φ , we obtain

d(xn,xn+1,xk) = 0,

therefore, combining the above result with (2.3), we have

d(xk,xn,xn+1) = 0,∀n≥ k ≥ 1. (2.4)

For all k > n > m,

d(xm,xn,xk)

≤d(xm,xn,xk−1)+d(xm,xk−1,xk)+d(xn,xk−1,xk) = d(xm,xn,xk−1)

≤·· · ≤ d(xm,xn,xn+1) = 0.

Hence, we have the following fact

d(xm,xn,xk) = 0,∀m,n,k ∈ N. (2.5)

From (2.2) and (2.3), we obtain

d(xn+1,xn+2,a)≤ φ
(
d(xn,xn+1,a)+d(xn+1,xn+2,a)

)
,∀ n = 0,1,2, · · · , a ∈ X . (2.6)

If there exists a ∈ X such that d(xn,xn+1,a)< d(xn+1,xn+2,a), then

d(xn+1,xn+2,a)≤ φ(2d(xn+1,xn+2,a))< d(xn+1,xn+2,a),

which is a contradiction. Hence

d(xn+1,xn+2,a)≤ d(xn,xn+1,a),∀ n = 0,1,2 · · · , a ∈ X . (2.7)

So, for any fixed a∈X , {d(xn,xn+1,a)} is a decreasing sequence, hence limn→∞ d(xn,xn+1,a) =

r(a)≥ 0 for some r(a) ∈ R. Suppose that r(a)> 0. Let n→ ∞, then from (2.6), we obtain

r(a) = lim
n→∞

d(xn+1,xn+2,a)

≤ limsup
n→∞

φ
(
d(xn,xn+1,a)+d(xn+1,xn+2,a)

)
≤φ

(
lim
n→∞

[d(xn,xn+1,a)+d(xn+1,xn+2,a)]
)

=φ(2r(a))< r(a),
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this ia a contradiction. Therefore

lim
n→∞

d(xn,xn+1,a) = 0,∀ a ∈ X . (2.8)

Next, we will prove that {xn} is a Cauchy sequence. Otherwise, by Lemma 1.5, there exist

a ∈ X and ε > 0 such that for any i ∈ N there exist m(i),n(i) ∈ N with m(i),n(i)> i satisfying

(i) m(i)> n(i) and n(i)→ ∞ as i→ ∞;

(ii) d(xm(i),xn(i),a)> ε , but d(xm(i)−1,xn(i),a)≤ ε, i = 1,2, · · · .

Using (2.5) and (2.8) and the following fact

d(xm(i),xn(i),a)≤ d(xm(i),xm(i)−1,a)+d(xm(i)−1,xn(i),a)+d(xm(i),xn(i),xm(i)−1),

we obtain

lim
i→∞

d(xm(i),xn(i),a) = lim
i→∞

d(xm(i)−1,xn(i),a) = ε. (2.9)

The following two inequalities hold

|d(xm(i),xn(i),a)−d(xm(i),xn(i)−1,a)| ≤ d(xn(i)−1,xn(i),a)+d(xm(i),xn(i),xn(i)−1),

|d(xm(i)−1,xn(i)−1,a)−d(xm(i),xn(i)−1,a)| ≤ d(xm(i)−1,xm(i),a)+d(xm(i),xm(i)−1,xn(i)−1),

hence using (2.5), (2.8) and (2.9), we obtain

lim
n→∞

d(xm(i),xn(i),a)= lim
n→∞

d(xm(i)−1,xn(i),a)= lim
i→∞

d(xm(i),xn(i)−1,a)= lim
i→∞

d(xm(i)−1,xn(i)−1,a)= ε.

(2.10)
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Therefore by (2.1) and (2.10),

0 <ε

= lim
i→∞

d(xm(i),xn(i),a)

= lim
i→∞

d( fm(i)xm(i)−1, fn(i)xn(i)−1,a)

≤ limsup
i→∞

φ
(
max{d(xm(i)−1,xn(i)−1,a),d(xm(i)−1,xm(i),a),d(xn(i)−1,xn(i),a),

d(xm(i)−1,xn(i),a),d(xn(i)−1,xm(i),a)})

≤φ
(

lim
i→∞

max{d(xm(i)−1,xn(i)−1,a),d(xm(i)−1,xm(i),a),d(xn(i)−1,xn(i),a),

d(xm(i)−1,xn(i),a),d(xn(i)−1,xm(i),a)})

=φ
(
max{ε,0,0,ε,ε})

<
ε

2
,

which is a contradiction. Hence {xn} is Cauchy, and there is u ∈ X such that xn→ u as n→ ∞

by the completeness of X . For each fixed n ∈ N, there exists i ∈ N such that i > n. By (2.1),

d( fnu,u,a)

≤d( fnu,xi+1,a)+d( fnu,u,xi+1)+d(xi+1,u,a)

=d( fnu, fi+1xi,a)+d( fnu,u,xi+1)+d(xi+1,u,a)

≤φ
(
max{d(u,xi,a),d(u, fnu,a),d(xi,xi+1,a),d(u,xi+1,a),d( fnu,xi,a)}

)
+d( fnu,u,xi+1)+d(xi+1,u,a).

Let i→ ∞, then by Lemma 1.6, the above deduces to

d( fnu,u,a)

≤ limsup
i→∞

φ
(
max{d(u,xi,a),d(u, fnu,a),d(xi,xi+1,a),d(u,xi+1,a),d( fnu,xi,a)}

)
≤φ

(
lim
i→∞

max{d(u,xi,a),d(u, fnu,a),d(xi,xi+1,a),d(u,xi+1,a),d( fnu,xi,a)}
)

=φ(d( fnu,u,a)),∀ a ∈ X ,

which implies that

d( fnu,u,a) = 0,∀ a ∈ X ,
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hence

fnu = u,∀n ∈ N.

Therefore u is a common fixed point of { fi}i∈N. Suppose that v ∈ X is another common fixed

point of { fi}i∈N, then thee exists b ∈ X such that d(u,v,b)> 0, hence by (2.1),

d(u,v,b) =d( f1u, f2v,b)

≤φ
(
max{d(u,v,b),d(u, f1u,b),d(v, f2v,b),d(u, f2v,b),d( f1u,v,b)})

=φ(d(u,v,b)),

hence by the property of φ ,

0 < d(u,v,b)<
d(u,v,b)

2
.

This is a contradiction. Hence u is the unique common fixed point of { fi}i∈N.

From Theorem 2.1, we obtain the following result.

Theorem 2.2. Let (X ,d) be a complete 2-metric space, { fi}i∈N a family of self mappings on X

and mi ∈ N for all i ∈ N. Suppose that for each i, j ∈ N with i 6= j and x,y,a ∈ X,

d( f mi
i x, f m j

j y,a)≤ φ
(
max{d(x,y,a),d(x, f mi

i x,a),d(y, f m j
j y,a),d(x, f m j

j y,a),d(y, f mi
i x,a)}

)
,

where φ is the function in Theorem 2.1. Then { fi}i∈N have a unique common fixed point.

Proof. Let Fi = f mi
i for all i ∈ N, then {Fi}i∈N satisfy the all conditions of Theorem 2.1. Hence

{Fi}i∈N have a unique common fixed point u ∈ X . Fix any i ∈ N. Since Fi( fi(u)) = fi(Fi(u)) =

fi(u), so fi(u) is a fixed point of Fi. Fix any j ∈ N with j 6= i, then for any a ∈ X ,

d( fi(u),Fj( fi(u)),a)

=d(Fi( fi(u)),Fj( fi(u)),a)

≤φ
(
max{d( fi(u), fi(u),a),d( fi(u),Fi( fi(u)),a),d( fi(u),Fj( fi(u)),a),

d( fi(u),Fj( fi(u)),a),d( fi(u),Fi( fi(u)),a)}
)

=φ
(
d( fi(u),Fj( fi(u)),a)

)
.



NEW UNIQUE COMMON FIXED POINTS FOR AN INFINITE FAMILY OF MAPPINGS 427

If fi(u) 6= Fj( fi(u)), then d( fi(u),Fj( fi(u)),a) > 0 for some a ∈ X , hence from the above for-

mula,

d( fi(u),Fj( fi(u)),a)<
d( fi(u),Fj( fi(u)),a)

2
,

which is a contradiction. Hence

Fj( fi(u)) = fi(u),∀ j 6= i.

That is, fi(u) is a common fixed point of {Fj} j∈N for all i ∈ N. So fi(u) = u for all i ∈ N by

uniqueness of common fixed points of {Fj} j∈N, hence u is a common fixed point of { fi}i∈N. If

v is also common fixed point of { fi}i∈N, then v is also a common fixed point of {Fi}i∈N, hence

u = v by the uniqueness. Therefore u is the unique common fixed point of { fi}i∈N.

Now, we give more general result than Theorem 2.2.

Theorem 2.3. Let (X ,d) be a complete 2-metric space, { fi,k}i∈N a family of self mappings on

X and mi,k ∈ N for all i,k ∈ N. Suppose that for each i, j,k ∈ N with i 6= j and x,y,a ∈ X,

d( f
mi,k
i,k x, f

m j,k
j,k y,a)≤ φk

(
max{d(x,y,a),d(x, f

mi,k
i,k x,a),d(y, f

m j,k
j,k y,a),d(x, f

m j,k
j,k y,a),d(y, f

mi,k
i,k x,a)}

)
,

where φk : [0,∞)→ [0,∞) is a mapping satisfying the property of φ in Theorem 2.1. If fi1, j1 fi2, j2 =

fi2, j2 fi1, j1 for all i1, i2, j1, j1 ∈ N with j1 6= j2, then { fi}i∈N have a unique common fixed point.

Proof. For any fixed k ∈ N, { fi,k}i∈N have a unique common fixed point uk by Theorem 2.2.

Now, we will prove that uµ = uν for all µ,ν ∈N. In fact, for each i, j,µ,ν ∈N with µ 6= ν , since

fi,µ(uµ) = uµ and f j,ν(uν) = uν . Hence fi,µ( f j,ν(uν)) = fi,µ(uν), therefore f j,ν( fi,µ(uν)) =

fi,µ(uν), i.e., fi,µ(uν) is a common fixed point of { f j,ν} j∈N. So fi,µ(uν) = uν for all i ∈ N by

the uniqueness of common fixed point of { f j,ν} j∈N. This means that uν is a common fixed

point of { fi,µ}i∈N, hence uν = uµ by the uniqueness of common fixed point of { fi,µ}i∈N. Let

u∗ = uµ , then obviously, u∗ is the unique common fixed point of { fi,k}i,k∈N.

A mapping ψ : [0,∞)→ [0,∞) is called an altering distance function if ψ is continuous and

non-decreasing and ψ(t) = 0⇔ t = 0.

Next, we will give another common fixed point theorem under another contractive condition.
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Theorem 2.4. Let { fi}i∈N be a family of self mappings on a complete 2-metric space (X ,d)

satisfying fi(X)⊂ fi+1(X) for all n ∈N. Suppose that for each i, j,k ∈N with i 6= j, i 6= k, j 6= k

and x,y,z,a ∈ X,

ψ(d( fix, f jy,a))≤ ψ(d( f jy, fkz,a))−ϕ(d( f jy, fkz,a)), (2.11)

where ψ is an altering distance function and ϕ : [0,∞)→ [0,∞) is a lower semi-continuous

function such that ϕ(t) = 0⇔ t = 0. Then { fi}i∈N have a unique common fixed point.

Proof. Take any x0 ∈ X . By the condition fi(X)⊂ fi+1(X) for all n = 1,2, · · · , we construct two

sequences {xn} and {yn} as follows fnxn−1 = fn+1xn = yn, ∀n = 1,2,3, · · · .

Take i = n+2, j = n+1,k = n,x = xn+1,y = xn,z = xn−1, then by (2.11), for any a ∈ X ,

ψ(d( fn+2xn+1, fn+1xn,a))≤ ψ(d( fn+1xn, fnxn−1,a))−ϕ(d( fn+1xn, fnxn−1,a)),

that is,

ψ(d(yn+1,yn,a))≤ ψ(d(yn,yn−1,a))−ϕ(d(yn,yn−1,a))≤ ψ(d(yn,yn−1,a)), (2.12)

hence using the non-decreasing property of ψ , we obtain

d(yn+1,yn,a)≤ d(yn,yn−1,a),∀a ∈ X ,n = 2,3, · · · . (2.13)

So for any fixed a ∈ X , {d(yn,yn−1,a)} is non-increasing, hence there is r(a)≥ 0 such that

lim
n→∞

d(yn,yn−1,a) = r(a)

Let n→ ∞ in the both sides of the first inequality in (2.12), then

ψ(r(a))≤ψ(r(a))−liminf
n→∞

ϕ(d(yn,yn+1,a))≤ψ(r(a))−ϕ( lim
n→∞

d(yn,yn+1,a))=ψ(r(a))−ϕ(r(a)),

hence ϕ(r(a)) = 0, which implies that r(a) = 0. Therefore

lim
n→∞

d(yn,yn−1,a) = 0,∀a ∈ X . (2.14)

Take a = yn−1 in (2.12), then we obtain

ψ(d(yn+1,yn,yn−1))≤ ψ(d(yn,yn−1,yn−1)) = ψ(0) = 0,∀n = 1,2, · · · ,
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hence

d(yn+2,yn+1,yn) = 0,∀n = 1,2, · · · . (2.15)

Fix any α ∈ N, then d(yα ,yα+1,yα+2) = 0 by (2.15). Suppose that d(yα ,yn,yn+1) = 0, where

n > α +1. Take i = n+3, j = n+2,k = n+1,x = xn+2,y = xn+1,z = xn,a = yα , then by (2.11),

ψ(d(yn+2,yn+1,yα)) =ψ(d( fn+3xn+2, fn+2xn+1,yα))

≤ψ(d( fn+2xn+1, fn+1xn,yα))−ϕ(d( fn+2xn+1, fn+1xn,yα))

=ψ(d(yn+1,yn,yα))−ϕ(d(yn+1,yn,yα))

=ψ(0)−ϕ(0) = 0.

Hence using the property of ψ and (2.15), we have

d(yα ,yn,yn+1) = 0, ∀n≥ α ≥ 1. (2.16)

For all k > n > m, using (2.16), we obtain

d(ym,yn,yk)

≤d(ym,yn,yk−1)+d(ym,yk−1,yk)+d(yn,yk−1,yk) = d(ym,yn,yk−1)

≤·· · ≤ d(ym,yn,yn+1) = 0.

Hence we have the following fact

d(ym,yn,yk) = 0,∀m,n,k ∈ N. (2.17)

Suppose that {yn} is not a Cauchy sequence, then there exist a ∈ X and ε > 0 such that for any

i ∈ N there exist m(i),n(i) ∈ N with m(i),n(i)> i satisfying

(i) m(i)> n(i)+1 and n(i)→ ∞ as i→ ∞;

(ii) d(ym(i),yn(i),a)> ε , but d(ym(i)−1,yn(i),a)≤ ε, i = 1,2, · · · .

Using (2.14) and (2.17) and the following fact

d(ym(i),yn(i),a)≤ d(ym(i),ym(i)−1,a)+d(ym(i)−1,yn(i),a)+d(ym(i),yn(i),ym(i)−1),

we obtain

lim
i→∞

d(ym(i),yn(i),a) = lim
i→∞

d(ym(i)−1,yn(i),a) = ε. (2.18)
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Since the following two inequalities hold

|d(ym(i),yn(i),a)−d(ym(i),yn(i)−1,a)| ≤ d(yn(i)−1,yn(i),a)+d(ym(i),yn(i),yn(i)−1)

and

|d(ym(i)−1,yn(i)−1,a)−d(ym(i),yn(i)−1,a)| ≤ d(ym(i)−1,ym(i),a)+d(ym(i),ym(i)−1,yn(i)−1),

so by (2.14), (2.17) and (2.18), for each a ∈ X ,

lim
n→∞

d(ym(i),yn(i),a)= lim
n→∞

d(ym(i)−1,yn(i),a)= lim
i→∞

d(ym(i),yn(i)−1,a)= lim
i→∞

d(ym(i)−1,yn(i)−1,a)= ε.

(2.19)

Take i = m(i)+1, j = n(i)+1,k = m(i),x = xm(i),y = xn(i),z = xm(i)−1, then by (2.11), for each

a ∈ X ,

ψ(d( fm(i)+1xm(i), fn(i)+1xn(i),a)≤ψ(d( fn(i)+1xn(i), fm(i)xm(i)−1,a))−ϕ(d( fn(i)+1xn(i), fm(i)xm(i)−1,a)),

that is,

ψ(d(ym(i),yn(i),a)≤ ψ(d(yn(i),ym(i)−1,a))−ϕ(d(yn(i),ym(i)−1,a)).

Let i→ ∞, then by (2.19) and the above formula,

ψ(ε)≤ψ(ε)−liminf
i→∞

ϕ(d(yn(i),ym(i)−1,a))≤ψ(ε)−ϕ(lim
i→∞

d(yn(i),ym(i)−1,a))=ψ(ε)−ϕ(ε),

hence ϕ(ε) = 0, which implies that ε = 0. This is a contradiction, hence {yn} is a Cauchy

sequence. Since X is complete, there exists u∈ X such that yn→ u as n→∞. Fix any n∈N and

take l ∈ N satisfying l > n+1. Let i = n, j = l +1,k = l,x = u,y = xl,z = xl−1, then by (2.11),

ψ(d( fnu, fl+1xl,a))≤ ψ(d( fl+1xl, flxl−1,a))−ϕ(d( fl+1xl, flxl−1,a)), ∀a ∈ X ,

that is,

ψ(d( fnu,yl,a))≤ ψ(d(yl,yl−1,a))−ϕ(d(yl,yl−1,a)),∀a ∈ X

Let l→ ∞, then the above formula deduces to

ψ(d( fnu,u,a))≤ψ(0))−liminf
l→∞

ϕ(d(yl,yl−1,a))≤ψ(0))−ϕ( lim
l→∞

d(yl,yl−1,a))=ψ(0))−ϕ(0)= 0.
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Hence fnu = u for all n = 1,2, · · · , so u is a common fixed point of { fi}i∈N. Suppose that v is

also a common fixed point of { fi}i∈N. Take i = 1, j = 2,k = 3,x = u,y = z = v, then by (2.11),

for each a ∈ X ,

ψ(d( f1u, f2v,a))≤ ψ(d( f2v, f3v,a))−ϕ(d( f2v, f3v,a)),

that is,

ψ(d(u,v,a))≤ ψ(d(v,v,a))−ϕ(d(v,v,a)) = ψ(0)−ϕ(0) = 0,

so u = v. Hence u is the unique common fixed point of { fi}i∈N.

From Theorem 2.4, we obtain the following particular forms.

Theorem 2.5. Let (X ,d) be a complete 2-metric space, { fi}i∈N a family of self mappings

on X satisfying fi(X) ⊂ fi+1(X) for all n = 1,2, · · · . Suppose that for each i, j,k ∈ N with

i 6= j, i 6= k, j 6= k and x,y,z,a ∈ X,

d( fix, f jy,a)≤ d( f jy, fkz,a)−ϕ(d( f jy, fkz,a)),

where ϕ : [0,∞)→ [0,∞) is a lower semi-continuous function such that ϕ(t) = 0⇔ t = 0. Then

{ fi}i∈N have a unique common fixed point.

Proof. Let ψ = 1X , then the conclusion follows from Theorem 2.4.

Theorem 2.6. Let (X ,d) be a complete 2-metric space, { fi}i∈N a family of self mappings

on X satisfying fi(X) ⊂ fi+1(X) for all n = 1,2, · · · . Suppose that for each i, j,k ∈ N with

i 6= j, i 6= k, j 6= k and x,y,z,a ∈ X,

d( fix, f jy,a)≤ hd( f jy, fkz,a),

where h ∈ [0,1). Then { fi}i∈N have a unique common fixed point.

Proof. Let ϕ(t) = (1−h)t for all t ∈ [0,∞), then the conclusion follows from Theorem 2.5.
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