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Abstract. Let C be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with

monotone modulus of uniform convexity η . Let P : X→C be the nonexpansive retraction. S1,S2, . . . ,Sr : C→ X be

uniformly L-Lipschitzian and ({vn},{un},ξ )-total asymptotically nonexpansive nonself mappings. In this paper,

we introduce and study an iterative process for finding common fixed points of the family {S j}r
j=1. Assume that

F = ∩r
j=1F(S j) 6= /0, under certain conditions, strong and4-convergence of the sequence are proved.

Keywords: Total asymptotically nonexpansive nonself mapping; 4-convergence; Hyperbolic space; Nonexpan-
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1. Introduction

Most of the problems in various disciplines of science are nonlinear in nature, whereas fixed

point theory proposed in the setting of normed linear spaces or Banach spaces majorly depends

on the linear structure of the underlying spaces. A nonlinear framework for fixed point theory
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is a metric space embedded with a convex structure. The class of hyperbolic spaces, nonlinear

in nature, is a general abstract theoretic setting with rich geometrical structure for metric fixed

point theory. The study of hyperbolic spaces has been largely motivated and dominated by

questions about hyperbolic groups, one of the main objects of study in geometric group theory.

In 1976, the concept of 4-convergence in general metric spaces was coined by Lim [1].

In recent years, Yang and Zhao [2] studied the strong and 4- convergence theorems for total

asymptotically nonexpansive nonself-mappings in CAT(0) spaces. Li and Bo [3] modified a

classical Kuhfittig iteration algorithm in the general setup of hyperbolic space, and proved a

4-convergence theorem for an implicit iterative scheme. Recently, Wan [4] extended Chang’s

[5] result from CAT(0) spaces to the general setup of uniformly convex hyperbolic spaces, and

obtained convergence theorems of the mixed Agarwal-ÓRegan-Sahu type iterative scheme for

approximating a common fixed point of total asymptotically nonexpansive mappings.

Inspired and motivated by these facts, a new type of multistep iterative sequence is introduced

and studied in this paper. This iterative sequence can be viewed as an extension of İsa Yildirim,

Murat Özdemir [6] from CAT(0) space to the general setup of uniformly convex hyperbolic

space. Let C be a nonempty closed convex subset of a complete uniformly convex hyperbolic

space X with monotone modulus of uniform convexity η . Let S1,S2, . . . ,Sr : C→ X be uniform-

ly L-Lipschitzian and ({vn},{un},ξ )-total asymptotically nonexpansive nonself mappings. Let

{xn} be a sequence generated by the following manner:

x1 ∈C,

xn+1 = PW (yn+r−2,S1(PS1)
n−1yn+r−2,α1n),

yn+r−2 = PW (yn+r−3,S2(PS2)
n−1yn+r−3,α2n),

yn+r−3 = PW (yn+r−4,S3(PS3)
n−1yn+r−4,α3n),

· · ·

yn+1 = PW (yn,Sr−1(PSr−1)
n−1yn,α(r−1)n),

yn = PW (xn,Sr(PSr)
n−1xn,αrn),

(1.1)

where P : X → C be the nonexpansive retraction. The iterative sequence (1.1) is called the

projection type multistep iteration for a finite family of total nonexpansive nonself-mapping in

hyperbolic space.
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The purpose of paper is to construct a multistep iterative scheme for approximation com-

mon fixed point of a finite family of total asymptotically nonexpansive nonself-mapping in the

general setup of hyperbolic spaces. Under a limit condition, we establish some strong and

4-convergence results.

2. Preliminaries

In this paper, we work in the setting of hyperbolic spaces introduced by Kohlenbach [7],

which is more restrictive than the hyperbolic space introduced in Goebel and Kirk [8] and more

general than the hyperbolic space in Reich and Shafrir [9]. Concretely, (X ,d,W ) is called a

hyperbolic space if (X ,d) is a metric space and W : X×X× [0,1]→ X is a function satisfying

(1) d(z,W (x,y,α))≤ (1−α)d(z,x)+αd(z,y);

(2) d(W (x,y,α),W (x,y,β )) = |α−β |d(x,y);

(3) W (x,y,α) =W (y,x,1−α);

(4) d(W (x,z,α),W (y,w,α))≤ (1−α)d(x,y)+αd(z,w)

for all x,y,z,w ∈ X and α,β ∈ [0,1]. A nonempty subset C of a hyperbolic space X is convex

if W (x,y,α) ∈ X(∀x,y ∈ X) and α ∈ [0,1]. The class of hyperbolic spaces contains normed

spaces and convex subsets thereof, the Hilbert ball equipped with the hyperbolic metric [10],

Hadamardmanifolds as well as CAT(0) spaces in the sense of Gromov [11].

A hyperbolic space X is uniformly convex if for u,x,y ∈ X , r > 0 and ε ∈ (0,2], there exists

δ ∈ (0,1] such that

d(W (x,y,
1
2
),u)≤ (1−δ )r,

provided that d(x,u)≤ r, d(y,u)≤ r and d(x,y)≥ εr.

A map η : (0,+∞)× (0,2]→ (0,1] is called modulus of uniform convexity if δ = η(r,ε) for

given r > 0. Besides, η is monotone if it decreases with r, that is,

η(r2,ε)≤ η(r1,ε),∀r2 ≥ r1.

Let C be a nonempty subset of a metric space (X ,d). Recall that a mapping T : C→ X is said

to be nonexpansive if

d(T x,Ty)≤ d(x,y),∀x,y ∈C.
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Recall that C is said to be a retraction of X if there exists a continuous map P : X →C such

that Px = x,∀x ∈C. A map P : X →C is said to be a retraction if P2 = P. Consequently, if P is

a retraction, then Py = y for all y in the range of P.

Let C be a nonempty and closed subset of a metric space (X ,d), a map P : X →C is a retrac-

tion, a mapping T : C→ X is said to be

(1)({vn},{un},ξ )-total asymptotically nonexpansive nonself mappings [12] if there exist non-

negative sequences {vn}, {un} with vn→ 0, un→ 0, and a strictly increasing continuous func-

tion ξ : [0,∞)→ [0,∞) with ξ (0) = 0 such that

d(T (PT )n−1x,T (PT )n−1y)≤ d(x,y)+ vnξ (d(x,y))+un, ∀x,y ∈C, n≥ 1. (2.1)

(2) asymptotically nonexpansive nonself-mapping if there exists a sequence {kn} ⊂ [1,∞) with

lim
n→∞

kn = 1, such that

d(T (PT )n−1x,T (PT )n−1y)≤ knd(x,y), ∀x,y ∈C, n≥ 1.

(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(T (PT )n−1x,T (PT )n−1y)≤ Ld(x,y), ∀x,y ∈C, n≥ 1.

Remark 2.1 From the definitions above, we know that each nonexpansive mapping is an

asymptotically nonexpansive nonself-mapping, an asymptotically nonexpansive nonself-mapping

is total asymptotically nonexpansive nonself mappings, and each asymptotically nonexpansive

nonself-mapping is uniformly L = supn≥1{kn}-Lipschitzian.

To study our results in the general setup of hyperbolic spaces, we first collect some basic

concepts. Let {xn} be a bounded sequence in hyperbolic space X . For x∈X , define a continuous

functional r(·,{xn}) : X → [0,+∞) by

r(x,{xn}) = limsup
n→∞

d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x,{xn}) : x ∈ X}.



CONVERGENCE THEOREMS FOR COMMON FIXED POINTS 437

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC({xn}) = inf{r(x,{xn}) : x ∈C}.

The asymptotic center A({xn}) of {xn} is set

A({xn}) = {x ∈ X : r(x,{xn}) = r({xn})}.

The asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is set

AC({xn}) = {x ∈C : r(x,{xn}) = rC({xn})}.

A sequence {xn} in hyperbolic space X is said to 4-convergence to x ∈ X , if x is the unique

asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we call x the4-limit

of {xn}.

Lemma 2.1. [13] Let (X ,d,W ) be a complete uniformly convex hyperbolic space with monotone

modulus of uniform convexity η , and let C be a nonempty, closed and convex subset of X . Then

every bounded sequence{xn} in X has a unique asymptotic center with respect to C.

Lemma 2.2. [13,14] Let (X ,d,W ) be a uniformly convex hyperbolic space with monotone

modulus of uniform convexity η . Let x∈X and {βn} be a sequence in [a,b] for some a,b∈ (0,1).

If {xn}, {yn} are sequences in X such that limsupn→∞ d(xn,x)≤ c, limsupn→∞ d(yn,x)≤ c and

limsupn→∞ d(W (xn,yn,βn),x) = c for some c≥ 0, then limn→∞ d(xn,yn) = 0.

Lemma 2.3. [4] Let (X ,d,W ) be a uniformly convex hyperbolic space with monotone modulus

of uniform convexity η . Let C be a nonempty closed convex subset of X. S : C → X be uni-

formly L-Lipschitzian and ({vn},{un},ξ )-total asymptotically nonexpansive nonself mappings.

P : X → C be the nonexpansive retraction. Let {xn} be a bounded approximation fixed point

sequence in C, i.e, limn→∞ d(xn,Sxn) = 0 and {xn}⇀ p. Then we have Sp = p.

Lemma 2.4. [15] Let {an}, {bn} and {tn} be sequences of nonnegative real numbers satisfying

the inequality an+1 ≤ (1 + bn)an + tn for all n ≥ 1. If ∑
∞
n=1 bn < +∞, ∑

∞
n=1 tn < +∞, then

limn→∞ an exists.

3. Main results
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Theorem 3.1. Let C be a nonempty closed convex subset of a complete uniformly convex hyper-

bolic space X with monotone modulus of uniform convexity η . Let S1,S2, . . . ,Sr : C→ X be uni-

formly L-Lipschitzian and ({vn},{un},ξ )-total asymptotically nonexpansive nonself mappings.

Let P : X → C be the nonexpansive retraction Let the sequence {xn} be defined iteratively by

(1.1). Assume that F = ∩r
j=1F(S j) 6= /0 and the following conditions are satisfied:

(1)
∞

∑
n=1

vn < ∞,
∞

∑
n=1

un < ∞.

(2)Suppose that {α jn}, j = 1,2, . . . ,r are real sequences in [a,b] for some a,b ∈ (0,1).

(3)There exists a constant M > 0 such that ξ (t)≤Mt, t ≥ 0.

Then the sequence {xn} 4-converges to a point q ∈ F.

Proof. We divide the proof into four steps.

Step 1. We prove that

lim
n→∞

d(xn, p),∀p ∈ F, lim
n→∞

d(xn,F) exist. (3.1)

Let p ∈ F . Using (1.1) and (2.1), we have that

d(Sr(PSr)
n−1xn, p)≤ d(xn, p)+ vnξ (d(xn, p))+un

≤ d(xn, p)+ vnMd(xn, p)+un

= (1+ vnM)d(xn, p)+un.

(3.2)

By (1.1) and (3.2), we obtain that

d(yn, p) = d(PW (xn,Sr(PSr)
n−1xn,αrn), p)

≤ d(W (xn,Sr(PSr)
n−1xn,αrn), p)

≤ (1−αrn)d(xn, p)+αrnd(Sr(PSr)
n−1xn, p)

≤ (1−αrn)d(xn, p)+αrn((1+ vnM)d(xn, p)+un)

≤ d(xn, p)+αrnvnMd(xn, p)+αrnun

≤ (1+ vnM)d(xn, p)+un.

(3.3)
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For 1≤ j ≤ r−1, we have

d(S j(PS j)
n−1yn+r− j−1, p)≤ d(yn+r− j−1, p)+ vnξ (d(yn+r− j−1, p))+un

≤ d(yn+r− j−1, p)+ vnMd(yn+r− j−1, p)+un

= (1+ vnM)d(yn+r− j−1, p)+un.

(3.4)

From (3.4) with j = r−1, we have

d(yn+1, p) = d(PW (yn,Sr−1(PSr−1)
n−1yn,α(r−1)n), p)

≤ d(W (yn,Sr−1(PSr−1)
n−1yn,α(r−1)n), p)

≤ (1−α(r−1)n)d(yn, p)+α(r−1)nd(Sr−1(PSr−1)
n−1yn, p)

≤ (1−α(r−1)n)d(yn, p)+α(r−1)n((1+ vnM)d(yn, p)+un)

≤ d(yn, p)+α(r−1)nvnMd(yn, p)+α(r−1)nun

≤ (1+ vnM)d(yn, p)+un.

(3.5)

By induction, for 2≤ j ≤ r−1, we have

d(yn+r− j, p) = d(PW (yn+r− j−1,S j(PS j)
n−1yn+r− j−1,α jn), p)

≤ d(W (yn+r− j−1,S j(PS j)
n−1yn+r− j−1,α jn), p)

≤ (1−α jn)d(yn+r− j−1, p)+α jnd(S j(PS j)
n−1yn+r− j−1, p)

≤ (1−α jn)d(yn+r− j−1, p)+α jn((1+ vnM)d(yn+r− j−1, p)+un)

≤ (1+ vnM)d(yn+r− j−1, p)+un

≤ (1+ vnM)r− j+1d(xn, p)+un[1+(1+ vnM)+ . . .+(1+ vnM)r− j].

(3.6)

Using (3.3) and (3.6), for 2≤ j ≤ r, we have

d(yn+r− j, p)≤ (1+ vnM)r− j+1d(xn, p)+un[1+(1+ vnM)+ . . .+(1+ vnM)r− j]. (3.7)
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From (1.1), ( 3.4) and (3.6), we have

d(xn+1, p) = d(PW (yn+r−2,S1(PS1)
n−1yn+r−2,α1n), p)

≤ d(W (yn+r−2,S1(PS1)
n−1yn+r−2,α1n), p)

≤ (1−α1n)d(yn+r−2, p)+α1nd(S1(PS1)
n−1yn+r−2, p)

≤ (1−α1n)d(yn+r−2, p)+α1n((1+ vnM)d(yn+r−2, p)+un)

≤ (1+ vnM)d(yn+r−2, p)+un

≤ (1+ vnM)rd(xn, p)+un[1+(1+ vnM)+ . . .+(1+ vnM)r−1]

≤ [1+
(

r
1

)
vnM+

(
r
2

)
v2

nM2 + . . .+

(
r
r

)
vr

nMr]d(xn, p)+unr(1+ vnM)r−1

≤ (1+βrvnM)d(xn, p)+unr(1+ vnM)r−1

≤ (1+σn)d(xn, p)+δn,

(3.8)

where βr =
(r

1

)
+
(r

2

)
+ . . .+

(r
r

)
, σn = βrvnM, δn = unr(1 + vnM)r−1, Since ∑

∞
n=1 σn < ∞,

∑
∞
n=1 δn < ∞, it follows from Lemma 2.4 that (3.1) is proved, and {xn} is also bounded.

Step 2. We prove that

lim
n→∞

d(xn,Sr(PSr)
n−1xn) = 0, lim

n→∞
d(yn+r− j−1,S j(PS j)

n−1yn+r− j−1) = 0,1≤ j ≤ r−1. (3.9)

Assume that

lim
n→∞

d(xn, p) = c≥ 0. (3.10)

Using (3.2), (3.4) and (3.7), we have

limsup
n→∞

d(Sr(PSr)
n−1xn, p)≤ c, limsup

n→∞

d(yn+r− j, p)≤ c,2≤ j ≤ r. (3.11)

and

limsup
n→∞

d(S j(PS j)
n−1yn+r− j−1, p)≤ c,1≤ j ≤ r−1. (3.12)

Using (3.8), we have

d(xn+1, p)≤ d(W (yn+r−2,S1(PS1)
n−1yn+r−2,α1n), p)

≤ (1+σn)d(xn, p)+δn.
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By (3.10), we have

lim
n→∞

d(W (yn+r−2,S1(PS1)
n−1yn+r−2,α2n), p) = c. (3.13)

It follows from (3.11)-(3.13) and Lemma 2.2 that

lim
n→∞

d(yn+r−2,S1(PS1)
n−1yn+r−2) = 0. (3.14)

From (3.8), we have

d(xn+1, p)≤ (1+ vnM)d(yn+r−2, p)+un.

It follows that

liminf
n→∞

d(yn+r−2, p)≥ c. (3.15)

Using (3.11) and (3.15), we have

lim
n→∞

d(yn+r−2, p) = c. (3.16)

Using (3.6) with j = 2, we have

d(yn+r−2, p)≤ d(W (yn+r−3,S2(PS2)
n−1yn+r−3,α2n), p)

≤ (1+ vnM)r−1d(xn, p)+un[1+(1+ vnM)+ . . .+(1+ vnM)r−2].
(3.17)

Using (3.16) and (3.10), we have

lim
n→∞

d(W (yn+r−3,S2(PS2)
n−1yn+r−3,α2n), p) = c. (3.18)

It follows from (3.11), (3.12), (3.18) and Lemma 2.2 that

lim
n→∞

d(yn+r−3,S2(PS2)
n−1yn+r−3) = 0. (3.19)

By induction, we get for 2≤ j ≤ r−1

lim
n→∞

d(yn+r− j−1,S j(PS j)
n−1yn+r− j−1) = 0, lim

n→∞
d(yn+r− j, p) = c. (3.20)

From (3.5), we see

liminf
n→∞

d(yn, p)≥ c. (3.21)

By (3.11), we have

lim
n→∞

d(yn, p) = c. (3.22)
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From (3.3), we obtain

lim
n→∞

d(W (xn,Sr(PSr)
n−1xn,αrn), p) = c. (3.23)

From (3.10), (3.11), (3.24) and Lemma 2.2, we have that

lim
n→∞

d(xn,Sr(PSr)
n−1xn) = 0. (3.24)

So (3.9) is proved.

Step 3. We show that

lim
n→∞

d(xn,S jxn) = 0, j = 1,2, . . . ,r. (3.25)

From yn = PW (xn,Sr(PSr)
n−1xn,αrn) and (3.24), we have

d(xn,yn)≤ d(xn,W (xn,Sr(PSr)
n−1xn,αrn))

≤ (1−αrn)d(xn,xn)+αrnd(xn,Sr(PSr)
n−1xn)

≤ d(xn,Sr(PSr)
n−1xn)→ 0(n→ ∞).

(3.26)

Since Sr−1 is uniformly L-Lipschitzian, it follows from (3.20) and (3.26) that,

d(xn,Sr−1(PSr−1)
n−1xn)

≤ d(xn,yn)+d(yn,Sr−1(PSr−1)
n−1yn)+d(Sr−1(PSr−1)

n−1yn,Sr−1(PSr−1)
n−1xn)

≤ d(xn,yn)+d(yn,Sr−1(PSr−1)
n−1yn)+Ld(yn,xn)→ 0(n→ ∞).

(3.27)

From (3.26) and (3.10), we find

d(xn,yn+1)≤ d(xn,W (yn,Sr−1(PSr−1)
n−1yn,α(r−1)n))

≤ (1−α(r−1)n)d(xn,yn)+α(r−1)nd(yn,Sr−1(PSr−1)
n−1yn)

→ 0(n→ ∞).

(3.28)

Since Sr−2 is uniformly L-Lipschitzian. it follows from (3.20) and (3.28) that,

d(xn,Sr−2(PSr−2)
n−1xn)

≤ d(xn,yn+1)+d(yn+1,Sr−2(PSr−2)
n−1yn+1)

+d(Sr−2(PSr−2)
n−1yn+1,Sr−2(PSr−2)

n−1xn)

≤ (1+L)d(xn,yn+1)+d(yn+1,Sr−2(PSr−2)
n−1yn+1)→ 0(n→ ∞).

(3.29)
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Continuing in this fashion we have

lim
n→∞

d(xn,S j(PS j)
n−1xn) = 0, j = 1,2, . . . ,r. (3.30)

and

lim
n→∞

d(xn,yn+ j−1) = 0, j = 1,2, . . . ,r−1, lim
n→∞

d(xn,xn+1) = 0. (3.31)

Since S1 is uniformly L-Lipschitzian. Denote as (PS1)
1−1 the identity maps from C onto itself.

Thus by the inequality (3.30) and (3.31), we have

d(xn,S1xn)≤ d(xn,xn+1)+d(xn+1,S1(PS1)
nxn+1)

+d(S1(PS1)
nxn+1,S1(PS1)

nxn)+d(S1(PS1)
nxn,S1xn)

≤ (1+L)d(xn,xn+1)+d(xn+1,S1(PS1)
nxn+1)

+d(S1(PS1)
1−1(PS1)

nxn,S1(PS1)
1−1xn)

≤ (1+L)d(xn,xn+1)+d(xn+1,S1(PS1)
nxn+1)+Ld((PS1)

nxn,xn)

≤ (1+L)d(xn,xn+1)+d(xn+1,S1(PS1)
nxn+1)+Ld(S1(PS1)

n−1xn,xn)

→ 0(n→ ∞).

(3.32)

Similarily, we may show that (3.25).

Step 4. We prove that {xn} 4-converges to a point q ∈ F . Since {xn} is bounded, by Lemma

2.1, it has a unique asymptotic center AC({xn}) = {q}, that is xn ⇀ q [4]. If {wn} is any

sequence of{xn} with AC({wn}) = {w}. Since limn→∞ d(xn,S jxn) = 0, j = 1,2, . . . ,r, it follows

from we have Lemma 2.3 that w ∈ F . By the uniqueness of asymptotic center,we have w = q. It

implies that q is the unique asymptotic center of {wn} for each subsequence {wn} of {xn}, that

is {xn} 4-converges to a point q ∈ F .

Let r = 2, we have the following theorem.

Theorem 3.2. Let C be a nonempty closed convex subset of a complete uniformly convex

hyperbolic space X with monotone modulus of uniform convexity η . Let S1,S2 : C→ X be uni-

formly L-Lipschitzian and ({vn},{un},ξ )-total asymptotically nonexpansive nonself mappings.

Let P : X →C be the nonexpansive retraction. Let the sequence {xn} be defined iteratively by
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the following manner: 
x1 ∈C,

xn+1 = PW (yn,S1(PS1)
n−1yn,αn),

yn = PW (xn,S2(PS2)
n−1xn,βn).

Assume that F = F(S1)∩F(S2) 6= /0 and the following conditions are satisfied:

(1)
∞

∑
n=1

vn < ∞,
∞

∑
n=1

un < ∞.

(2)Suppose that {αn},βn} are real sequences in [a,b] for some a,b ∈ (0,1).

(3)There exists a constant M > 0 such that ξ (t)≤Mt, t ≥ 0.

Then the sequence {xn} 4-converges to a point q ∈ F.

Theorem 3.2 developed the result in [4].

Example 1. Let R be the real line with the usual norm | · | and C = [−1,1]. Define two mapping

T1,T2 : C→C by

T1x =

 −2sin x
2 , x ∈ [0,1],

2sin x
2 , x ∈ [−1,0),

and

T2x =

 x, x ∈ [0,1],

−x, x ∈ [−1,0).

It is proved in [16] that both T1 and T2 are asymptotically nonexpansive mappings with kn =

1,∀n ≥ 1. Therefore, they are total asymptotically nonexpansive mappings with νn = νn =

0,∀n≥ 1,ξ (r) = r,∀r≥ 0. Additionally, they are uniformly L-Lipschitzian mapping with L = 1.

F(T1) = {0} and F(T2) = [0,1]. Let

αn =
n

2n+1
, βn =

n
3n+1

,∀n≥ 1. (3.33)

Therefore, the conditions of Theorem 3.2 are fulfilled.

Example 2. Let R be the real line with the usual norm | · | and C = [0,∞). Define two mapping

T1,T2 : C→C by

T1x = sinx, T2x = x.

It is proved in [17] that both T1 and T2 are total asymptotically nonexpansive mappings with

νn =
1
n2 ,νn =

1
n3 0,∀n ≥ 1. Additionally, they are uniformly L-Lipschitzian mapping with L =
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1. F(T1) = {0} and F(T2) = [0,∞). Let {αn},{βn} be the same as in (3.33) Therefore, the

conditions of Theorem 3.2 are fulfilled.

Theorem 3.3. Under the assumption of Theorem 3.1, if one of {S j}r
j=1 is either complete

continuous or semi-compact, then the sequence of {xn} defined by (1.1) converges strongly(i.e.,

in the metric topology) to a common fixed point q ∈ F.

Proof. By Theorem 3.1, we have {xn} is bounded and limn→∞ d(xn,S jxn) = 0, j = 1,2, . . . ,r.

If one of {S j}r
j=1 is semi-compact, say {Sk}, k ∈ {1,2, . . . ,r}, limn→∞ d(xn,Skxn) = 0. Then

there exists a subsequence {xni} of {xn} such that xni converges strongly to q ∈C. Then by the

continuity of {S j}, we get

d(q,S jq) = lim
i→∞

d(xni,S jxni) = 0, j = 1,2, . . . ,r,

which implies that q ∈ F . It follows from Theorem 3.1 that limn→∞ d(xn,q) exists and thus

limn→∞ d(xn,q) = 0.

If one of {S j}r
j=1 is complete continuous, say {Sk}, then exists a subsequence {Skxni} of

{Skxn} such that {Skxni} converges strongly to q∈C. By Theorem 3.1, limi→∞ d(xni,Skxni) = 0,

we have that limi→∞ d(xni,q) = 0.

Theorem 3.4. Under the assumption of Theorem 3.1, if there exists a nondecreasing function

f : [0,∞)→ [0,∞)with f (0) = 0, f (t)> 0,∀t > 0 such that

f (d(xn,F))≤ d(xn,S1xn)+d(xn,S2xn)+ . . .+d(xn,Srxn). (3.34)

Then the sequence of {xn} defined by (3.1) converges strongly(i.e., in the metric topology) to a

common fixed point q ∈ F.

Proof. By (3.25) and (3.34), we obtain that limn→∞ f (d(xn,F)) = 0. Since f : [0,∞) →

[0,∞)with f (0) = 0, f (t)> 0,∀t > 0, we have

lim
n→∞

d(xn,F) = 0. (3.35)

{xn} is bounded, there exists a constant K such that d(xn, p) ≤ K. Since limn→∞ d(xn,F) =

0, ∑
∞
n=1 σn < ∞ and ∑

∞
n=1 δn < ∞, given ε > 0, there exists a nature number N such that
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∑
∞
n=N(σnK + δn) <

ε

4 , and find p ∈ F such that d(xN , p) < ε

4 . For all n ≥ N and m ≥ 1, we

have

d(xn+m,xn)≤ d(xn+m, p)+d(xn, p)

≤ d(xN , p)+d(xN , p)+2
∞

∑
n=N

(σnK +δn)

≤ ε

4
+

ε

4
+

ε

2
= ε.

we show that {xn} is a Cauchy sequence in C. C is complete, we can assume that {xn} converges

strongly to some q ∈C. By (3.35) implies that lim j→∞ d(q,F) = 0.. F is closed, hence q ∈ F .
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