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Abstract. The purpose of this paper is to prove new common fixed point theorems for commuting mappings.

We also deduce new classes of k-set contraction mappings and guarantee the existence of their fixed points. As

applications, we establish an integral version of these results. Finally, we also introduce and study the resolvability

of a new type of integral equations.
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1. Introduction

Fixed point theory has become a very popular tool in solving existence problems in many

branches of mathematical analysis (see e.g. [6-8] , [10], [12]). For this reason, many authors are

interested in extending fixed point results of nonlinear operators (see e.g. [2-3] , [9], [14], [20]).

One of the more powerful of these is due to Meir and Keeler [16], they defined a new class of

contraction operators which includes the contraction mappings as special case and proved a very
∗Corresponding author.

E-mail addresses: bzr.nour@gmail.com (N.H. Bouzara), vkkaya@yahoo.com (V. Karakaya)

Received November 12, 2015
224



COMMON FIXED POINTS 225

interesting theorem more general than the Banach contraction theorem. In [17], Par and Bae

extended this new class of mappings in order to study the existence of common fixed points.

Recently, motivated by Meir and Keeler Aghajani et al. [4] presented a new class of con-

densing operators and proved a theorem which presents a very nice generalization of the Darbo

fixed point theorem.

In this paper, we present theorems that guarantee the existence of common fixed points for

commuting set contraction mappings and generalize the work of Jungck [13]. Motivated by Park

and Bae [17], we deduce new classes of k-set contraction mappings and study the existence of

common fixed points for these classes of mappings, the results obtained extend those given

by Aghajani et al. As applications, we also study the existence of common fixed points for

mappings that satisfy conditions like,∫
µ(N(A))

0
ϕ (r)dr 6 Φ

(∫
µ(H(A))

0
ϕ (r)dr

)
,

or

ε 6 Φ

(∫
µ(HA)

0
ϕ (r)dr

)
< ε +δ =⇒

∫
µ(N(A))

0
ϕ (r)dr < ε,

where A is a nonempty bounded convex closed subset of a Banach space X , µ is a measure of

noncompactness defined on X and N, H are mappings that satisfy some conditions which will

be given later.

Finally, we introduce and investigate the resolvability of the following integral equation∫ x(t)

0
ϕ (r)dr =

∫ f(t,x(t),
∫ 1

0 K(s,t),x(s)ds)

0
ϕ (r)dr.

2. Preliminaries

Throughout this paper, the following notation will be used, X denotes a Banach space. A is a

closed, bounded and convex subset of X . BX is the family of all bounded subsets of X .

Theorem 2.1. [13] Let H be a continuous self map of a complete metric space (X ,d). If there

exists k ∈ (0,1) and a mapping N : X → X which commutes with H (NH = HN) such that

NX ⊆ HX and

d (Nx,Ny)6 kd (Hx,Hy) ,∀x,y ∈ X ,
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then, N and H have a unique common fixed point.

Definition 2.1. (Park and Bae [16]) Let H and N be self maps of a metric space (X ,d). A map

N is say to be an (ε,δ )−H−contraction if the following conditions are satisfied.

i) For any ε > 0 there exists δ > 0, such that

ε 6 d (Hx,Hy)< ε +δ implies that d (Nx,Ny)< ε.

ii) Hx = Hy then Nx = Ny.

Theorem 2.2. [16] If H is a continuous self map of a complete metric space X and N is an

(ε,δ )−H−contraction which commutes with H, then H and N have a unique common fixed

point in X.

Theorem 2.3. (Schauder [1]) Let A be nonempty, convex, compact subset of a Banach space X.

Then every continuous self-mapping T : A→ A has at least one fixed point on A.

The Kuratowski [15] measure of noncompactness for a metric space Y is defined as,

Definition 2.2. A functional µ : BY→R+ such that

µ (A)= inf{ε > 0 : A is the finite union of subsets Ai such that sup{d (x,y) : x,y ∈ Ai}6 ε, ∀i} ,

is called measure of noncompactness.

Lemma 2.1. [9] A measure of noncompactness µ satisfies the following properties:

(1) µ (A) = 0⇔ A is a compact set.

(2) A⊂ B⇒ µ (A)6 µ (B) , ∀A,B ∈ BX .

(3) µ (A∪{x0}) = µ (A) , for any x0 ∈ X .

(4) µ (A) = µ
(
A
)
, ∀A ∈ BX .

(5) µ (ConvA) = µ (A) , ∀A,B ∈ BX .

(6) µ (λA+(1−λ )B)6 λ µ (A)+(1−λ )µ (B) , for ∀A,B ∈ BX and λ ∈ [0,1] .

(7) Let (An) be a sequence of closed subsets from BX such that An+1 ⊆ An, (n > 1) and

lim
n→∞

µ (An) = 0. Then, the intersection set A∞ =
∞⋂

n=1
An is nonempty and A∞ is compact.

Definition 2.3. [7] A mapping N : A→ A that satisfies µ (TA) 6 kµ (A), is said to be a k-set-

contraction mapping.
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Moreover, if k < 1, then N is called condensing mapping.

Lemma 2.2. [5] Let ψ : R+ → R+ be a nondecreasing and upper semicontinuous function.

Then,

lim
n→∞

ψ
n (t) = 0 ∀t > 0⇔ ψ (t)< t ∀t > 0.

3. Main results

In this section, we present the main results of this work.

Theorem 3.1. Let H be a continuous self-mapping defined on X. If there exists a self-mapping

N : A→ A such that N commutes with H and

µ (NA)6 Φ(µ (HA)) ,

where, Φ : R+→ R+ is a nondecreasing and upper semicontinuous function such that Φ(t)< t

for all t > 0. Then N and H have at least one common fixed point and the set of common fixed

points is compact.

Proof. Let (An)
∞

n=0 be closed, bounded and convex sequence of subset of X , such that An+1 =

Conv(N (An)). We notice that A1 = Conv(N (A0)) ⊆ A0 and A2 = Conv(N (A1)) ⊆ A1. By

induction, we get

...An+1 ⊆ An ⊆ ...⊆ A0.

Moreover, let

µ (An+1) = µ (Conv(N (An))) = µ (N (An))

6 Φ(µ (H (An))) .

Since H is a self-mapping, H (An)⊆ An which implies that µ (H (An))6 µ (An). Using the fact

that Φ is nondecreasing, we get

(1) µ (An+1)6 Φ(µ (An)) .
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Similarly, we obtain

(2) µ (An)6 Φ(µ (An−1)) .

By substituting (2) in (1), we have µ (An+1) 6 Φ2 (µ (An−1)) . Repeating this process n time,

we get µ (An+1)6 Φn+1 (µ (A0)) . Using Lemma 2.2. we have lim
n→∞

Φn+1 (µ (A0)) = 0. Conse-

quently, lim
n→∞

µ (An+1) = 0.

In view of Lemma 2.1. A∞ =
∞⋂

n=1
An is compact. Since N is a continuous mapping on a

compact A∞, then by Schaulder Theorem, H has at least one fixed point.

Suppose that x∗ is the fixed point of H, that is, Hx∗ = x∗, then HNx∗ = NHx∗ = x∗, hence

Hx∗ (= x∗) is also fixed point of N. Consequently, N and H have at least one common fixed

point.

Now, let us show that the set of common fixed point is compact. Suppose

F = {x ∈ X , Nx = Hx = x}

and µ (F ) 6= 0. Then

µ (F ) = µ (N (F ))6 Φ(µ (H (F )))< µ (H (F ))6 µ (F ) .

This is a contradiction. Thus, µ (F ) = 0. Hence F is compact. This completes the proof.

Corollary 3.1. Let N and H given as in Theorem 3.1. such that

µ (NA)6 kµ (HA) , k ∈ [0,1) .

Then, N and H have at least one common fixed point and the set of common fixed points is

compact.

Proof. It suffices to take Φ(t) = kt where k ∈ [0,1[ in Theorem 3.1.

Corollary 3.2. [3] Let A be a nonempty closed, bounded and convex subset of X. If N : A→ A

is a continuous mapping such that µ (NA)6 Φ(µ (A)), where Φ : R+→ R+ is a nondecreasing

and upper semicontinuous function such that Φ(t) < t for all t > 0. Then, H has at least one

fixed point in A.

Proof. Taking H = I in Theorem 3.1, we obtain the desired conclusion immediately.
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Corollary 3.3. (Darbo Theorem [9]) Let A be a nonempty closed, bounded and convex subset

of X. If N : A→ A is a continuous mapping such that

(3) µ (NA)6 kµ (A) , k ∈ [0,1) ,

then N has a fixed point in A.

Proof. Taking Φ(t) = kt in Corollary 3.2, we obtain the desired conclusion immediately.

Theorem 3.2. Let N and H be commuting self-mappings on A. Suppose that either N or H is

continuous and µ (NA) < Φ(µ (HA)) , then N and H have at least one common fixed point in

A and the set of common fixed points is compact.

Proof. For a given x0 ∈ X , the set S ={S∪{x0}� S is closed and convex subset of X}. De-

note A =
⋂

S. Suppose that A is not compact, that is, µ (A) 6= 0. It is clear that A is non empty

(since x0 ∈ A).

Now, define R = Conv(NA)∪ {x0}. Obviously, R is closed and convex subset of X that

contains x0. Then R ∈S . Thus, A⊆ R.

Moreover, R⊆ A∪{x0} ⊆ A (since N is a self-mapping, then Conv(NA)⊆ A ). Consequent-

ly, R = A. Let µ (A) = µ (R) = µ (Conv(NA)∪{x0}), using the properties of the measure of

noncompactness, we get

µ (A) = µ (NA)< Φ(µ (HA))< µ (HA)6 µ (A) .

Then, A should be compact. If N (or H) is continuous, then by Schaulder Theorem we con-

clude that N (Or H) has at least one fixed points on A. Suppose that x∗ is a fixed point of

N, that is, Nx∗ = x∗, then NHx∗ = HNx∗ = Hx∗, hence Nx∗ (= x∗) is a fixed point of H.

(Similarly if x∗ is a fixed point of H) .

Finally, N and H have at least one common fixed point on A and as previously we can easily

show that the set of common fixed points is compact.

Corollary 3.4. Let N and H given as in Theorem 3.2. such that instead of Condition 3. we have

the following inequality µ (NA)< µ (HA) , then N and H have at least one common fixed point

in A and the set of common fixed points is compact.
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Proof. Let for an arbitrary ε > 0, Φ(t) = t− ε , then Condition 3. become

µ (NA)< µ (HA)− ε.

Since ε is arbitrary, then by taking the limit as ε goes to 0 we get µ (NA)< µ (HA).

Corollary 3.5. (Sadovski Theorem [19]) Let A be a nonempty closed, bounded and convex

subset of X. If N : A→ A is a continuous mapping such that

µ (NA)< µ (A) ,

then H has a fixed point in A and the set of common fixed points is compact.

Proof. Taking H = I in Corollary 3.4, we obtain the desired conclusion immediately.

Corollary 3.6. Let N and H given as in Theorem 3.2 such that instead of Condition 3 we have

the following inequality

µ (NA)< kµ (HA)+(1− k)µ (A) , k ∈ [0,1) .

Then, N and H have a common fixed point and the set of common fixed points is compact.

Proof. Since H is a self-mapping then HA⊆ A which implies that µ (HA)6 µ (A) . Then,

µ (NA) 6 kµ (HA)+(1− k)µ (A)

< kµ (A)+(1− k)µ (A)

= µ (A) .

Then by Corollary 3.5, N has a fixed point in A.

Moreover, by assuming that x is the fixed point of N, that is, Nx = x, we get NHx = HNx =

Hx, hence Nx (= x) is a fixed point of H. Thus, N and H have common fixed point.

Definition 3.1. Let N and H two self mappings on X , N is an (ε,δ ) H-set-contraction if and

only if for any ε > 0 there exists δ > 0, such that ε 6 µ (HA)< ε +δ implies that µ (NA)< ε .

Definition 3.2. Let N and H two self mappings on X , N is said to be a generalized (ε,δ ) H-set-

contraction if and only if for any ε > 0 there exists δ > 0, such that ε 6 Φ(µ (HA)) < ε + δ

implies that µ (NA)< ε .
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Remark 3.1. The case H = I, was introduced by Aghajani et al. in [4] under the name of N

Meir-Keeler condensing operator.

Theorem 3.3. If N is a continuous self-mapping of X and H is a generalized (ε,δ ) H-set-

contraction which commutes with N. Then, N and H have at least one common fixed point in X

and the set of fixed point is compact.

Proof. Interestingly, although the class of generalized (ε,δ ) H-set-contraction mapping is larg-

er than that of generalized set-contraction mappings, one may prove Theorem 3.3. by means of

Theorem 3.1. Indeed, since

ε 6 Φ(µ (HA))< ε +δ implies that µ (NA)< ε .

Obviously µ (NA)< Φ(µ (HA)) .Hence by Theorem 3.2. N and H have at least one fixed point

and the set of fixed points is compact.

Corollary 3.7. If N is a continuous self-mapping of X and H is an (ε,δ ) H-set-contraction

which commutes with N. Then, N and H have at least one common fixed point in X.

Proof. We can easily notice that, µ (NA) < µ (HA) . Then by Corollary 3.4, N and H have at

least one fixed point and the set of fixed points is compact.

Corollary 3.8. [4] If N is a Meir-Keeler continuous condensing self mapping, then N have at

least one fixed point and the set of fixed point is compact.

Proof. Taking H = I in Theorem 3.3, we obtain the desired conclusion immediately.

4. Applications

In order to extend the well-known Banach-Caccioppoli theorem, Branciari [11] was the first

to introduce contractive mappings of integral type. Afterwards, many authors continued Bran-

ciari’s study and obtained many fixed point theorems for several classes of contractive mapping

of integral type (see, e.g. [18], [21], [22] and the references therein).

In this section, we establish integral versions of the fixed point theorems presented in the

previous section. The proofs of this section are given only in sketches since they are based on

arguments similar to the ones used previously.
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Theorem 4.1.Let N , H : A→ A be commuting mappings such that either N or H is continuous.

If there exists Φ : R+→ R+ nondecreasing and upper semicontinuous function such that Φ(t)<

t for all t > 0 and for which we have∫
µ(NA)

0
ϕ (t)dt 6 Φ

(∫
µ(HA)

0
ϕ (t)dt

)
.

Then F = {x ∈ A/ Sx = T x = x} is nonempty and compact.

Proof. First, let (An)
∞

n=0 be a closed and convex sequence of subset of X , such that An+1 =

Conv(N (An)). We notice that A1 = Conv(N (A0)) ⊆ A0 and A2 = Conv(N (A1)) ⊆ A1. By

induction, we get

...An+1 ⊆ An ⊆ ...⊆ A0.

Obviously, ∫
µ(An+1)

0
ϕ (r)dr 6 Φ

(∫
µ((An))

0
ϕ (r)dr

)
.

Repeating this process n-time, we get∫
µ(An+1)

0
ϕ (r)dr 6 Φ

n
(∫

µ(A0)(p)

0
ϕ (r)dr

)
.

As previously, since limn→∞ Φn
(∫ µ(A0)(p)

0 ϕ (r)dr
)
= 0, we get limn→∞ µ (An+1) = 0. Conse-

quently, if N is continuous, then by Schaulder Theorem N has at least one fixed point and as

previously by a simple calculation we can show that H and N have at least one common fixed

point and the set of fixed points is compact (Similarly if H is continuous).

Corollary 4.1. Let N , H : A→ A be commuting mappings such that either N or H is continuous

and ∫
µ(NA)

0
ϕ (r)dr 6 k

∫
µ(HA)

0
ϕ (r)dr, f or k ∈ [0,1) .

Then, F = {x ∈ A/ Sx = T x = x} is nonempty and compact.

Proof. Take Φ(t) = kt in Theorem 4.1, we obtained the desired conclusion immediately.

Corollary 4.2. [2] Let A be a nonempty closed, bounded and convex subset of X. If N : A→ A

is a continuous mapping such that∫
µ(NA)

0
ϕ (r)dr 6 Φ

(∫
µ(A)

0
ϕ (r)dr

)
,



COMMON FIXED POINTS 233

where Φ : R+→ R+ is a nondecreasing and upper semicontinuous function such that Φ(t)< t

for all t > 0. Then, H has at least one fixed point in A.

Proof. Taking H = I in Theorem 4.1, we obtain the desired conclusion immediately.

Corollary 4.3. Let A be a nonempty closed, bounded and convex subset of X. If N : A→ A is

a continuous mapping such that∫
µ(NA)

0
ϕ (r)dr 6 k

∫
µ(A)

0
ϕ (r)dr,, k ∈ [0,1) ,

then N has a fixed point in A.

Proof. Taking Φ(t) = kt in Corollary 4.2, we obtain the desired conclusion immediately.

Theorem 4.2. Let N and H be commuting self-mappings from A to A such that N commutes

with H. Suppose that either N or H is continuous and∫
µ(NA)

0
ϕ (r)dr < Φ

(∫
µ(A)

0
ϕ (r)dr

)
,

then N and H have at least one common fixed point in A and the set of common fixed points is

compact.

Proof. The proos is similar to the proof of Theorem 3.2.

Corollary 4.4. Let N and H given as in Theorem 4.2. such that∫
µ(NA)

0
ϕ (r)dr <

∫
µ(A)

0
ϕ (r)dr,

then N and H have at least one common fixed point in A and the set of common fixed points is

compact.

Proof. Since H is a self-mapping then HA⊆ A which implies that µ (HA)6 µ (A) . Then,∫
µ(NA)

0
ϕ (r)dr < k

∫
µ(HA)

0
ϕ (r)dr+(1− k)

∫
µ(A)

0
ϕ (r)dr

6 k
∫

µ(A)

0
ϕ (r)dr+(1− k)

∫
µ(A)

0
ϕ (r)dr

=
∫

µ(A)

0
ϕ (r)dr.

Then by Corollary 4.3. N has a fixed point in A and by easy calculation we show that N and H

have common fixed point.
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Definition 4.1. Let N and H two self mappings on X , N is an (ε,δ ) H-set-contraction of integral

type if and only if for any ε > 0 there exists δ > 0, such that ε 6
∫ µ(HA)

0 ϕ (r)dr < ε +δ implies

that
∫ µ(NA)

0 ϕ (r)dr < ε .

Definition 4.2. Let N and H two self mappings on X , N is said to be a generalized (ε,δ )

H-set-contraction of integral type if and only if for any ε > 0 there exists δ > 0, such that

ε 6 Φ

(∫ µ(HA)
0 ϕ (r)dr

)
< ε +δ implies that

∫ µ(NA)
0 ϕ (r)dr < ε .

Remark 4.1. If H = I in Definition 4.2, then N is a Meir Keeler condensing operator type (see

[4]).

Theorem 4.3. Let H be a continuous self mapping on A and N is a generalized (ε,δ )−

H−contraction of integral type which commutes with H, then H and N have at least one com-

mon fixed point in X and th set of fixed points is compact.

Proof. Obviously, ∫
µ(NA)

0
ϕ (r)dr < Φ

(∫
µ(HA)

0
ϕ (r)dr

)
.

Then by Theorem 4.2. N and H have at least one fixed point and the set of fixed points is

compact.

Corollary 4.5. Let H be a continuous self mapping on A and N is a (ε,δ )−H−integral type

set contraction which commutes with H, then H and N have at least one common fixed point in

X and th set of fixed points is compact.

Proof. The proof is obvious.

Corollary 4.6. If N is a Meir-Keeler continuous condensing integral type self-mapping, then N

have at least one fixed point and the set of fixed point is compact.

Proof. Taking H = I in Theorem 4.3, we get the desired conclusion immediately.

5. Fredholm integral equations of integral type

Let the following Volterra integral equation

(5.1)
∫ x(t)

0
ϕ (r)dr =

∫ f(t,x(t),
∫ 1

0 K(s,t)x(s)ds)

0
ϕ (r)dr.
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In this section, we characterize solutions of Integral Equation 5.1. defined on the Banach space

C ([0,1]) consisting of all defined, bounded and continuous functions on the interval C ([0,1]) .

We endow the space C ([0,1]) with the usual norm

‖x‖= sup{|x(t)| : t > 0} .

Let X be a nonempty and bounded subset of the space C ([0,1]). Fix x ∈ C [0,1], T > 0 and

ε > 0. Let us denote

ω0 (X) = lim
ε→0

sup{ω (x,ε) : x ∈ X} ,

where X ∈MC([0,1]) ω (x,ε) = sup{|x(t1)− x(t2)| : t1, t2 ∈ [0,1] , |t2− t1|6 ε} .

According to [10] the above defined ω0 (X) is a regular measure of noncompactness in the

space C [0,1].

Then under the following hypotheses:

(i) The function K : [0,1]2→ R is continuous and there exists M = sup{|K (s, t)| , s, t ∈ [0,1]}<

1.

(ii) The function f : [0,1]3→ R is continuous and there exist bounded functions a(t) , b(t)

defined on [0,1] such that

| f (t,x1,y)− f (t,x2,y)| 6 a(t) |x1− x2|,

| f (t,x,y1)− f (t,x,y2)| 6 b(t) |y1− y2|,

and there exists a positive α such that f (t,x(t) ,0)6 α.

Then, we have the following theorem.

Theorem 5.1. Assuming the hypotheses (i)− (ii) hold. Then, Equation 5.1. has at least one

fixed point in C [0,1].

Proof. In order to study the existence of solution for Equation 5.1. we study the existence of

fixed points of the following operator

Fx(t) = f
(

t,x(t) ,
∫ 1

0
K (s, t)x(s)ds

)
.



236 N.H. BOUZARA, V. KARAKAYA

Firstly, we verify that F is a self-mappings. To do this, we fix x ∈ Br, then

|Fx(t) | =

∣∣∣∣ f (t,x(t) ,
∫ 1

0
K (s, t)x(s)ds

)∣∣∣∣
6

∣∣∣∣ f (t,x(t) ,
∫ 1

0
K (s, t)x(s)ds

)
− f (t,x(t) ,0)

∣∣∣∣+ ∣∣∣∣ f (t,x(t) ,
∫ 1

0
K (s, t)x(s)ds

)∣∣∣∣
6 b(t)M ‖x‖+α.

Since b(t)M < 1, we can found r0 that satifies the inequality

r 6
α

1−b(t)M
.

Thus, FBr0 ⊂ Br0 and F is a self mapping.

Next, we verify that F is continuous on Br0 . To do this, we fix δ > 0 and take arbitrary x,

y ∈ Br0 such that ‖x− y‖6 δ . Then for t > 0,

|Fx(t)−Fy(t)| =

∣∣∣∣ f (t,x(t) ,
∫ 1

0
K (s, t)x(s)ds

)
− f

(
t,y(t) ,

∫ 1

0
K (s, t)y(s)ds

)∣∣∣∣
6

∣∣∣∣ f (t,x(t) ,
∫ 1

0
K (s, t)x(s)ds

)
− f

(
t,x(t) ,

∫ 1

0
K (s, t)y(s)ds

)∣∣∣∣
+

∣∣∣∣ f (t,x(t) ,
∫ 1

0
K (s, t)y(s)ds

)
− f

(
t,y(t) ,

∫ 1

0
K (s, t)y(s)ds

)∣∣∣∣
6 a(t) |x(t)− y(t)|+b(t)

∫ 1

0
|K (s, t)| |x(s)− y(s)|ds

6 (a(t)+b(t)M)‖x− y‖ .

Now for x ∈ Br0, let ∫ |Fx(t1)−Fx(t2)|
ϕ (r)dr

=
∫ | f(t1,x(t1),

∫ 1
0 K(s,t1)x(s)ds)− f(t2,x(t2),

∫ 1
0 K(s,t2)x(s)ds)|

ϕ (r)dr

6
∫ | f(t1,x(t1),

∫ 1
0 K(s,t1)x(s)ds)− f(t2,x(t1),

∫ 1
0 K(s,t1)x(s)ds)|

+| f(t2,x(t1),
∫ 1

0 K(s,t1)x(s)ds)− f(t2,x(t2),
∫ 1

0 K(s,t1)x(s)ds)|
+| f(t2,x(t2),

∫ 1
0 K(s,t1)x(s)ds)− f(t2,x(t2),

∫ 1
0 K(s,t2)x(s)ds)|ϕ (r)dr

6
∫

ω( f ,ε)+a(t)ω(x,ε)+b(t)ω(K,ε)
∫ 1

0 |x(s)|ds
ϕ (r)dr,

where

ω ( f ,ε) = sup{| f (t1, ., .)− f (t2, ., .)| : ti ∈ [0,1] , |t2− t1|6 ε} ,
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and

ω (K,ε) = sup{|K (., t1)−K (., t2)| : ti ∈ [0,1] , |t2− t1|6 ε} .

Since f and K are continuous on [0,1]×Br0×Br0 , [0,1]× [0,1] (Resp.), then they are uniformly

continuous on [0,1]×Br0×Br0 , [0,1]× [0,1] (Resp.). Hence,

lim
ε→0

ω ( f ,ε) = lim
ε→0

ω (K,ε) = 0.

Consequently, ∫
ω(Fx,ε)

ϕ (r)dr 6
∫ sup

t∈[0,1]
|a(t)|ω(x,ε)

ϕ (r)dr.

By making a change of variable, we get∫
ω(Fx,ε)

ϕ (r)dr 6 sup
t∈[0,1]

|a(t)|
∫

ω(x,ε)
ϕ

(
r sup

t∈[0,1]
|a(t)|

)
dr.

Since sup
t∈[0,1]

|a(t)|6 1 and ϕ is increasing then it is obviously that ϕ

(
r sup

t∈[0,1]
|a(t)|

)
6 ϕ (r) .

Hence, ∫
ω(Fx,ε)

ϕ (r)dr 6 sup
t∈[0,1]

|a(t)|
∫

ω(x,ε)
ϕ (r)dr.

By taking limits, we get∫
ω0(FX)

ϕ (r)dr 6 sup
t∈[0,1]

|a(t)|
∫

ω0(X)

ϕ (r)dr.

Then, using Corollary 4.4. Equation 5.1. has at least one solution in C [0,1].

Example 5.1. Let solve the following integral equation on C [0,1]

(5.2)
∫ x(t)

0

√
rdr =

∫ − 1
8 e−t+x(t)+ 1

8
∫ 1

0 es−tx(s)ds

0

√
rdr,

where t ∈ [0,1].

We notice that by taking ϕ (r) =
√

r, K (s, t) = 1
4es−t and

f (t,x(t) ,y(t)) =−1
8

e−t + x(t)+
1
2

y(t) ,

we get the integral equation,∫ x(t)

0
ϕ (r)dr =

∫ f(t,x(t),
∫ 1

0 K(s,t)x(s)ds)

0
ϕ (r)dr.
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Since, for any t,s ∈ [0,1]

|K (s, t)|= 1
4

es−t 6
es

4
6

e
4
' 0.68.

In further, we know that x(t) ∈C [0,1] ,then

f (t,x(t) ,0) =−1
8

e−t + x(t)6
7
8
= α.

It is easy to see that a(t) = 1 and b(t) = 1
2 , since

| f (t,x(t) ,y(t))− f (t,u(t) ,y(t))|= |x(t)−u(t)| ,

and

| f (t,x(t) ,y(t))− f (t,x(t) ,v(t))|= 1
2
|y(t)− v(t)| .

Then, by Theorem 5.1. Equation 5.2. has at least one solution in C [0,1] .

We notice that,
∫ e−t

0
√

rdr = 2
3e−

3
2 t is one of the solutions of Equation 5.2. and has the

following graphic,

FIGURE 1
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