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Abstract. In this paper, we establish some results on coincidence and common fixed points for a single-valued

map, a pair of single-valued maps and of single-valued map with a multi-valued map in an Ultrametric space which

satisfy F-contraction. Our theorems generalize and extent the theorems of Mishra and Pant[Generalization of some

fixed point theorems in ultrametric spaces, Adv. Fixed Point Theory, 4(1)(2014), 41- 47], thereby generalizes some

known results in the existing literature.
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1. Introduction

Gajic[2] studied the fixed point theorem of contractive type maps on a spherically com-

plete ultrametric space which is a generalization of the Banach fixed point theorem and later

in 2002[3], he generalized [2] to a multi-valued map. Later in 2007, Rao et al.[9] proved

some coincidence point theorems for three and four self maps in the Ultrametric space. In
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2008, Rao and Kishore[8] proved some common fixed point theorems for a pair of maps of

Jungck type on a spherically complete ultrametric space. And one of the recent generaliza-

tion of the Banach Contraction Principle for single-valued maps on a complete metric space

called F-contraction was introduced by Wardowski[11]. Following Wardowski, Minak et al.[6],

Cosentino and vetro[4], Piri and Kumam[7] generalized this F-contraction to Hardy-Roger type

and Suzuki type F-contraction. In [1] Altun et al. extend the F-contraction from single-valued

maps to multi-valued maps.

In this paper we use the F-contraction for a single-valued map, a pair of single-valued maps

and of single-valued map with multi-valued maps in an ultrametric space and prove some fixed

point theorems.

2. Preliminaries

We denote the class of all nonempty compact subsets of X by C(X) and for A,B ∈C(X), the

Hausdorff metric induced by d is defined by

H(A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)}

where d(x,A) = in f{d(x,y) : y ∈ A}

Definition 1.1.[10] Let (X ,d) be a metric space. If the metric d satisfies strong triangle inequal-

ity d(x,y) ≤ max{d(x,z),d(z,y)}, for all x,y,z in X , then d is called an ultra metric on X and

(X ,d) is called an ultra metric space.

Definition 1.2.[10] An ultra metric space is said to be spherically complete if every shrinking

collection of balls in X has a non empty intersection.

Definition 1.3. Let (X ,d) be an ultra metric space, an element x ∈ X is said to be a coincidence

point of a multi-valued map g : X →C(X) and a single-valued map T : X → X if T x ∈ gx.

Definition 1.4.[8] Let (X ,d) be an ultra metric space. Let g : X →C(X) be a multi-valued map

and T : X → X be a single-valued map then g and T are said to be coincidentally commuting at

z ∈ X if T z ∈ gz implies T gz⊆ gT z.
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Let R be the set of all real numbers and F be the set of all functions F : (0,∞)→R satisfying

the following conditions:

(a) F is strictly increasing, that is, for all α,β ∈ (0,+∞) if α < β then F(α)< F(β ).

(b) For each sequence {αn} of positive numbers, the following holds:

limn→∞αn = 0 if and only if limn→∞F(αn) =−∞.

(c) There exist k ∈ (0,1) such that limα→0+(α
kF(α)) = 0.

Definition 1.5.[11] Let (X, d) be a metric space. A self map T on X is an F-contraction, if

F ∈F and there exist τ > 0 such that

(1) d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(d(x,y))

for all x,y ∈ X .

3. Main results

In this section, we prove the existence of coincidence point and fixed point for a single-valued

map and a pair of single-valued maps.

Theorem 3.1. Let (X ,d) be a spherically complete ultra metric space and let T : X → X be a

single-valued map such that

(2) d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(max{d(x,y),d(x,T x),d(y,Ty)})

for all x,y ∈ X where F ∈F , τ > 0. Then T has a unique fixed point.

Proof. For α ∈X , let Bα =B(α,d(α,T α)) denote the closed sphere with center at α and radius

d(α,T α). Let A be the collection of these spheres for all α ∈ X . Then the relation Bα ≤ Bβ if

and only if Bβ ⊆ Bα is a partial order on A .

Now, consider a totally ordered subfamily A1 of A . Since (X ,d) is spherically complete, we

have
⋂

Bα∈A1

Bα = B 6= φ .
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Let β ∈ B and Bα ∈A1. If x ∈ Bβ , then

d(x,β )≤ d(β ,T β )

≤ max{d(β ,α),d(α,T β )})

≤ max{d(β ,α),d(α,T α),d(T α,T β )})

= max{d(α,T α),d(T α,T β )}.

Case:1 If d(T α,T β )≤ d(α,T α) then d(x,β )≤ d(α,T α).

Case:2 If d(a,T α)≤ d(T α,T β ) then

d(x,β )≤ d(β ,T β )≤ d(T α,T β )

< max{d(α,β ),d(α,T α),d(β ,T β )}) f rom(2)

= max{d(α,T α),d(β ,T β )}

If d(β ,T β )≤ d(α,T α) then d(x,β )≤ d(α,T α). And if d(α,T α)≤ d(β ,T β ) then

d(β ,T β )< d(β ,T β ), a contradiction. Therefore d(x,β )≤ d(α,T α) for x ∈ Bβ .

Now,

d(x,α)≤ max{d(x,β ),d(β ,α)}

≤ max{d(x,β ),d(α, ,T α)}= d(a,T α).

Hence d(x,α)≤ d(α,T α). Thus, x ∈ Bα . Hence Bβ ⊆ Bα for any Bα in A1. Thus Bβ is the

upper bound for the family A1 in A and hence by Zorn’s lemma A has a maximum element

say Bz for some z ∈ X .

Now to prove that z = T z. Suppose that z 6= T z.

Using (2)

τ +F(d(T z,T 2z))≤ F(max{d(z,T z),d(T z,T 2z),d(z,T 2z)})

≤ F(max{d(z,T z),d(T z,T 2z)})

which implies F(d(T z,T 2z))< F(d(z,T z)) and since F is a increasing function,

(3) d(T z,T 2z)< Fd(z,T z).

Now if y ∈ BT z, then d(y,T z)≤ d(T z,T 2z)< d(z,T z).

And d(y,z)≤ max{d(y,T z),d(T z,z)}= d(z,T z) which implies y ∈ Bz. Hence BT z ⊆ Bz.
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Since d(z,T z)> d(T z,T 2z) implies z /∈ BT z. Therefore BT z * Bz. This is a contradiction to the

maximality of Bz. Hence z = T z, z is the common fixed point of T .

Uniqueness: Let w be a different fixed point. By(2) for w 6= z we have

τ +F(d(z,w)) = τ +F(d(T z,Tw)≤ F(max{d(z,w),d(z,T z),d(w,Tw)})

= F(d(z,w))

which implies F(d(z,w))< F(d(z,w)), that is, d(z,w)< d(z,w), a contradiction. Therefore

w = z, hence z is the unique common fixed point of T .

Corollary 3.2. Theorem 3.1 holds if the F-contraction (2) is replaced by

d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(max{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),

d(y,T x)})∀x,y ∈ X .
(4)

Proof. By strong triangle inequality, we have that d(x,Ty)≤ max{d(x,y),d(y,Ty)} and

d(y,T x)≤ max{d(y,x),d(x,T x)}. Hence we conclude that (4) implies (2).

Theorem 3.3. Let (X ,d) be a spherically complete Ultra metric space. If T and Sare

single-valued maps on X satisfying

(i) T (X)⊆ S(X),

(ii) d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(max{d(Sx,Sy),d(Sx,T x),d(Sy,Ty)}), for all

x,y ∈ X , x 6= y where F ∈F , τ > 0.

then there exists z ∈ X such that Sz = T z. Further if T and S are coincidentally commuting at z

then z is the unique common fixed point of T and S.

Proof. For α ∈ X , let Bα = B(Sα,d(Sα,T α)) denote the closed sphere with center at Sα and

radius d(Sα,T α). Let A be the collection of these spheres for all α ∈ X . Then the relation

Bα ≤ Bβ if and only if Bβ ⊆ Bα is a partial order on A .

Now, consider a totally ordered subfamily A1 of A . Since (X ,d) is spherically complete, we

have
⋂

Bα∈A1

Bα = B 6= φ .

Let Sβ ∈ B and Bα ∈A1. Then Sβ ∈ Bα . Hence d(Sβ ,Sα)≤ d(Sα,T α).
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Using (ii)

τ +F(d(T α,T β ))≤ F(max{d(Sα,Sβ ),d(Sα,T α),d(Sβ ,T β )})

F(d(T α,T β ))< F(max{d(Sα,Sβ ),d(Sα,T α),d(Sβ ,T β )}).

Hence

(5) d(T α,T β )< max{d(Sα,Sβ ),d(Sα,T α),d(Sβ ,T β )}.

If α = β then Bα = Bβ . Let α 6= β and x ∈ Bβ . Then

d(x,Sβ )≤ d(Sβ ,T β )

≤ max{d(Sβ ,Sα),d(Sα,T β )})

≤ max{d(Sβ ,Sα),d(Sα,T α),d(T α,T β )})

= max{d(Sα,T α),d(T α,T β )}

< max{d(Sα,Sβ ),d(Sα,T α),d(Sβ ,T β )}) f rom(5)

Thus d(x,Sβ )≤ d(Sα,T α).

Now,

d(x,Sα)≤ max{d(x,Sβ ),d(Sβ ,Sα)}

≤ d(Sα,T α).

Thus, x ∈ Bα . Hence Bβ ⊆ Bα for any Bα in A1. Thus Bβ is the upper bound for the family A1

in A and hence by Zorn’s lemma A has a maximum element say Bz for some z ∈ X .

Now to prove that Sz = T z. Suppose that Sz 6= T z.

Since T z ∈ T X ⊆ SX , there exists a w ∈ X such that T z = Sw. Clearly z 6= w.

Consider,

τ +F(d(Sw,Tw)) = τ +F(d(T z,Tw)

< F(max{d(Sz,Sw),d(Sz,T z),d(Sw,Tw)})

= F(d(Sz,Sw))

which implies F(d(Sw,Tw))< F(d(Sz,Sw)). Thus d(Sw,Tw)< d(Sz,Sw). Hence Sz /∈ Bw.

Therefore Bz * Bw. This is a contradiction to the maximality of Bz. Hence Sz = T z.
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Since S and T are coincidentally commuting at z, S2z = S(Sz) = S(T z) = T (Sz) = T 2z.

Now to show that Sz = z. Suppose Sz 6= z, then we have,

τ +F(d(T Sz,T z))< F(max{d(S2z,Sz),d(S2z,T Sz),d(Sz,T z)})

= F(d(ST z,T z)).

Hence, we have F(d(T Sz,T z))< F(d(ST z,T z)), which gives (d(T Sz,T z))< (d(ST z,T z)), a

contradiction. Hence Sz = z. Thus z = Sz = T z, therefore z is the common fixed point of S and

T .

Uniqueness: Let w be a different fixed point. For w 6= z we have,

τ +F(d(z,w)) = τ +F(d(T z,Tw)

≤ F(max{d(Sz,Sw),d(Sz,T z),d(Sw,Tw)})

F(d(z,w))< F(max{d(Sz,Sw),d(Sz,T z),d(Sw,Tw)})

= F(d(z,w))

which implies d(z,w)< d(z,w) a contradiction. Therefore w = z. Hence z is the unique

common fixed point of S and T .

Corollary 3.4. Theorem 3.3 holds if the condition (ii) of theorem 3.3 is replaced by

generalized condition

d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(max{d(Sx,Sy),d(Sx,T x),d(Sy,Ty),d(Sx,Ty),

d(Sy,T x)})∀x,y ∈ X .
(6)

Proof. By strong triangle inequality we have d(Sx,Ty)≤ max{d(Sx,Sy),d(Sy,Ty)} and

d(Sy,T x)≤ max{d(Sy,Sx),d(Sx,T x)}. Hence (6) implies condition(ii) of theorem 3.3.

Remark 3.5. Taking S = I Identity map in Theorem 3.3, we obtain Theorem 3.1.

Now we prove the existence of coincidence point and fixed point for a single-valued map and a

multi-valued map, an extension of the Theorem 3.3.

Theorem 3.6. Let (X ,d) be a spherically complete Ultra metric space. If T : X → X is a

single-valued map and g : X →C(X) is a multi-valued map satisfying gx⊆ T X for all x ∈ X
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and

(7) H(gx,gy)> 0⇒ τ +F(H(gx,gy))≤ F(max{d(T x,Ty),d(T x,gx),d(Ty,gy)})

for all x,y ∈ X where F ∈F , τ > 0, then there exists z ∈ X such that T z ∈ gz. Further if

d(T x,Tu)≤ H(gTy,gu) for all x,y,u ∈ X with T x ∈ gy and T and g are coincidentally

commuting at z then T z is the unique common fixed point of T and g.

Proof. For α ∈ X , let Bα = B(T α,d(T α,gα)) denote the closed sphere with center at T α and

radius d(T α,gα). Let A be the collection of these spheres for all α ∈ X . Then the relation

Bα ≤ Bβ if and only if Bβ ⊆ Bα is a partial order on A .

Now, consider a totally ordered subfamily A1 of A . Since (X ,d) is spherically complete, we

have
⋂

Bα∈A1

Bα = B 6= φ .

Let T β ∈ B and Bα ∈A1. Then T β ∈ Bα . Hence d(T β ,T α)≤ d(T α,gα).

If α = β then Bα = Bβ . Let α 6= β and x ∈ Bβ . Then d(x,T β )≤ d(T β ,gβ ). Since gα is

compact, there exists v ∈ gα such that d(T α,v) = d(T α,gα).

Using (7),

τ +F(H(gα,gβ ))≤ F(max{d(T α,T β ),d(T α,gα),d(T β ,gβ )})

≤ F(max{d(T α,gα),d(T β ,gβ )})

F(H(gα,gβ ))< F(max{d(T α,gα),d(T β ,gβ )})

which implies H(gα,gβ )< max{d(T α,gα),d(T β ,gβ )}

Consider,

d(T β ,gβ ) = inf
c∈gβ

d(T β ,c)

≤ max{d(T β ,T α),d(T α,v), inf
c∈gβ

d(v,c)})

≤ max{d(T α,gα),d(gα,gβ )})

< max{d(T α,gα),d(T β ,gβ )}.

Thus d(T β ,gβ )< d(T α,gα).
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Now,

d(x,T α)≤ max{d(x,T β ),d(T β ,T α)}

≤ max{d(T β ,gβ ),d(T α,gα)}

= d(T α,gα)

Thus, x ∈ Bα . Hence Bβ ⊆ Bα for any Bα in A1. Thus Bβ is the upper bound for the family A1

in A and hence by Zorn’s lemma A has a maximum element say Bz for some z ∈ X .

Now to prove that T z ∈ gz. Suppose that T z /∈ gz.

Since gz is compact, there exists k ∈ gz such that d(T z,gz) = d(T z,k). Since gx⊆ T X , there

exists a w ∈ X such that k = Tw. Therefore d(T z,gz) = d(T z,Tw). Clearly z 6= w.

Using (7)

τ +F(H(gz,gw))≤ F(max{d(T z,Tw),d(T z,gz),d(Tw,gw)})

F(H(gz,gw))< F(max{d(T z,Tw),d(T z,gz),d(Tw,gw)})

which implies H(gz,gw)< max{d(T z,Tw),d(T z,gz),d(Tw,gw)}.

Consider,

d(Tw,gw)≤ H(gz,gw)

< max{d(T z,Tw),d(T z,gz),d(Tw,gw)}

= d(T z,Tw).

Thus d(Tw,gw)< d(T z,Tw) which implies T z /∈ Bw. Therefore Bz * Bw. This is a

contradiction to the maximality of Bz. Hence T z ∈ gz.

Consider, d(T z,T 2z) = d(T z,T T z)≤ H(gT z,gT z) = 0 which implies T T z = T z. Thus

T z = T T z ∈ T gz⊆ gT z. Hence T z is the common fixed point of T and g.

Uniqueness: Let Tw be a another fixed point such that T z 6= Tw.

Using (7)

τ +F(H(gT z,gw))≤ F(max{d(T T z,Tw),d(T T z,gT z),d(Tw,gw)})

F(H(gT z,gw))< F(max{d(T T z,Tw),d(T T z,gT z),d(Tw,gw)})

Which implies H(gT z,gw)< max{d(T T z,Tw),d(T T z,gT z),d(Tw,gw)}.
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Now consider,

d(T z,Tw))≤ H(gT z,gw)

< max{d(T T z,Tw),d(T T z,gT z),d(Tw,gw)}

< d(T z,Tw)

which implies d(T z,Tw)< d(T z,Tw), a contradiction. Therefore T z = Tw. Hence T z is the

unique common fixed point of T and g.

Corollary 3.7. If the condition (ii) in the Theorem 3.6 is replaced by

H(gx,gy)> 0⇒ τ +F(H(gx,gy))≤ F(max{d(T x,Ty),d(T x,gx),d(Ty,gy),d(T x,gy),

d(Ty,gx)})∀x,y ∈ X
(8)

then the Theorem 3.6 holds.

Proof.

By strong triangle inequality, we have d(T x,gy)≤ max{d(T x,Ty),d(Ty,gy)} and

d(Ty,gx)≤ max{d(Ty,T x),d(T x,gx)}, which gives that (8) implies (7).
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